1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "loop-unroll"
20#include "llvm/Transforms/Utils/UnrollLoop.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopIterator.h"
25#include "llvm/Analysis/LoopPass.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Cloning.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Transforms/Utils/SimplifyIndVar.h"
33using namespace llvm;
34
35// TODO: Should these be here or in LoopUnroll?
36STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
37STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
38
39/// RemapInstruction - Convert the instruction operands from referencing the
40/// current values into those specified by VMap.
41static inline void RemapInstruction(Instruction *I,
42                                    ValueToValueMapTy &VMap) {
43  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
44    Value *Op = I->getOperand(op);
45    ValueToValueMapTy::iterator It = VMap.find(Op);
46    if (It != VMap.end())
47      I->setOperand(op, It->second);
48  }
49
50  if (PHINode *PN = dyn_cast<PHINode>(I)) {
51    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
52      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
53      if (It != VMap.end())
54        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
55    }
56  }
57}
58
59/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
60/// only has one predecessor, and that predecessor only has one successor.
61/// The LoopInfo Analysis that is passed will be kept consistent.
62/// Returns the new combined block.
63static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
64                                            LPPassManager *LPM) {
65  // Merge basic blocks into their predecessor if there is only one distinct
66  // pred, and if there is only one distinct successor of the predecessor, and
67  // if there are no PHI nodes.
68  BasicBlock *OnlyPred = BB->getSinglePredecessor();
69  if (!OnlyPred) return 0;
70
71  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
72    return 0;
73
74  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
75
76  // Resolve any PHI nodes at the start of the block.  They are all
77  // guaranteed to have exactly one entry if they exist, unless there are
78  // multiple duplicate (but guaranteed to be equal) entries for the
79  // incoming edges.  This occurs when there are multiple edges from
80  // OnlyPred to OnlySucc.
81  FoldSingleEntryPHINodes(BB);
82
83  // Delete the unconditional branch from the predecessor...
84  OnlyPred->getInstList().pop_back();
85
86  // Make all PHI nodes that referred to BB now refer to Pred as their
87  // source...
88  BB->replaceAllUsesWith(OnlyPred);
89
90  // Move all definitions in the successor to the predecessor...
91  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
92
93  std::string OldName = BB->getName();
94
95  // Erase basic block from the function...
96
97  // ScalarEvolution holds references to loop exit blocks.
98  if (LPM) {
99    if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
100      if (Loop *L = LI->getLoopFor(BB))
101        SE->forgetLoop(L);
102    }
103  }
104  LI->removeBlock(BB);
105  BB->eraseFromParent();
106
107  // Inherit predecessor's name if it exists...
108  if (!OldName.empty() && !OnlyPred->hasName())
109    OnlyPred->setName(OldName);
110
111  return OnlyPred;
112}
113
114/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
115/// if unrolling was successful, or false if the loop was unmodified. Unrolling
116/// can only fail when the loop's latch block is not terminated by a conditional
117/// branch instruction. However, if the trip count (and multiple) are not known,
118/// loop unrolling will mostly produce more code that is no faster.
119///
120/// TripCount is generally defined as the number of times the loop header
121/// executes. UnrollLoop relaxes the definition to permit early exits: here
122/// TripCount is the iteration on which control exits LatchBlock if no early
123/// exits were taken. Note that UnrollLoop assumes that the loop counter test
124/// terminates LatchBlock in order to remove unnecesssary instances of the
125/// test. In other words, control may exit the loop prior to TripCount
126/// iterations via an early branch, but control may not exit the loop from the
127/// LatchBlock's terminator prior to TripCount iterations.
128///
129/// Similarly, TripMultiple divides the number of times that the LatchBlock may
130/// execute without exiting the loop.
131///
132/// The LoopInfo Analysis that is passed will be kept consistent.
133///
134/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
135/// removed from the LoopPassManager as well. LPM can also be NULL.
136///
137/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
138/// available it must also preserve those analyses.
139bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
140                      bool AllowRuntime, unsigned TripMultiple,
141                      LoopInfo *LI, LPPassManager *LPM) {
142  BasicBlock *Preheader = L->getLoopPreheader();
143  if (!Preheader) {
144    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
145    return false;
146  }
147
148  BasicBlock *LatchBlock = L->getLoopLatch();
149  if (!LatchBlock) {
150    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
151    return false;
152  }
153
154  // Loops with indirectbr cannot be cloned.
155  if (!L->isSafeToClone()) {
156    DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
157    return false;
158  }
159
160  BasicBlock *Header = L->getHeader();
161  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
162
163  if (!BI || BI->isUnconditional()) {
164    // The loop-rotate pass can be helpful to avoid this in many cases.
165    DEBUG(dbgs() <<
166             "  Can't unroll; loop not terminated by a conditional branch.\n");
167    return false;
168  }
169
170  if (Header->hasAddressTaken()) {
171    // The loop-rotate pass can be helpful to avoid this in many cases.
172    DEBUG(dbgs() <<
173          "  Won't unroll loop: address of header block is taken.\n");
174    return false;
175  }
176
177  if (TripCount != 0)
178    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
179  if (TripMultiple != 1)
180    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
181
182  // Effectively "DCE" unrolled iterations that are beyond the tripcount
183  // and will never be executed.
184  if (TripCount != 0 && Count > TripCount)
185    Count = TripCount;
186
187  // Don't enter the unroll code if there is nothing to do. This way we don't
188  // need to support "partial unrolling by 1".
189  if (TripCount == 0 && Count < 2)
190    return false;
191
192  assert(Count > 0);
193  assert(TripMultiple > 0);
194  assert(TripCount == 0 || TripCount % TripMultiple == 0);
195
196  // Are we eliminating the loop control altogether?
197  bool CompletelyUnroll = Count == TripCount;
198
199  // We assume a run-time trip count if the compiler cannot
200  // figure out the loop trip count and the unroll-runtime
201  // flag is specified.
202  bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
203
204  if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
205    return false;
206
207  // Notify ScalarEvolution that the loop will be substantially changed,
208  // if not outright eliminated.
209  if (LPM) {
210    ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
211    if (SE)
212      SE->forgetLoop(L);
213  }
214
215  // If we know the trip count, we know the multiple...
216  unsigned BreakoutTrip = 0;
217  if (TripCount != 0) {
218    BreakoutTrip = TripCount % Count;
219    TripMultiple = 0;
220  } else {
221    // Figure out what multiple to use.
222    BreakoutTrip = TripMultiple =
223      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
224  }
225
226  if (CompletelyUnroll) {
227    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
228          << " with trip count " << TripCount << "!\n");
229  } else {
230    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
231          << " by " << Count);
232    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
233      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
234    } else if (TripMultiple != 1) {
235      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
236    } else if (RuntimeTripCount) {
237      DEBUG(dbgs() << " with run-time trip count");
238    }
239    DEBUG(dbgs() << "!\n");
240  }
241
242  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
243
244  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
245  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
246
247  // For the first iteration of the loop, we should use the precloned values for
248  // PHI nodes.  Insert associations now.
249  ValueToValueMapTy LastValueMap;
250  std::vector<PHINode*> OrigPHINode;
251  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
252    OrigPHINode.push_back(cast<PHINode>(I));
253  }
254
255  std::vector<BasicBlock*> Headers;
256  std::vector<BasicBlock*> Latches;
257  Headers.push_back(Header);
258  Latches.push_back(LatchBlock);
259
260  // The current on-the-fly SSA update requires blocks to be processed in
261  // reverse postorder so that LastValueMap contains the correct value at each
262  // exit.
263  LoopBlocksDFS DFS(L);
264  DFS.perform(LI);
265
266  // Stash the DFS iterators before adding blocks to the loop.
267  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
268  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
269
270  for (unsigned It = 1; It != Count; ++It) {
271    std::vector<BasicBlock*> NewBlocks;
272
273    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
274      ValueToValueMapTy VMap;
275      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
276      Header->getParent()->getBasicBlockList().push_back(New);
277
278      // Loop over all of the PHI nodes in the block, changing them to use the
279      // incoming values from the previous block.
280      if (*BB == Header)
281        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
282          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
283          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
284          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
285            if (It > 1 && L->contains(InValI))
286              InVal = LastValueMap[InValI];
287          VMap[OrigPHINode[i]] = InVal;
288          New->getInstList().erase(NewPHI);
289        }
290
291      // Update our running map of newest clones
292      LastValueMap[*BB] = New;
293      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
294           VI != VE; ++VI)
295        LastValueMap[VI->first] = VI->second;
296
297      L->addBasicBlockToLoop(New, LI->getBase());
298
299      // Add phi entries for newly created values to all exit blocks.
300      for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
301           SI != SE; ++SI) {
302        if (L->contains(*SI))
303          continue;
304        for (BasicBlock::iterator BBI = (*SI)->begin();
305             PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
306          Value *Incoming = phi->getIncomingValueForBlock(*BB);
307          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
308          if (It != LastValueMap.end())
309            Incoming = It->second;
310          phi->addIncoming(Incoming, New);
311        }
312      }
313      // Keep track of new headers and latches as we create them, so that
314      // we can insert the proper branches later.
315      if (*BB == Header)
316        Headers.push_back(New);
317      if (*BB == LatchBlock)
318        Latches.push_back(New);
319
320      NewBlocks.push_back(New);
321    }
322
323    // Remap all instructions in the most recent iteration
324    for (unsigned i = 0; i < NewBlocks.size(); ++i)
325      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
326           E = NewBlocks[i]->end(); I != E; ++I)
327        ::RemapInstruction(I, LastValueMap);
328  }
329
330  // Loop over the PHI nodes in the original block, setting incoming values.
331  for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
332    PHINode *PN = OrigPHINode[i];
333    if (CompletelyUnroll) {
334      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
335      Header->getInstList().erase(PN);
336    }
337    else if (Count > 1) {
338      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
339      // If this value was defined in the loop, take the value defined by the
340      // last iteration of the loop.
341      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
342        if (L->contains(InValI))
343          InVal = LastValueMap[InVal];
344      }
345      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
346      PN->addIncoming(InVal, Latches.back());
347    }
348  }
349
350  // Now that all the basic blocks for the unrolled iterations are in place,
351  // set up the branches to connect them.
352  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
353    // The original branch was replicated in each unrolled iteration.
354    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
355
356    // The branch destination.
357    unsigned j = (i + 1) % e;
358    BasicBlock *Dest = Headers[j];
359    bool NeedConditional = true;
360
361    if (RuntimeTripCount && j != 0) {
362      NeedConditional = false;
363    }
364
365    // For a complete unroll, make the last iteration end with a branch
366    // to the exit block.
367    if (CompletelyUnroll && j == 0) {
368      Dest = LoopExit;
369      NeedConditional = false;
370    }
371
372    // If we know the trip count or a multiple of it, we can safely use an
373    // unconditional branch for some iterations.
374    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
375      NeedConditional = false;
376    }
377
378    if (NeedConditional) {
379      // Update the conditional branch's successor for the following
380      // iteration.
381      Term->setSuccessor(!ContinueOnTrue, Dest);
382    } else {
383      // Remove phi operands at this loop exit
384      if (Dest != LoopExit) {
385        BasicBlock *BB = Latches[i];
386        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
387             SI != SE; ++SI) {
388          if (*SI == Headers[i])
389            continue;
390          for (BasicBlock::iterator BBI = (*SI)->begin();
391               PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
392            Phi->removeIncomingValue(BB, false);
393          }
394        }
395      }
396      // Replace the conditional branch with an unconditional one.
397      BranchInst::Create(Dest, Term);
398      Term->eraseFromParent();
399    }
400  }
401
402  // Merge adjacent basic blocks, if possible.
403  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
404    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
405    if (Term->isUnconditional()) {
406      BasicBlock *Dest = Term->getSuccessor(0);
407      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
408        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
409    }
410  }
411
412  if (LPM) {
413    // FIXME: Reconstruct dom info, because it is not preserved properly.
414    // Incrementally updating domtree after loop unrolling would be easy.
415    if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
416      DT->runOnFunction(*L->getHeader()->getParent());
417
418    // Simplify any new induction variables in the partially unrolled loop.
419    ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
420    if (SE && !CompletelyUnroll) {
421      SmallVector<WeakVH, 16> DeadInsts;
422      simplifyLoopIVs(L, SE, LPM, DeadInsts);
423
424      // Aggressively clean up dead instructions that simplifyLoopIVs already
425      // identified. Any remaining should be cleaned up below.
426      while (!DeadInsts.empty())
427        if (Instruction *Inst =
428            dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
429          RecursivelyDeleteTriviallyDeadInstructions(Inst);
430    }
431  }
432  // At this point, the code is well formed.  We now do a quick sweep over the
433  // inserted code, doing constant propagation and dead code elimination as we
434  // go.
435  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
436  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
437       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
438    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
439      Instruction *Inst = I++;
440
441      if (isInstructionTriviallyDead(Inst))
442        (*BB)->getInstList().erase(Inst);
443      else if (Value *V = SimplifyInstruction(Inst))
444        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
445          Inst->replaceAllUsesWith(V);
446          (*BB)->getInstList().erase(Inst);
447        }
448    }
449
450  NumCompletelyUnrolled += CompletelyUnroll;
451  ++NumUnrolled;
452  // Remove the loop from the LoopPassManager if it's completely removed.
453  if (CompletelyUnroll && LPM != NULL)
454    LPM->deleteLoopFromQueue(L);
455
456  return true;
457}
458