BasicBlockUtils.cpp revision fbbd4abfe5a89e432240d2c05201b44a5e2f2f78
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Constant.h"
20#include "llvm/Type.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/DominanceFrontier.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/ValueHandle.h"
30#include <algorithm>
31using namespace llvm;
32
33/// DeleteDeadBlock - Delete the specified block, which must have no
34/// predecessors.
35void llvm::DeleteDeadBlock(BasicBlock *BB) {
36  assert((pred_begin(BB) == pred_end(BB) ||
37         // Can delete self loop.
38         BB->getSinglePredecessor() == BB) && "Block is not dead!");
39  TerminatorInst *BBTerm = BB->getTerminator();
40
41  // Loop through all of our successors and make sure they know that one
42  // of their predecessors is going away.
43  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
44    BBTerm->getSuccessor(i)->removePredecessor(BB);
45
46  // Zap all the instructions in the block.
47  while (!BB->empty()) {
48    Instruction &I = BB->back();
49    // If this instruction is used, replace uses with an arbitrary value.
50    // Because control flow can't get here, we don't care what we replace the
51    // value with.  Note that since this block is unreachable, and all values
52    // contained within it must dominate their uses, that all uses will
53    // eventually be removed (they are themselves dead).
54    if (!I.use_empty())
55      I.replaceAllUsesWith(UndefValue::get(I.getType()));
56    BB->getInstList().pop_back();
57  }
58
59  // Zap the block!
60  BB->eraseFromParent();
61}
62
63/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
64/// any single-entry PHI nodes in it, fold them away.  This handles the case
65/// when all entries to the PHI nodes in a block are guaranteed equal, such as
66/// when the block has exactly one predecessor.
67void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
68  if (!isa<PHINode>(BB->begin())) return;
69
70  AliasAnalysis *AA = 0;
71  MemoryDependenceAnalysis *MemDep = 0;
72  if (P) {
73    AA = P->getAnalysisIfAvailable<AliasAnalysis>();
74    MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
75  }
76
77  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
78    if (PN->getIncomingValue(0) != PN)
79      PN->replaceAllUsesWith(PN->getIncomingValue(0));
80    else
81      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
82
83    if (MemDep)
84      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
85    else if (AA && isa<PointerType>(PN->getType()))
86      AA->deleteValue(PN);
87
88    PN->eraseFromParent();
89  }
90}
91
92
93/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
94/// is dead. Also recursively delete any operands that become dead as
95/// a result. This includes tracing the def-use list from the PHI to see if
96/// it is ultimately unused or if it reaches an unused cycle.
97bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
98  // Recursively deleting a PHI may cause multiple PHIs to be deleted
99  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
100  SmallVector<WeakVH, 8> PHIs;
101  for (BasicBlock::iterator I = BB->begin();
102       PHINode *PN = dyn_cast<PHINode>(I); ++I)
103    PHIs.push_back(PN);
104
105  bool Changed = false;
106  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
107    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
108      Changed |= RecursivelyDeleteDeadPHINode(PN);
109
110  return Changed;
111}
112
113/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
114/// if possible.  The return value indicates success or failure.
115bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
116  // Don't merge away blocks who have their address taken.
117  if (BB->hasAddressTaken()) return false;
118
119  // Can't merge if there are multiple predecessors, or no predecessors.
120  BasicBlock *PredBB = BB->getUniquePredecessor();
121  if (!PredBB) return false;
122
123  // Don't break self-loops.
124  if (PredBB == BB) return false;
125  // Don't break invokes.
126  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
127
128  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
129  BasicBlock *OnlySucc = BB;
130  for (; SI != SE; ++SI)
131    if (*SI != OnlySucc) {
132      OnlySucc = 0;     // There are multiple distinct successors!
133      break;
134    }
135
136  // Can't merge if there are multiple successors.
137  if (!OnlySucc) return false;
138
139  // Can't merge if there is PHI loop.
140  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
141    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
142      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
143        if (PN->getIncomingValue(i) == PN)
144          return false;
145    } else
146      break;
147  }
148
149  // Begin by getting rid of unneeded PHIs.
150  if (isa<PHINode>(BB->front()))
151    FoldSingleEntryPHINodes(BB, P);
152
153  // Delete the unconditional branch from the predecessor...
154  PredBB->getInstList().pop_back();
155
156  // Move all definitions in the successor to the predecessor...
157  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
158
159  // Make all PHI nodes that referred to BB now refer to Pred as their
160  // source...
161  BB->replaceAllUsesWith(PredBB);
162
163  // Inherit predecessors name if it exists.
164  if (!PredBB->hasName())
165    PredBB->takeName(BB);
166
167  // Finally, erase the old block and update dominator info.
168  if (P) {
169    if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
170      if (DomTreeNode *DTN = DT->getNode(BB)) {
171        DomTreeNode *PredDTN = DT->getNode(PredBB);
172        SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
173        for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
174             DE = Children.end(); DI != DE; ++DI)
175          DT->changeImmediateDominator(*DI, PredDTN);
176
177        DT->eraseNode(BB);
178      }
179
180      if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
181        LI->removeBlock(BB);
182
183      if (MemoryDependenceAnalysis *MD =
184            P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
185        MD->invalidateCachedPredecessors();
186    }
187  }
188
189  BB->eraseFromParent();
190  return true;
191}
192
193/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
194/// with a value, then remove and delete the original instruction.
195///
196void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
197                                BasicBlock::iterator &BI, Value *V) {
198  Instruction &I = *BI;
199  // Replaces all of the uses of the instruction with uses of the value
200  I.replaceAllUsesWith(V);
201
202  // Make sure to propagate a name if there is one already.
203  if (I.hasName() && !V->hasName())
204    V->takeName(&I);
205
206  // Delete the unnecessary instruction now...
207  BI = BIL.erase(BI);
208}
209
210
211/// ReplaceInstWithInst - Replace the instruction specified by BI with the
212/// instruction specified by I.  The original instruction is deleted and BI is
213/// updated to point to the new instruction.
214///
215void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
216                               BasicBlock::iterator &BI, Instruction *I) {
217  assert(I->getParent() == 0 &&
218         "ReplaceInstWithInst: Instruction already inserted into basic block!");
219
220  // Insert the new instruction into the basic block...
221  BasicBlock::iterator New = BIL.insert(BI, I);
222
223  // Replace all uses of the old instruction, and delete it.
224  ReplaceInstWithValue(BIL, BI, I);
225
226  // Move BI back to point to the newly inserted instruction
227  BI = New;
228}
229
230/// ReplaceInstWithInst - Replace the instruction specified by From with the
231/// instruction specified by To.
232///
233void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
234  BasicBlock::iterator BI(From);
235  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
236}
237
238/// GetSuccessorNumber - Search for the specified successor of basic block BB
239/// and return its position in the terminator instruction's list of
240/// successors.  It is an error to call this with a block that is not a
241/// successor.
242unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
243  TerminatorInst *Term = BB->getTerminator();
244#ifndef NDEBUG
245  unsigned e = Term->getNumSuccessors();
246#endif
247  for (unsigned i = 0; ; ++i) {
248    assert(i != e && "Didn't find edge?");
249    if (Term->getSuccessor(i) == Succ)
250      return i;
251  }
252  return 0;
253}
254
255/// SplitEdge -  Split the edge connecting specified block. Pass P must
256/// not be NULL.
257BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
258  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
259
260  // If this is a critical edge, let SplitCriticalEdge do it.
261  TerminatorInst *LatchTerm = BB->getTerminator();
262  if (SplitCriticalEdge(LatchTerm, SuccNum, P))
263    return LatchTerm->getSuccessor(SuccNum);
264
265  // If the edge isn't critical, then BB has a single successor or Succ has a
266  // single pred.  Split the block.
267  BasicBlock::iterator SplitPoint;
268  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
269    // If the successor only has a single pred, split the top of the successor
270    // block.
271    assert(SP == BB && "CFG broken");
272    SP = NULL;
273    return SplitBlock(Succ, Succ->begin(), P);
274  }
275
276  // Otherwise, if BB has a single successor, split it at the bottom of the
277  // block.
278  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
279         "Should have a single succ!");
280  return SplitBlock(BB, BB->getTerminator(), P);
281}
282
283/// SplitBlock - Split the specified block at the specified instruction - every
284/// thing before SplitPt stays in Old and everything starting with SplitPt moves
285/// to a new block.  The two blocks are joined by an unconditional branch and
286/// the loop info is updated.
287///
288BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
289  BasicBlock::iterator SplitIt = SplitPt;
290  while (isa<PHINode>(SplitIt))
291    ++SplitIt;
292  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
293
294  // The new block lives in whichever loop the old one did. This preserves
295  // LCSSA as well, because we force the split point to be after any PHI nodes.
296  if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
297    if (Loop *L = LI->getLoopFor(Old))
298      L->addBasicBlockToLoop(New, LI->getBase());
299
300  if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
301    // Old dominates New. New node dominates all other nodes dominated by Old.
302    DomTreeNode *OldNode = DT->getNode(Old);
303    std::vector<DomTreeNode *> Children;
304    for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
305         I != E; ++I)
306      Children.push_back(*I);
307
308      DomTreeNode *NewNode = DT->addNewBlock(New,Old);
309      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
310             E = Children.end(); I != E; ++I)
311        DT->changeImmediateDominator(*I, NewNode);
312  }
313
314  if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
315    DF->splitBlock(Old);
316
317  return New;
318}
319
320
321/// SplitBlockPredecessors - This method transforms BB by introducing a new
322/// basic block into the function, and moving some of the predecessors of BB to
323/// be predecessors of the new block.  The new predecessors are indicated by the
324/// Preds array, which has NumPreds elements in it.  The new block is given a
325/// suffix of 'Suffix'.
326///
327/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
328/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
329/// In particular, it does not preserve LoopSimplify (because it's
330/// complicated to handle the case where one of the edges being split
331/// is an exit of a loop with other exits).
332///
333BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
334                                         BasicBlock *const *Preds,
335                                         unsigned NumPreds, const char *Suffix,
336                                         Pass *P) {
337  // Create new basic block, insert right before the original block.
338  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
339                                         BB->getParent(), BB);
340
341  // The new block unconditionally branches to the old block.
342  BranchInst *BI = BranchInst::Create(BB, NewBB);
343
344  LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
345  Loop *L = LI ? LI->getLoopFor(BB) : 0;
346  bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
347
348  // Move the edges from Preds to point to NewBB instead of BB.
349  // While here, if we need to preserve loop analyses, collect
350  // some information about how this split will affect loops.
351  bool HasLoopExit = false;
352  bool IsLoopEntry = !!L;
353  bool SplitMakesNewLoopHeader = false;
354  for (unsigned i = 0; i != NumPreds; ++i) {
355    // This is slightly more strict than necessary; the minimum requirement
356    // is that there be no more than one indirectbr branching to BB. And
357    // all BlockAddress uses would need to be updated.
358    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
359           "Cannot split an edge from an IndirectBrInst");
360
361    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
362
363    if (LI) {
364      // If we need to preserve LCSSA, determine if any of
365      // the preds is a loop exit.
366      if (PreserveLCSSA)
367        if (Loop *PL = LI->getLoopFor(Preds[i]))
368          if (!PL->contains(BB))
369            HasLoopExit = true;
370      // If we need to preserve LoopInfo, note whether any of the
371      // preds crosses an interesting loop boundary.
372      if (L) {
373        if (L->contains(Preds[i]))
374          IsLoopEntry = false;
375        else
376          SplitMakesNewLoopHeader = true;
377      }
378    }
379  }
380
381  // Update dominator tree and dominator frontier if available.
382  DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
383  if (DT)
384    DT->splitBlock(NewBB);
385  if (DominanceFrontier *DF =
386        P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0)
387    DF->splitBlock(NewBB);
388
389  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
390  // node becomes an incoming value for BB's phi node.  However, if the Preds
391  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
392  // account for the newly created predecessor.
393  if (NumPreds == 0) {
394    // Insert dummy values as the incoming value.
395    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
396      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
397    return NewBB;
398  }
399
400  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
401
402  if (L) {
403    if (IsLoopEntry) {
404      // Add the new block to the nearest enclosing loop (and not an
405      // adjacent loop). To find this, examine each of the predecessors and
406      // determine which loops enclose them, and select the most-nested loop
407      // which contains the loop containing the block being split.
408      Loop *InnermostPredLoop = 0;
409      for (unsigned i = 0; i != NumPreds; ++i)
410        if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
411          // Seek a loop which actually contains the block being split (to
412          // avoid adjacent loops).
413          while (PredLoop && !PredLoop->contains(BB))
414            PredLoop = PredLoop->getParentLoop();
415          // Select the most-nested of these loops which contains the block.
416          if (PredLoop &&
417              PredLoop->contains(BB) &&
418              (!InnermostPredLoop ||
419               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
420            InnermostPredLoop = PredLoop;
421        }
422      if (InnermostPredLoop)
423        InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
424    } else {
425      L->addBasicBlockToLoop(NewBB, LI->getBase());
426      if (SplitMakesNewLoopHeader)
427        L->moveToHeader(NewBB);
428    }
429  }
430
431  // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
432  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
433    PHINode *PN = cast<PHINode>(I++);
434
435    // Check to see if all of the values coming in are the same.  If so, we
436    // don't need to create a new PHI node, unless it's needed for LCSSA.
437    Value *InVal = 0;
438    if (!HasLoopExit) {
439      InVal = PN->getIncomingValueForBlock(Preds[0]);
440      for (unsigned i = 1; i != NumPreds; ++i)
441        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
442          InVal = 0;
443          break;
444        }
445    }
446
447    if (InVal) {
448      // If all incoming values for the new PHI would be the same, just don't
449      // make a new PHI.  Instead, just remove the incoming values from the old
450      // PHI.
451      for (unsigned i = 0; i != NumPreds; ++i)
452        PN->removeIncomingValue(Preds[i], false);
453    } else {
454      // If the values coming into the block are not the same, we need a PHI.
455      // Create the new PHI node, insert it into NewBB at the end of the block
456      PHINode *NewPHI =
457        PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
458      if (AA) AA->copyValue(PN, NewPHI);
459
460      // Move all of the PHI values for 'Preds' to the new PHI.
461      for (unsigned i = 0; i != NumPreds; ++i) {
462        Value *V = PN->removeIncomingValue(Preds[i], false);
463        NewPHI->addIncoming(V, Preds[i]);
464      }
465      InVal = NewPHI;
466    }
467
468    // Add an incoming value to the PHI node in the loop for the preheader
469    // edge.
470    PN->addIncoming(InVal, NewBB);
471  }
472
473  return NewBB;
474}
475
476/// FindFunctionBackedges - Analyze the specified function to find all of the
477/// loop backedges in the function and return them.  This is a relatively cheap
478/// (compared to computing dominators and loop info) analysis.
479///
480/// The output is added to Result, as pairs of <from,to> edge info.
481void llvm::FindFunctionBackedges(const Function &F,
482     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
483  const BasicBlock *BB = &F.getEntryBlock();
484  if (succ_begin(BB) == succ_end(BB))
485    return;
486
487  SmallPtrSet<const BasicBlock*, 8> Visited;
488  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
489  SmallPtrSet<const BasicBlock*, 8> InStack;
490
491  Visited.insert(BB);
492  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
493  InStack.insert(BB);
494  do {
495    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
496    const BasicBlock *ParentBB = Top.first;
497    succ_const_iterator &I = Top.second;
498
499    bool FoundNew = false;
500    while (I != succ_end(ParentBB)) {
501      BB = *I++;
502      if (Visited.insert(BB)) {
503        FoundNew = true;
504        break;
505      }
506      // Successor is in VisitStack, it's a back edge.
507      if (InStack.count(BB))
508        Result.push_back(std::make_pair(ParentBB, BB));
509    }
510
511    if (FoundNew) {
512      // Go down one level if there is a unvisited successor.
513      InStack.insert(BB);
514      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
515    } else {
516      // Go up one level.
517      InStack.erase(VisitStack.pop_back_val().first);
518    }
519  } while (!VisitStack.empty());
520
521
522}
523