PromoteMemoryToRegister.cpp revision 051a950000e21935165db56695e35bade668193b
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "mem2reg"
20#include "llvm/Transforms/Utils/PromoteMemToReg.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/AliasSetTracker.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Compiler.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
38STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
39STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
40STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
41
42// Provide DenseMapInfo for all pointers.
43namespace llvm {
44template<>
45struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
46  typedef std::pair<BasicBlock*, unsigned> EltTy;
47  static inline EltTy getEmptyKey() {
48    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
49  }
50  static inline EltTy getTombstoneKey() {
51    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
52  }
53  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
54    return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
55  }
56  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
57    return LHS == RHS;
58  }
59  static bool isPod() { return true; }
60};
61}
62
63/// isAllocaPromotable - Return true if this alloca is legal for promotion.
64/// This is true if there are only loads and stores to the alloca.
65///
66bool llvm::isAllocaPromotable(const AllocaInst *AI) {
67  // FIXME: If the memory unit is of pointer or integer type, we can permit
68  // assignments to subsections of the memory unit.
69
70  // Only allow direct and non-volatile loads and stores...
71  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
72       UI != UE; ++UI)     // Loop over all of the uses of the alloca
73    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
74      if (LI->isVolatile())
75        return false;
76    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
77      if (SI->getOperand(0) == AI)
78        return false;   // Don't allow a store OF the AI, only INTO the AI.
79      if (SI->isVolatile())
80        return false;
81    } else {
82      return false;   // Not a load or store.
83    }
84
85  return true;
86}
87
88namespace {
89  struct AllocaInfo;
90
91  // Data package used by RenamePass()
92  class VISIBILITY_HIDDEN RenamePassData {
93  public:
94    typedef std::vector<Value *> ValVector;
95
96    RenamePassData() {}
97    RenamePassData(BasicBlock *B, BasicBlock *P,
98                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
99    BasicBlock *BB;
100    BasicBlock *Pred;
101    ValVector Values;
102
103    void swap(RenamePassData &RHS) {
104      std::swap(BB, RHS.BB);
105      std::swap(Pred, RHS.Pred);
106      Values.swap(RHS.Values);
107    }
108  };
109
110  struct VISIBILITY_HIDDEN PromoteMem2Reg {
111    /// Allocas - The alloca instructions being promoted.
112    ///
113    std::vector<AllocaInst*> Allocas;
114    SmallVector<AllocaInst*, 16> &RetryList;
115    DominatorTree &DT;
116    DominanceFrontier &DF;
117
118    /// AST - An AliasSetTracker object to update.  If null, don't update it.
119    ///
120    AliasSetTracker *AST;
121
122    /// AllocaLookup - Reverse mapping of Allocas.
123    ///
124    std::map<AllocaInst*, unsigned>  AllocaLookup;
125
126    /// NewPhiNodes - The PhiNodes we're adding.
127    ///
128    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
129
130    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
131    /// it corresponds to.
132    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
133
134    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
135    /// each alloca that is of pointer type, we keep track of what to copyValue
136    /// to the inserted PHI nodes here.
137    ///
138    std::vector<Value*> PointerAllocaValues;
139
140    /// Visited - The set of basic blocks the renamer has already visited.
141    ///
142    SmallPtrSet<BasicBlock*, 16> Visited;
143
144    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
145    /// non-determinstic behavior.
146    DenseMap<BasicBlock*, unsigned> BBNumbers;
147
148    /// BBNumPreds - Lazily compute the number of predecessors a block has.
149    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
150  public:
151    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
152                   SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
153                   DominanceFrontier &df, AliasSetTracker *ast)
154      : Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
155
156    void run();
157
158    /// properlyDominates - Return true if I1 properly dominates I2.
159    ///
160    bool properlyDominates(Instruction *I1, Instruction *I2) const {
161      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
162        I1 = II->getNormalDest()->begin();
163      return DT.properlyDominates(I1->getParent(), I2->getParent());
164    }
165
166    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
167    ///
168    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
169      return DT.dominates(BB1, BB2);
170    }
171
172  private:
173    void RemoveFromAllocasList(unsigned &AllocaIdx) {
174      Allocas[AllocaIdx] = Allocas.back();
175      Allocas.pop_back();
176      --AllocaIdx;
177    }
178
179    unsigned getNumPreds(const BasicBlock *BB) {
180      unsigned &NP = BBNumPreds[BB];
181      if (NP == 0)
182        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
183      return NP-1;
184    }
185
186    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
187                                 AllocaInfo &Info);
188    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
189                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
190                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
191
192    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info);
193
194    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
195    void PromoteLocallyUsedAllocas(BasicBlock *BB,
196                                   const std::vector<AllocaInst*> &AIs);
197
198    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
199                    RenamePassData::ValVector &IncVals,
200                    std::vector<RenamePassData> &Worklist);
201    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
202                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
203  };
204
205  struct AllocaInfo {
206    std::vector<BasicBlock*> DefiningBlocks;
207    std::vector<BasicBlock*> UsingBlocks;
208
209    StoreInst  *OnlyStore;
210    BasicBlock *OnlyBlock;
211    bool OnlyUsedInOneBlock;
212
213    Value *AllocaPointerVal;
214
215    void clear() {
216      DefiningBlocks.clear();
217      UsingBlocks.clear();
218      OnlyStore = 0;
219      OnlyBlock = 0;
220      OnlyUsedInOneBlock = true;
221      AllocaPointerVal = 0;
222    }
223
224    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
225    /// ivars.
226    void AnalyzeAlloca(AllocaInst *AI) {
227      clear();
228
229      // As we scan the uses of the alloca instruction, keep track of stores,
230      // and decide whether all of the loads and stores to the alloca are within
231      // the same basic block.
232      for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
233           U != E; ++U) {
234        Instruction *User = cast<Instruction>(*U);
235        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
236          // Remember the basic blocks which define new values for the alloca
237          DefiningBlocks.push_back(SI->getParent());
238          AllocaPointerVal = SI->getOperand(0);
239          OnlyStore = SI;
240        } else {
241          LoadInst *LI = cast<LoadInst>(User);
242          // Otherwise it must be a load instruction, keep track of variable
243          // reads.
244          UsingBlocks.push_back(LI->getParent());
245          AllocaPointerVal = LI;
246        }
247
248        if (OnlyUsedInOneBlock) {
249          if (OnlyBlock == 0)
250            OnlyBlock = User->getParent();
251          else if (OnlyBlock != User->getParent())
252            OnlyUsedInOneBlock = false;
253        }
254      }
255    }
256  };
257
258}  // end of anonymous namespace
259
260
261void PromoteMem2Reg::run() {
262  Function &F = *DF.getRoot()->getParent();
263
264  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
265  // only used in a single basic block.  These instructions can be efficiently
266  // promoted by performing a single linear scan over that one block.  Since
267  // individual basic blocks are sometimes large, we group together all allocas
268  // that are live in a single basic block by the basic block they are live in.
269  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
270
271  if (AST) PointerAllocaValues.resize(Allocas.size());
272
273  AllocaInfo Info;
274
275  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
276    AllocaInst *AI = Allocas[AllocaNum];
277
278    assert(isAllocaPromotable(AI) &&
279           "Cannot promote non-promotable alloca!");
280    assert(AI->getParent()->getParent() == &F &&
281           "All allocas should be in the same function, which is same as DF!");
282
283    if (AI->use_empty()) {
284      // If there are no uses of the alloca, just delete it now.
285      if (AST) AST->deleteValue(AI);
286      AI->eraseFromParent();
287
288      // Remove the alloca from the Allocas list, since it has been processed
289      RemoveFromAllocasList(AllocaNum);
290      ++NumDeadAlloca;
291      continue;
292    }
293
294    // Calculate the set of read and write-locations for each alloca.  This is
295    // analogous to finding the 'uses' and 'definitions' of each variable.
296    Info.AnalyzeAlloca(AI);
297
298    // If there is only a single store to this value, replace any loads of
299    // it that are directly dominated by the definition with the value stored.
300    if (Info.DefiningBlocks.size() == 1) {
301      RewriteSingleStoreAlloca(AI, Info);
302
303      // Finally, after the scan, check to see if the store is all that is left.
304      if (Info.UsingBlocks.empty()) {
305        // Remove the (now dead) store and alloca.
306        Info.OnlyStore->eraseFromParent();
307        if (AST) AST->deleteValue(AI);
308        AI->eraseFromParent();
309
310        // The alloca has been processed, move on.
311        RemoveFromAllocasList(AllocaNum);
312
313        ++NumSingleStore;
314        continue;
315      }
316    }
317
318    // If the alloca is only read and written in one basic block, just perform a
319    // linear sweep over the block to eliminate it.
320    if (Info.OnlyUsedInOneBlock) {
321      LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
322
323      // Remove the alloca from the Allocas list, since it will be processed.
324      RemoveFromAllocasList(AllocaNum);
325      continue;
326    }
327
328    // If we haven't computed a numbering for the BB's in the function, do so
329    // now.
330    if (BBNumbers.empty()) {
331      unsigned ID = 0;
332      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
333        BBNumbers[I] = ID++;
334    }
335
336    // If we have an AST to keep updated, remember some pointer value that is
337    // stored into the alloca.
338    if (AST)
339      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
340
341    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
342    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
343
344    // At this point, we're committed to promoting the alloca using IDF's, and
345    // the standard SSA construction algorithm.  Determine which blocks need phi
346    // nodes and see if we can optimize out some work by avoiding insertion of
347    // dead phi nodes.
348    DetermineInsertionPoint(AI, AllocaNum, Info);
349  }
350
351  // Process all allocas which are only used in a single basic block.
352  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
353         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
354    const std::vector<AllocaInst*> &LocAllocas = I->second;
355    assert(!LocAllocas.empty() && "empty alloca list??");
356
357    // It's common for there to only be one alloca in the list.  Handle it
358    // efficiently.
359    if (LocAllocas.size() == 1) {
360      // If we can do the quick promotion pass, do so now.
361      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
362        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
363    } else {
364      // Locally promote anything possible.  Note that if this is unable to
365      // promote a particular alloca, it puts the alloca onto the Allocas vector
366      // for global processing.
367      PromoteLocallyUsedAllocas(I->first, LocAllocas);
368    }
369  }
370
371  if (Allocas.empty())
372    return; // All of the allocas must have been trivial!
373
374  // Set the incoming values for the basic block to be null values for all of
375  // the alloca's.  We do this in case there is a load of a value that has not
376  // been stored yet.  In this case, it will get this null value.
377  //
378  RenamePassData::ValVector Values(Allocas.size());
379  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
380    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
381
382  // Walks all basic blocks in the function performing the SSA rename algorithm
383  // and inserting the phi nodes we marked as necessary
384  //
385  std::vector<RenamePassData> RenamePassWorkList;
386  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
387  while (!RenamePassWorkList.empty()) {
388    RenamePassData RPD;
389    RPD.swap(RenamePassWorkList.back());
390    RenamePassWorkList.pop_back();
391    // RenamePass may add new worklist entries.
392    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
393  }
394
395  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
396  Visited.clear();
397
398  // Remove the allocas themselves from the function.
399  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
400    Instruction *A = Allocas[i];
401
402    // If there are any uses of the alloca instructions left, they must be in
403    // sections of dead code that were not processed on the dominance frontier.
404    // Just delete the users now.
405    //
406    if (!A->use_empty())
407      A->replaceAllUsesWith(UndefValue::get(A->getType()));
408    if (AST) AST->deleteValue(A);
409    A->eraseFromParent();
410  }
411
412
413  // Loop over all of the PHI nodes and see if there are any that we can get
414  // rid of because they merge all of the same incoming values.  This can
415  // happen due to undef values coming into the PHI nodes.  This process is
416  // iterative, because eliminating one PHI node can cause others to be removed.
417  bool EliminatedAPHI = true;
418  while (EliminatedAPHI) {
419    EliminatedAPHI = false;
420
421    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
422           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
423      PHINode *PN = I->second;
424
425      // If this PHI node merges one value and/or undefs, get the value.
426      if (Value *V = PN->hasConstantValue(true)) {
427        if (!isa<Instruction>(V) ||
428            properlyDominates(cast<Instruction>(V), PN)) {
429          if (AST && isa<PointerType>(PN->getType()))
430            AST->deleteValue(PN);
431          PN->replaceAllUsesWith(V);
432          PN->eraseFromParent();
433          NewPhiNodes.erase(I++);
434          EliminatedAPHI = true;
435          continue;
436        }
437      }
438      ++I;
439    }
440  }
441
442  // At this point, the renamer has added entries to PHI nodes for all reachable
443  // code.  Unfortunately, there may be unreachable blocks which the renamer
444  // hasn't traversed.  If this is the case, the PHI nodes may not
445  // have incoming values for all predecessors.  Loop over all PHI nodes we have
446  // created, inserting undef values if they are missing any incoming values.
447  //
448  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
449         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
450    // We want to do this once per basic block.  As such, only process a block
451    // when we find the PHI that is the first entry in the block.
452    PHINode *SomePHI = I->second;
453    BasicBlock *BB = SomePHI->getParent();
454    if (&BB->front() != SomePHI)
455      continue;
456
457    // Only do work here if there the PHI nodes are missing incoming values.  We
458    // know that all PHI nodes that were inserted in a block will have the same
459    // number of incoming values, so we can just check any of them.
460    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
461      continue;
462
463    // Get the preds for BB.
464    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
465
466    // Ok, now we know that all of the PHI nodes are missing entries for some
467    // basic blocks.  Start by sorting the incoming predecessors for efficient
468    // access.
469    std::sort(Preds.begin(), Preds.end());
470
471    // Now we loop through all BB's which have entries in SomePHI and remove
472    // them from the Preds list.
473    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
474      // Do a log(n) search of the Preds list for the entry we want.
475      SmallVector<BasicBlock*, 16>::iterator EntIt =
476        std::lower_bound(Preds.begin(), Preds.end(),
477                         SomePHI->getIncomingBlock(i));
478      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
479             "PHI node has entry for a block which is not a predecessor!");
480
481      // Remove the entry
482      Preds.erase(EntIt);
483    }
484
485    // At this point, the blocks left in the preds list must have dummy
486    // entries inserted into every PHI nodes for the block.  Update all the phi
487    // nodes in this block that we are inserting (there could be phis before
488    // mem2reg runs).
489    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
490    BasicBlock::iterator BBI = BB->begin();
491    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
492           SomePHI->getNumIncomingValues() == NumBadPreds) {
493      Value *UndefVal = UndefValue::get(SomePHI->getType());
494      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
495        SomePHI->addIncoming(UndefVal, Preds[pred]);
496    }
497  }
498
499  NewPhiNodes.clear();
500}
501
502
503/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
504/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
505/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
506/// would be dead).
507void PromoteMem2Reg::
508ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
509                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
510                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
511
512  // To determine liveness, we must iterate through the predecessors of blocks
513  // where the def is live.  Blocks are added to the worklist if we need to
514  // check their predecessors.  Start with all the using blocks.
515  SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
516  LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
517                             Info.UsingBlocks.begin(), Info.UsingBlocks.end());
518
519  // If any of the using blocks is also a definition block, check to see if the
520  // definition occurs before or after the use.  If it happens before the use,
521  // the value isn't really live-in.
522  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
523    BasicBlock *BB = LiveInBlockWorklist[i];
524    if (!DefBlocks.count(BB)) continue;
525
526    // Okay, this is a block that both uses and defines the value.  If the first
527    // reference to the alloca is a def (store), then we know it isn't live-in.
528    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
529      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
530        if (SI->getOperand(1) != AI) continue;
531
532        // We found a store to the alloca before a load.  The alloca is not
533        // actually live-in here.
534        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
535        LiveInBlockWorklist.pop_back();
536        --i, --e;
537        break;
538      } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
539        if (LI->getOperand(0) != AI) continue;
540
541        // Okay, we found a load before a store to the alloca.  It is actually
542        // live into this block.
543        break;
544      }
545    }
546  }
547
548  // Now that we have a set of blocks where the phi is live-in, recursively add
549  // their predecessors until we find the full region the value is live.
550  while (!LiveInBlockWorklist.empty()) {
551    BasicBlock *BB = LiveInBlockWorklist.back();
552    LiveInBlockWorklist.pop_back();
553
554    // The block really is live in here, insert it into the set.  If already in
555    // the set, then it has already been processed.
556    if (!LiveInBlocks.insert(BB))
557      continue;
558
559    // Since the value is live into BB, it is either defined in a predecessor or
560    // live into it to.  Add the preds to the worklist unless they are a
561    // defining block.
562    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
563      BasicBlock *P = *PI;
564
565      // The value is not live into a predecessor if it defines the value.
566      if (DefBlocks.count(P))
567        continue;
568
569      // Otherwise it is, add to the worklist.
570      LiveInBlockWorklist.push_back(P);
571    }
572  }
573}
574
575/// DetermineInsertionPoint - At this point, we're committed to promoting the
576/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
577/// which blocks need phi nodes and see if we can optimize out some work by
578/// avoiding insertion of dead phi nodes.
579void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
580                                             AllocaInfo &Info) {
581
582  // Unique the set of defining blocks for efficient lookup.
583  SmallPtrSet<BasicBlock*, 32> DefBlocks;
584  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
585
586  // Determine which blocks the value is live in.  These are blocks which lead
587  // to uses.
588  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
589  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
590
591  // Compute the locations where PhiNodes need to be inserted.  Look at the
592  // dominance frontier of EACH basic-block we have a write in.
593  unsigned CurrentVersion = 0;
594  SmallPtrSet<PHINode*, 16> InsertedPHINodes;
595  std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
596  while (!Info.DefiningBlocks.empty()) {
597    BasicBlock *BB = Info.DefiningBlocks.back();
598    Info.DefiningBlocks.pop_back();
599
600    // Look up the DF for this write, add it to defining blocks.
601    DominanceFrontier::const_iterator it = DF.find(BB);
602    if (it == DF.end()) continue;
603
604    const DominanceFrontier::DomSetType &S = it->second;
605
606    // In theory we don't need the indirection through the DFBlocks vector.
607    // In practice, the order of calling QueuePhiNode would depend on the
608    // (unspecified) ordering of basic blocks in the dominance frontier,
609    // which would give PHI nodes non-determinstic subscripts.  Fix this by
610    // processing blocks in order of the occurance in the function.
611    for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
612         PE = S.end(); P != PE; ++P) {
613      // If the frontier block is not in the live-in set for the alloca, don't
614      // bother processing it.
615      if (!LiveInBlocks.count(*P))
616        continue;
617
618      DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
619    }
620
621    // Sort by which the block ordering in the function.
622    if (DFBlocks.size() > 1)
623      std::sort(DFBlocks.begin(), DFBlocks.end());
624
625    for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
626      BasicBlock *BB = DFBlocks[i].second;
627      if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
628        Info.DefiningBlocks.push_back(BB);
629    }
630    DFBlocks.clear();
631  }
632}
633
634
635/// RewriteSingleStoreAlloca - If there is only a single store to this value,
636/// replace any loads of it that are directly dominated by the definition with
637/// the value stored.
638void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
639                                              AllocaInfo &Info) {
640  StoreInst *OnlyStore = Info.OnlyStore;
641  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
642
643  // Be aware of loads before the store.
644  SmallPtrSet<BasicBlock*, 32> ProcessedBlocks;
645  for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i) {
646    BasicBlock *UseBlock = Info.UsingBlocks[i];
647
648    // If we already processed this block, don't reprocess it.
649    if (!ProcessedBlocks.insert(UseBlock)) {
650      Info.UsingBlocks[i] = Info.UsingBlocks.back();
651      Info.UsingBlocks.pop_back();
652      --i; --e;
653      continue;
654    }
655
656    // If the store dominates the block and if we haven't processed it yet,
657    // do so now.  We can't handle the case where the store doesn't dominate a
658    // block because there may be a path between the store and the use, but we
659    // may need to insert phi nodes to handle dominance properly.
660    if (!StoringGlobalVal && !dominates(OnlyStore->getParent(), UseBlock))
661      continue;
662
663    // If the use and store are in the same block, do a quick scan to
664    // verify that there are no uses before the store.
665    if (UseBlock == OnlyStore->getParent()) {
666      BasicBlock::iterator I = UseBlock->begin();
667      for (; &*I != OnlyStore; ++I) { // scan block for store.
668        if (isa<LoadInst>(I) && I->getOperand(0) == AI)
669          break;
670      }
671      if (&*I != OnlyStore)
672        continue;  // Do not promote the uses of this in this block.
673    }
674
675    // Otherwise, if this is a different block or if all uses happen
676    // after the store, do a simple linear scan to replace loads with
677    // the stored value.
678    for (BasicBlock::iterator I = UseBlock->begin(), E = UseBlock->end();
679         I != E; ) {
680      if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
681        if (LI->getOperand(0) == AI) {
682          LI->replaceAllUsesWith(OnlyStore->getOperand(0));
683          if (AST && isa<PointerType>(LI->getType()))
684            AST->deleteValue(LI);
685          LI->eraseFromParent();
686        }
687      }
688    }
689
690    // Finally, remove this block from the UsingBlock set.
691    Info.UsingBlocks[i] = Info.UsingBlocks.back();
692    Info.UsingBlocks.pop_back();
693    --i; --e;
694  }
695}
696
697
698/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
699/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
700/// potentially useless PHI nodes by just performing a single linear pass over
701/// the basic block using the Alloca.
702///
703/// If we cannot promote this alloca (because it is read before it is written),
704/// return true.  This is necessary in cases where, due to control flow, the
705/// alloca is potentially undefined on some control flow paths.  e.g. code like
706/// this is potentially correct:
707///
708///   for (...) { if (c) { A = undef; undef = B; } }
709///
710/// ... so long as A is not used before undef is set.
711///
712bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
713  assert(!AI->use_empty() && "There are no uses of the alloca!");
714
715  // Handle degenerate cases quickly.
716  if (AI->hasOneUse()) {
717    Instruction *U = cast<Instruction>(AI->use_back());
718    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
719      // Must be a load of uninitialized value.
720      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
721      if (AST && isa<PointerType>(LI->getType()))
722        AST->deleteValue(LI);
723    } else {
724      // Otherwise it must be a store which is never read.
725      assert(isa<StoreInst>(U));
726    }
727    BB->getInstList().erase(U);
728  } else {
729    // Uses of the uninitialized memory location shall get undef.
730    Value *CurVal = 0;
731
732    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
733      Instruction *Inst = I++;
734      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
735        if (LI->getOperand(0) == AI) {
736          if (!CurVal) return true;  // Could not locally promote!
737
738          // Loads just returns the "current value"...
739          LI->replaceAllUsesWith(CurVal);
740          if (AST && isa<PointerType>(LI->getType()))
741            AST->deleteValue(LI);
742          BB->getInstList().erase(LI);
743        }
744      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
745        if (SI->getOperand(1) == AI) {
746          // Store updates the "current value"...
747          CurVal = SI->getOperand(0);
748          BB->getInstList().erase(SI);
749        }
750      }
751    }
752  }
753
754  // After traversing the basic block, there should be no more uses of the
755  // alloca: remove it now.
756  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
757  if (AST) AST->deleteValue(AI);
758  AI->eraseFromParent();
759
760  ++NumLocalPromoted;
761  return false;
762}
763
764/// PromoteLocallyUsedAllocas - This method is just like
765/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
766/// instructions in parallel.  This is important in cases where we have large
767/// basic blocks, as we don't want to rescan the entire basic block for each
768/// alloca which is locally used in it (which might be a lot).
769void PromoteMem2Reg::
770PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
771  DenseMap<AllocaInst*, Value*> CurValues;
772  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
773    CurValues[AIs[i]] = 0; // Insert with null value
774
775  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
776    Instruction *Inst = I++;
777    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
778      // Is this a load of an alloca we are tracking?
779      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
780        DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
781        if (AIt != CurValues.end()) {
782          // If loading an uninitialized value, allow the inter-block case to
783          // handle it.  Due to control flow, this might actually be ok.
784          if (AIt->second == 0) {  // Use of locally uninitialized value??
785            RetryList.push_back(AI);   // Retry elsewhere.
786            CurValues.erase(AIt);   // Stop tracking this here.
787            if (CurValues.empty()) return;
788          } else {
789            // Loads just returns the "current value"...
790            LI->replaceAllUsesWith(AIt->second);
791            if (AST && isa<PointerType>(LI->getType()))
792              AST->deleteValue(LI);
793            BB->getInstList().erase(LI);
794          }
795        }
796      }
797    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
798      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
799        DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
800        if (AIt != CurValues.end()) {
801          // Store updates the "current value"...
802          AIt->second = SI->getOperand(0);
803          SI->eraseFromParent();
804        }
805      }
806    }
807  }
808
809  // At the end of the block scan, all allocas in CurValues are dead.
810  for (DenseMap<AllocaInst*, Value*>::iterator I = CurValues.begin(),
811       E = CurValues.end(); I != E; ++I) {
812    AllocaInst *AI = I->first;
813    assert(AI->use_empty() && "Uses of alloca from more than one BB??");
814    if (AST) AST->deleteValue(AI);
815    AI->eraseFromParent();
816  }
817
818  NumLocalPromoted += CurValues.size();
819}
820
821
822
823// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
824// Alloca returns true if there wasn't already a phi-node for that variable
825//
826bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
827                                  unsigned &Version,
828                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
829  // Look up the basic-block in question.
830  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
831
832  // If the BB already has a phi node added for the i'th alloca then we're done!
833  if (PN) return false;
834
835  // Create a PhiNode using the dereferenced type... and add the phi-node to the
836  // BasicBlock.
837  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
838                       Allocas[AllocaNo]->getName() + "." +
839                       utostr(Version++), BB->begin());
840  ++NumPHIInsert;
841  PhiToAllocaMap[PN] = AllocaNo;
842  PN->reserveOperandSpace(getNumPreds(BB));
843
844  InsertedPHINodes.insert(PN);
845
846  if (AST && isa<PointerType>(PN->getType()))
847    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
848
849  return true;
850}
851
852// RenamePass - Recursively traverse the CFG of the function, renaming loads and
853// stores to the allocas which we are promoting.  IncomingVals indicates what
854// value each Alloca contains on exit from the predecessor block Pred.
855//
856void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
857                                RenamePassData::ValVector &IncomingVals,
858                                std::vector<RenamePassData> &Worklist) {
859NextIteration:
860  // If we are inserting any phi nodes into this BB, they will already be in the
861  // block.
862  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
863    // Pred may have multiple edges to BB.  If so, we want to add N incoming
864    // values to each PHI we are inserting on the first time we see the edge.
865    // Check to see if APN already has incoming values from Pred.  This also
866    // prevents us from modifying PHI nodes that are not currently being
867    // inserted.
868    bool HasPredEntries = false;
869    for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
870      if (APN->getIncomingBlock(i) == Pred) {
871        HasPredEntries = true;
872        break;
873      }
874    }
875
876    // If we have PHI nodes to update, compute the number of edges from Pred to
877    // BB.
878    if (!HasPredEntries) {
879      // We want to be able to distinguish between PHI nodes being inserted by
880      // this invocation of mem2reg from those phi nodes that already existed in
881      // the IR before mem2reg was run.  We determine that APN is being inserted
882      // because it is missing incoming edges.  All other PHI nodes being
883      // inserted by this pass of mem2reg will have the same number of incoming
884      // operands so far.  Remember this count.
885      unsigned NewPHINumOperands = APN->getNumOperands();
886
887      unsigned NumEdges = 0;
888      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
889        if (*I == BB)
890          ++NumEdges;
891      assert(NumEdges && "Must be at least one edge from Pred to BB!");
892
893      // Add entries for all the phis.
894      BasicBlock::iterator PNI = BB->begin();
895      do {
896        unsigned AllocaNo = PhiToAllocaMap[APN];
897
898        // Add N incoming values to the PHI node.
899        for (unsigned i = 0; i != NumEdges; ++i)
900          APN->addIncoming(IncomingVals[AllocaNo], Pred);
901
902        // The currently active variable for this block is now the PHI.
903        IncomingVals[AllocaNo] = APN;
904
905        // Get the next phi node.
906        ++PNI;
907        APN = dyn_cast<PHINode>(PNI);
908        if (APN == 0) break;
909
910        // Verify that it is missing entries.  If not, it is not being inserted
911        // by this mem2reg invocation so we want to ignore it.
912      } while (APN->getNumOperands() == NewPHINumOperands);
913    }
914  }
915
916  // Don't revisit blocks.
917  if (!Visited.insert(BB)) return;
918
919  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
920    Instruction *I = II++; // get the instruction, increment iterator
921
922    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
923      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
924      if (!Src) continue;
925
926      std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
927      if (AI == AllocaLookup.end()) continue;
928
929      Value *V = IncomingVals[AI->second];
930
931      // Anything using the load now uses the current value.
932      LI->replaceAllUsesWith(V);
933      if (AST && isa<PointerType>(LI->getType()))
934        AST->deleteValue(LI);
935      BB->getInstList().erase(LI);
936    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
937      // Delete this instruction and mark the name as the current holder of the
938      // value
939      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
940      if (!Dest) continue;
941
942      std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
943      if (ai == AllocaLookup.end())
944        continue;
945
946      // what value were we writing?
947      IncomingVals[ai->second] = SI->getOperand(0);
948      BB->getInstList().erase(SI);
949    }
950  }
951
952  // 'Recurse' to our successors.
953  succ_iterator I = succ_begin(BB), E = succ_end(BB);
954  if (I == E) return;
955
956  // Handle the last successor without using the worklist.  This allows us to
957  // handle unconditional branches directly, for example.
958  --E;
959  for (; I != E; ++I)
960    Worklist.push_back(RenamePassData(*I, BB, IncomingVals));
961
962  Pred = BB;
963  BB = *I;
964  goto NextIteration;
965}
966
967/// PromoteMemToReg - Promote the specified list of alloca instructions into
968/// scalar registers, inserting PHI nodes as appropriate.  This function makes
969/// use of DominanceFrontier information.  This function does not modify the CFG
970/// of the function at all.  All allocas must be from the same function.
971///
972/// If AST is specified, the specified tracker is updated to reflect changes
973/// made to the IR.
974///
975void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
976                           DominatorTree &DT, DominanceFrontier &DF,
977                           AliasSetTracker *AST) {
978  // If there is nothing to do, bail out...
979  if (Allocas.empty()) return;
980
981  SmallVector<AllocaInst*, 16> RetryList;
982  PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
983
984  // PromoteMem2Reg may not have been able to promote all of the allocas in one
985  // pass, run it again if needed.
986  std::vector<AllocaInst*> NewAllocas;
987  while (!RetryList.empty()) {
988    // If we need to retry some allocas, this is due to there being no store
989    // before a read in a local block.  To counteract this, insert a store of
990    // undef into the alloca right after the alloca itself.
991    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
992      BasicBlock::iterator BBI = RetryList[i];
993
994      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
995                    RetryList[i], ++BBI);
996    }
997
998    NewAllocas.assign(RetryList.begin(), RetryList.end());
999    RetryList.clear();
1000    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
1001    NewAllocas.clear();
1002  }
1003}
1004