CodeExtractor.cpp revision a670c684a637e9922be87d8b459d2e052675f0e4
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/Verifier.h"
26#include "llvm/Transforms/Utils/BasicBlockUtils.h"
27#include "Support/CommandLine.h"
28#include "Support/Debug.h"
29#include "Support/StringExtras.h"
30#include <algorithm>
31#include <set>
32using namespace llvm;
33
34// Provide a command-line option to aggregate function arguments into a struct
35// for functions produced by the code extrator. This is useful when converting
36// extracted functions to pthread-based code, as only one argument (void*) can
37// be passed in to pthread_create().
38static cl::opt<bool>
39AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
40                 cl::desc("Aggregate arguments to code-extracted functions"));
41
42namespace {
43  class CodeExtractor {
44    typedef std::vector<Value*> Values;
45    std::set<BasicBlock*> BlocksToExtract;
46    DominatorSet *DS;
47    bool AggregateArgs;
48    unsigned NumExitBlocks;
49    const Type *RetTy;
50  public:
51    CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false)
52      : DS(ds), AggregateArgs(AggregateArgsOpt), NumExitBlocks(~0U) {}
53
54    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
55
56    bool isEligible(const std::vector<BasicBlock*> &code);
57
58  private:
59    /// definedInRegion - Return true if the specified value is defined in the
60    /// extracted region.
61    bool definedInRegion(Value *V) const {
62      if (Instruction *I = dyn_cast<Instruction>(V))
63        if (BlocksToExtract.count(I->getParent()))
64          return true;
65      return false;
66    }
67
68    /// definedInCaller - Return true if the specified value is defined in the
69    /// function being code extracted, but not in the region being extracted.
70    /// These values must be passed in as live-ins to the function.
71    bool definedInCaller(Value *V) const {
72      if (isa<Argument>(V)) return true;
73      if (Instruction *I = dyn_cast<Instruction>(V))
74        if (!BlocksToExtract.count(I->getParent()))
75          return true;
76      return false;
77    }
78
79    void severSplitPHINodes(BasicBlock *&Header);
80    void splitReturnBlocks();
81    void findInputsOutputs(Values &inputs, Values &outputs);
82
83    Function *constructFunction(const Values &inputs,
84                                const Values &outputs,
85                                BasicBlock *header,
86                                BasicBlock *newRootNode, BasicBlock *newHeader,
87                                Function *oldFunction, Module *M);
88
89    void moveCodeToFunction(Function *newFunction);
90
91    void emitCallAndSwitchStatement(Function *newFunction,
92                                    BasicBlock *newHeader,
93                                    Values &inputs,
94                                    Values &outputs);
95
96  };
97}
98
99/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
100/// region, we need to split the entry block of the region so that the PHI node
101/// is easier to deal with.
102void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
103  bool HasPredsFromRegion = false;
104  unsigned NumPredsOutsideRegion = 0;
105
106  if (Header != &Header->getParent()->front()) {
107    PHINode *PN = dyn_cast<PHINode>(Header->begin());
108    if (!PN) return;  // No PHI nodes.
109
110    // If the header node contains any PHI nodes, check to see if there is more
111    // than one entry from outside the region.  If so, we need to sever the
112    // header block into two.
113    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
114      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
115        HasPredsFromRegion = true;
116      else
117        ++NumPredsOutsideRegion;
118
119    // If there is one (or fewer) predecessor from outside the region, we don't
120    // need to do anything special.
121    if (NumPredsOutsideRegion <= 1) return;
122  }
123
124  // Otherwise, we need to split the header block into two pieces: one
125  // containing PHI nodes merging values from outside of the region, and a
126  // second that contains all of the code for the block and merges back any
127  // incoming values from inside of the region.
128  BasicBlock::iterator AfterPHIs = Header->begin();
129  while (isa<PHINode>(AfterPHIs)) ++AfterPHIs;
130  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
131                                              Header->getName()+".ce");
132
133  // We only want to code extract the second block now, and it becomes the new
134  // header of the region.
135  BasicBlock *OldPred = Header;
136  BlocksToExtract.erase(OldPred);
137  BlocksToExtract.insert(NewBB);
138  Header = NewBB;
139
140  // Okay, update dominator sets. The blocks that dominate the new one are the
141  // blocks that dominate TIBB plus the new block itself.
142  if (DS) {
143    DominatorSet::DomSetType DomSet = DS->getDominators(OldPred);
144    DomSet.insert(NewBB);  // A block always dominates itself.
145    DS->addBasicBlock(NewBB, DomSet);
146
147    // Additionally, NewBB dominates all blocks in the function that are
148    // dominated by OldPred.
149    Function *F = Header->getParent();
150    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
151      if (DS->properlyDominates(OldPred, I))
152        DS->addDominator(I, NewBB);
153  }
154
155  // Okay, now we need to adjust the PHI nodes and any branches from within the
156  // region to go to the new header block instead of the old header block.
157  if (HasPredsFromRegion) {
158    PHINode *PN = cast<PHINode>(OldPred->begin());
159    // Loop over all of the predecessors of OldPred that are in the region,
160    // changing them to branch to NewBB instead.
161    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
162      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
163        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
164        TI->replaceUsesOfWith(OldPred, NewBB);
165      }
166
167    // Okay, everthing within the region is now branching to the right block, we
168    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
169    for (AfterPHIs = OldPred->begin();
170         PHINode *PN = dyn_cast<PHINode>(AfterPHIs); ++AfterPHIs) {
171      // Create a new PHI node in the new region, which has an incoming value
172      // from OldPred of PN.
173      PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce",
174                                   NewBB->begin());
175      NewPN->addIncoming(PN, OldPred);
176
177      // Loop over all of the incoming value in PN, moving them to NewPN if they
178      // are from the extracted region.
179      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
180        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
181          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
182          PN->removeIncomingValue(i);
183          --i;
184        }
185      }
186    }
187  }
188}
189
190void CodeExtractor::splitReturnBlocks() {
191  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
192         E = BlocksToExtract.end(); I != E; ++I)
193    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
194      (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
195}
196
197// findInputsOutputs - Find inputs to, outputs from the code region.
198//
199void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
200  std::set<BasicBlock*> ExitBlocks;
201  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
202       ce = BlocksToExtract.end(); ci != ce; ++ci) {
203    BasicBlock *BB = *ci;
204
205    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
206      // If a used value is defined outside the region, it's an input.  If an
207      // instruction is used outside the region, it's an output.
208      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
209        if (definedInCaller(*O))
210          inputs.push_back(*O);
211
212      // Consider uses of this instruction (outputs).
213      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
214           UI != E; ++UI)
215        if (!definedInRegion(*UI)) {
216          outputs.push_back(I);
217          break;
218        }
219    } // for: insts
220
221    // Keep track of the exit blocks from the region.
222    TerminatorInst *TI = BB->getTerminator();
223    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
224      if (!BlocksToExtract.count(TI->getSuccessor(i)))
225        ExitBlocks.insert(TI->getSuccessor(i));
226  } // for: basic blocks
227
228  NumExitBlocks = ExitBlocks.size();
229
230  // Eliminate duplicates.
231  std::sort(inputs.begin(), inputs.end());
232  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
233  std::sort(outputs.begin(), outputs.end());
234  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
235}
236
237/// constructFunction - make a function based on inputs and outputs, as follows:
238/// f(in0, ..., inN, out0, ..., outN)
239///
240Function *CodeExtractor::constructFunction(const Values &inputs,
241                                           const Values &outputs,
242                                           BasicBlock *header,
243                                           BasicBlock *newRootNode,
244                                           BasicBlock *newHeader,
245                                           Function *oldFunction,
246                                           Module *M) {
247  DEBUG(std::cerr << "inputs: " << inputs.size() << "\n");
248  DEBUG(std::cerr << "outputs: " << outputs.size() << "\n");
249
250  // This function returns unsigned, outputs will go back by reference.
251  switch (NumExitBlocks) {
252  case 0:
253  case 1: RetTy = Type::VoidTy; break;
254  case 2: RetTy = Type::BoolTy; break;
255  default: RetTy = Type::UShortTy; break;
256  }
257
258  std::vector<const Type*> paramTy;
259
260  // Add the types of the input values to the function's argument list
261  for (Values::const_iterator i = inputs.begin(),
262         e = inputs.end(); i != e; ++i) {
263    const Value *value = *i;
264    DEBUG(std::cerr << "value used in func: " << *value << "\n");
265    paramTy.push_back(value->getType());
266  }
267
268  // Add the types of the output values to the function's argument list.
269  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
270       I != E; ++I) {
271    DEBUG(std::cerr << "instr used in func: " << **I << "\n");
272    if (AggregateArgs)
273      paramTy.push_back((*I)->getType());
274    else
275      paramTy.push_back(PointerType::get((*I)->getType()));
276  }
277
278  DEBUG(std::cerr << "Function type: " << *RetTy << " f(");
279  DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(),
280               e = paramTy.end(); i != e; ++i) std::cerr << **i << ", ");
281  DEBUG(std::cerr << ")\n");
282
283  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
284    PointerType *StructPtr = PointerType::get(StructType::get(paramTy));
285    paramTy.clear();
286    paramTy.push_back(StructPtr);
287  }
288  const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
289
290  // Create the new function
291  Function *newFunction = new Function(funcType,
292                                       GlobalValue::InternalLinkage,
293                                       oldFunction->getName() + "_" +
294                                       header->getName(), M);
295  newFunction->getBasicBlockList().push_back(newRootNode);
296
297  // Create an iterator to name all of the arguments we inserted.
298  Function::aiterator AI = newFunction->abegin();
299
300  // Rewrite all users of the inputs in the extracted region to use the
301  // arguments (or appropriate addressing into struct) instead.
302  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
303    Value *RewriteVal;
304    if (AggregateArgs) {
305      std::vector<Value*> Indices;
306      Indices.push_back(Constant::getNullValue(Type::UIntTy));
307      Indices.push_back(ConstantUInt::get(Type::UIntTy, i));
308      std::string GEPname = "gep_" + inputs[i]->getName();
309      TerminatorInst *TI = newFunction->begin()->getTerminator();
310      GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI);
311      RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
312    } else
313      RewriteVal = AI++;
314
315    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
316    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
317         use != useE; ++use)
318      if (Instruction* inst = dyn_cast<Instruction>(*use))
319        if (BlocksToExtract.count(inst->getParent()))
320          inst->replaceUsesOfWith(inputs[i], RewriteVal);
321  }
322
323  // Set names for input and output arguments.
324  if (!AggregateArgs) {
325    AI = newFunction->abegin();
326    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
327      AI->setName(inputs[i]->getName());
328    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
329      AI->setName(outputs[i]->getName()+".out");
330  }
331
332  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
333  // within the new function. This must be done before we lose track of which
334  // blocks were originally in the code region.
335  std::vector<User*> Users(header->use_begin(), header->use_end());
336  for (unsigned i = 0, e = Users.size(); i != e; ++i)
337    // The BasicBlock which contains the branch is not in the region
338    // modify the branch target to a new block
339    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
340      if (!BlocksToExtract.count(TI->getParent()) &&
341          TI->getParent()->getParent() == oldFunction)
342        TI->replaceUsesOfWith(header, newHeader);
343
344  return newFunction;
345}
346
347/// emitCallAndSwitchStatement - This method sets up the caller side by adding
348/// the call instruction, splitting any PHI nodes in the header block as
349/// necessary.
350void CodeExtractor::
351emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
352                           Values &inputs, Values &outputs) {
353  // Emit a call to the new function, passing in: *pointer to struct (if
354  // aggregating parameters), or plan inputs and allocated memory for outputs
355  std::vector<Value*> params, StructValues, ReloadOutputs;
356
357  // Add inputs as params, or to be filled into the struct
358  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
359    if (AggregateArgs)
360      StructValues.push_back(*i);
361    else
362      params.push_back(*i);
363
364  // Create allocas for the outputs
365  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
366    if (AggregateArgs) {
367      StructValues.push_back(*i);
368    } else {
369      AllocaInst *alloca =
370        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
371                       codeReplacer->getParent()->begin()->begin());
372      ReloadOutputs.push_back(alloca);
373      params.push_back(alloca);
374    }
375  }
376
377  AllocaInst *Struct = 0;
378  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
379    std::vector<const Type*> ArgTypes;
380    for (Values::iterator v = StructValues.begin(),
381           ve = StructValues.end(); v != ve; ++v)
382      ArgTypes.push_back((*v)->getType());
383
384    // Allocate a struct at the beginning of this function
385    Type *StructArgTy = StructType::get(ArgTypes);
386    Struct =
387      new AllocaInst(StructArgTy, 0, "structArg",
388                     codeReplacer->getParent()->begin()->begin());
389    params.push_back(Struct);
390
391    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
392      std::vector<Value*> Indices;
393      Indices.push_back(Constant::getNullValue(Type::UIntTy));
394      Indices.push_back(ConstantUInt::get(Type::UIntTy, i));
395      GetElementPtrInst *GEP =
396        new GetElementPtrInst(Struct, Indices,
397                              "gep_" + StructValues[i]->getName());
398      codeReplacer->getInstList().push_back(GEP);
399      StoreInst *SI = new StoreInst(StructValues[i], GEP);
400      codeReplacer->getInstList().push_back(SI);
401    }
402  }
403
404  // Emit the call to the function
405  CallInst *call = new CallInst(newFunction, params,
406                                NumExitBlocks > 1 ? "targetBlock": "");
407  codeReplacer->getInstList().push_back(call);
408
409  Function::aiterator OutputArgBegin = newFunction->abegin();
410  unsigned FirstOut = inputs.size();
411  if (!AggregateArgs)
412    std::advance(OutputArgBegin, inputs.size());
413
414  // Reload the outputs passed in by reference
415  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
416    Value *Output = 0;
417    if (AggregateArgs) {
418      std::vector<Value*> Indices;
419      Indices.push_back(Constant::getNullValue(Type::UIntTy));
420      Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i));
421      GetElementPtrInst *GEP
422        = new GetElementPtrInst(Struct, Indices,
423                                "gep_reload_" + outputs[i]->getName());
424      codeReplacer->getInstList().push_back(GEP);
425      Output = GEP;
426    } else {
427      Output = ReloadOutputs[i];
428    }
429    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
430    codeReplacer->getInstList().push_back(load);
431    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
432    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
433      Instruction *inst = cast<Instruction>(Users[u]);
434      if (!BlocksToExtract.count(inst->getParent()))
435        inst->replaceUsesOfWith(outputs[i], load);
436    }
437  }
438
439  // Now we can emit a switch statement using the call as a value.
440  SwitchInst *TheSwitch =
441    new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy),
442                   codeReplacer, codeReplacer);
443
444  // Since there may be multiple exits from the original region, make the new
445  // function return an unsigned, switch on that number.  This loop iterates
446  // over all of the blocks in the extracted region, updating any terminator
447  // instructions in the to-be-extracted region that branch to blocks that are
448  // not in the region to be extracted.
449  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
450
451  unsigned switchVal = 0;
452  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
453         e = BlocksToExtract.end(); i != e; ++i) {
454    TerminatorInst *TI = (*i)->getTerminator();
455    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
456      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
457        BasicBlock *OldTarget = TI->getSuccessor(i);
458        // add a new basic block which returns the appropriate value
459        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
460        if (!NewTarget) {
461          // If we don't already have an exit stub for this non-extracted
462          // destination, create one now!
463          NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub",
464                                     newFunction);
465          unsigned SuccNum = switchVal++;
466
467          Value *brVal = 0;
468          switch (NumExitBlocks) {
469          case 0:
470          case 1: break;  // No value needed.
471          case 2:         // Conditional branch, return a bool
472            brVal = SuccNum ? ConstantBool::False : ConstantBool::True;
473            break;
474          default:
475            brVal = ConstantUInt::get(Type::UShortTy, SuccNum);
476            break;
477          }
478
479          ReturnInst *NTRet = new ReturnInst(brVal, NewTarget);
480
481          // Update the switch instruction.
482          TheSwitch->addCase(ConstantUInt::get(Type::UShortTy, SuccNum),
483                             OldTarget);
484
485          // Restore values just before we exit
486          Function::aiterator OAI = OutputArgBegin;
487          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
488            // For an invoke, the normal destination is the only one that is
489            // dominated by the result of the invocation
490            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
491            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out]))
492              DefBlock = Invoke->getNormalDest();
493            if (!DS || DS->dominates(DefBlock, TI->getParent()))
494              if (AggregateArgs) {
495                std::vector<Value*> Indices;
496                Indices.push_back(Constant::getNullValue(Type::UIntTy));
497                Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out));
498                GetElementPtrInst *GEP =
499                  new GetElementPtrInst(OAI, Indices,
500                                        "gep_" + outputs[out]->getName(),
501                                        NTRet);
502                new StoreInst(outputs[out], GEP, NTRet);
503              } else
504                new StoreInst(outputs[out], OAI, NTRet);
505            // Advance output iterator even if we don't emit a store
506            if (!AggregateArgs) ++OAI;
507          }
508        }
509
510        // rewrite the original branch instruction with this new target
511        TI->setSuccessor(i, NewTarget);
512      }
513  }
514
515  // Now that we've done the deed, simplify the switch instruction.
516  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
517  switch (NumExitBlocks) {
518  case 0:
519    // There are no successors (the block containing the switch itself), which
520    // means that previously this was the last part of the function, and hence
521    // this should be rewritten as a `ret'
522
523    // Check if the function should return a value
524    if (OldFnRetTy == Type::VoidTy) {
525      new ReturnInst(0, TheSwitch);  // Return void
526    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
527      // return what we have
528      new ReturnInst(TheSwitch->getCondition(), TheSwitch);
529    } else {
530      // Otherwise we must have code extracted an unwind or something, just
531      // return whatever we want.
532      new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch);
533    }
534
535    TheSwitch->getParent()->getInstList().erase(TheSwitch);
536    break;
537  case 1:
538    // Only a single destination, change the switch into an unconditional
539    // branch.
540    new BranchInst(TheSwitch->getSuccessor(1), TheSwitch);
541    TheSwitch->getParent()->getInstList().erase(TheSwitch);
542    break;
543  case 2:
544    new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
545                   call, TheSwitch);
546    TheSwitch->getParent()->getInstList().erase(TheSwitch);
547    break;
548  default:
549    // Otherwise, make the default destination of the switch instruction be one
550    // of the other successors.
551    TheSwitch->setOperand(0, call);
552    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
553    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
554    break;
555  }
556}
557
558void CodeExtractor::moveCodeToFunction(Function *newFunction) {
559  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
560  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
561  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
562
563  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
564         e = BlocksToExtract.end(); i != e; ++i) {
565    // Delete the basic block from the old function, and the list of blocks
566    oldBlocks.remove(*i);
567
568    // Insert this basic block into the new function
569    newBlocks.push_back(*i);
570  }
571}
572
573/// ExtractRegion - Removes a loop from a function, replaces it with a call to
574/// new function. Returns pointer to the new function.
575///
576/// algorithm:
577///
578/// find inputs and outputs for the region
579///
580/// for inputs: add to function as args, map input instr* to arg#
581/// for outputs: add allocas for scalars,
582///             add to func as args, map output instr* to arg#
583///
584/// rewrite func to use argument #s instead of instr*
585///
586/// for each scalar output in the function: at every exit, store intermediate
587/// computed result back into memory.
588///
589Function *CodeExtractor::
590ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
591  if (!isEligible(code))
592    return 0;
593
594  // 1) Find inputs, outputs
595  // 2) Construct new function
596  //  * Add allocas for defs, pass as args by reference
597  //  * Pass in uses as args
598  // 3) Move code region, add call instr to func
599  //
600  BlocksToExtract.insert(code.begin(), code.end());
601
602  Values inputs, outputs;
603
604  // Assumption: this is a single-entry code region, and the header is the first
605  // block in the region.
606  BasicBlock *header = code[0];
607
608  for (unsigned i = 1, e = code.size(); i != e; ++i)
609    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
610         PI != E; ++PI)
611      assert(BlocksToExtract.count(*PI) &&
612             "No blocks in this region may have entries from outside the region"
613             " except for the first block!");
614
615  // If we have to split PHI nodes or the entry block, do so now.
616  severSplitPHINodes(header);
617
618  // If we have any return instructions in the region, split those blocks so
619  // that the return is not in the region.
620  splitReturnBlocks();
621
622  Function *oldFunction = header->getParent();
623
624  // This takes place of the original loop
625  BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header);
626
627  // The new function needs a root node because other nodes can branch to the
628  // head of the region, but the entry node of a function cannot have preds.
629  BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot");
630  newFuncRoot->getInstList().push_back(new BranchInst(header));
631
632  // Find inputs to, outputs from the code region.
633  findInputsOutputs(inputs, outputs);
634
635  // Construct new function based on inputs/outputs & add allocas for all defs.
636  Function *newFunction = constructFunction(inputs, outputs, header,
637                                            newFuncRoot,
638                                            codeReplacer, oldFunction,
639                                            oldFunction->getParent());
640
641  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
642
643  moveCodeToFunction(newFunction);
644
645  // Loop over all of the PHI nodes in the header block, and change any
646  // references to the old incoming edge to be the new incoming edge.
647  for (BasicBlock::iterator I = header->begin();
648       PHINode *PN = dyn_cast<PHINode>(I); ++I)
649    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
650      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
651        PN->setIncomingBlock(i, newFuncRoot);
652
653  // Look at all successors of the codeReplacer block.  If any of these blocks
654  // had PHI nodes in them, we need to update the "from" block to be the code
655  // replacer, not the original block in the extracted region.
656  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
657                                 succ_end(codeReplacer));
658  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
659    for (BasicBlock::iterator I = Succs[i]->begin();
660         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
661      std::set<BasicBlock*> ProcessedPreds;
662      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
663        if (BlocksToExtract.count(PN->getIncomingBlock(i)))
664          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
665            PN->setIncomingBlock(i, codeReplacer);
666          else {
667            // There were multiple entries in the PHI for this block, now there
668            // is only one, so remove the duplicated entries.
669            PN->removeIncomingValue(i, false);
670            --i; --e;
671          }
672    }
673
674  //std::cerr << "NEW FUNCTION: " << *newFunction;
675  //  verifyFunction(*newFunction);
676
677  //  std::cerr << "OLD FUNCTION: " << *oldFunction;
678  //  verifyFunction(*oldFunction);
679
680  DEBUG(if (verifyFunction(*newFunction)) abort());
681  return newFunction;
682}
683
684bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
685  // Deny code region if it contains allocas or vastarts.
686  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
687       BB != e; ++BB)
688    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
689         I != Ie; ++I)
690      if (isa<AllocaInst>(*I))
691        return false;
692      else if (const CallInst *CI = dyn_cast<CallInst>(I))
693        if (const Function *F = CI->getCalledFunction())
694          if (F->getIntrinsicID() == Intrinsic::vastart)
695            return false;
696  return true;
697}
698
699
700/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
701/// function
702///
703Function* llvm::ExtractCodeRegion(DominatorSet &DS,
704                                  const std::vector<BasicBlock*> &code,
705                                  bool AggregateArgs) {
706  return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code);
707}
708
709/// ExtractBasicBlock - slurp a natural loop into a brand new function
710///
711Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) {
712  return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks());
713}
714
715/// ExtractBasicBlock - slurp a basic block into a brand new function
716///
717Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
718  std::vector<BasicBlock*> Blocks;
719  Blocks.push_back(BB);
720  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
721}
722