PromoteMemoryToRegister.cpp revision 321a813c536e2f1f2f05bbe78a7fbf64046f0557
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "mem2reg"
20#include "llvm/Transforms/Utils/PromoteMemToReg.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Analysis/Dominators.h"
27#include "llvm/Analysis/AliasSetTracker.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/CFG.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
38STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
39STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
40STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
41
42namespace llvm {
43template<>
44struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
45  typedef std::pair<BasicBlock*, unsigned> EltTy;
46  static inline EltTy getEmptyKey() {
47    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
48  }
49  static inline EltTy getTombstoneKey() {
50    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
51  }
52  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
53    return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
54  }
55  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
56    return LHS == RHS;
57  }
58};
59}
60
61/// isAllocaPromotable - Return true if this alloca is legal for promotion.
62/// This is true if there are only loads and stores to the alloca.
63///
64bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65  // FIXME: If the memory unit is of pointer or integer type, we can permit
66  // assignments to subsections of the memory unit.
67
68  // Only allow direct and non-volatile loads and stores...
69  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
70       UI != UE; ++UI)     // Loop over all of the uses of the alloca
71    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
72      if (LI->isVolatile())
73        return false;
74    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
75      if (SI->getOperand(0) == AI)
76        return false;   // Don't allow a store OF the AI, only INTO the AI.
77      if (SI->isVolatile())
78        return false;
79    } else if (const BitCastInst *BC = dyn_cast<BitCastInst>(*UI)) {
80      // A bitcast that does not feed into debug info inhibits promotion.
81      if (!BC->hasOneUse() || !isa<DbgInfoIntrinsic>(*BC->use_begin()))
82        return false;
83      // If the only use is by debug info, this alloca will not exist in
84      // non-debug code, so don't try to promote; this ensures the same
85      // codegen with debug info.  Otherwise, debug info should not
86      // inhibit promotion (but we must examine other uses).
87      if (AI->hasOneUse())
88        return false;
89    } else {
90      return false;
91    }
92
93  return true;
94}
95
96namespace {
97  struct AllocaInfo;
98
99  // Data package used by RenamePass()
100  class RenamePassData {
101  public:
102    typedef std::vector<Value *> ValVector;
103
104    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
105    RenamePassData(BasicBlock *B, BasicBlock *P,
106                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
107    BasicBlock *BB;
108    BasicBlock *Pred;
109    ValVector Values;
110
111    void swap(RenamePassData &RHS) {
112      std::swap(BB, RHS.BB);
113      std::swap(Pred, RHS.Pred);
114      Values.swap(RHS.Values);
115    }
116  };
117
118  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
119  /// load/store instructions in the block that directly load or store an alloca.
120  ///
121  /// This functionality is important because it avoids scanning large basic
122  /// blocks multiple times when promoting many allocas in the same block.
123  class LargeBlockInfo {
124    /// InstNumbers - For each instruction that we track, keep the index of the
125    /// instruction.  The index starts out as the number of the instruction from
126    /// the start of the block.
127    DenseMap<const Instruction *, unsigned> InstNumbers;
128  public:
129
130    /// isInterestingInstruction - This code only looks at accesses to allocas.
131    static bool isInterestingInstruction(const Instruction *I) {
132      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
133             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
134    }
135
136    /// getInstructionIndex - Get or calculate the index of the specified
137    /// instruction.
138    unsigned getInstructionIndex(const Instruction *I) {
139      assert(isInterestingInstruction(I) &&
140             "Not a load/store to/from an alloca?");
141
142      // If we already have this instruction number, return it.
143      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
144      if (It != InstNumbers.end()) return It->second;
145
146      // Scan the whole block to get the instruction.  This accumulates
147      // information for every interesting instruction in the block, in order to
148      // avoid gratuitus rescans.
149      const BasicBlock *BB = I->getParent();
150      unsigned InstNo = 0;
151      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
152           BBI != E; ++BBI)
153        if (isInterestingInstruction(BBI))
154          InstNumbers[BBI] = InstNo++;
155      It = InstNumbers.find(I);
156
157      assert(It != InstNumbers.end() && "Didn't insert instruction?");
158      return It->second;
159    }
160
161    void deleteValue(const Instruction *I) {
162      InstNumbers.erase(I);
163    }
164
165    void clear() {
166      InstNumbers.clear();
167    }
168  };
169
170  struct PromoteMem2Reg {
171    /// Allocas - The alloca instructions being promoted.
172    ///
173    std::vector<AllocaInst*> Allocas;
174    DominatorTree &DT;
175    DominanceFrontier &DF;
176
177    /// AST - An AliasSetTracker object to update.  If null, don't update it.
178    ///
179    AliasSetTracker *AST;
180
181    /// AllocaLookup - Reverse mapping of Allocas.
182    ///
183    std::map<AllocaInst*, unsigned>  AllocaLookup;
184
185    /// NewPhiNodes - The PhiNodes we're adding.
186    ///
187    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
188
189    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
190    /// it corresponds to.
191    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
192
193    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
194    /// each alloca that is of pointer type, we keep track of what to copyValue
195    /// to the inserted PHI nodes here.
196    ///
197    std::vector<Value*> PointerAllocaValues;
198
199    /// Visited - The set of basic blocks the renamer has already visited.
200    ///
201    SmallPtrSet<BasicBlock*, 16> Visited;
202
203    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
204    /// non-determinstic behavior.
205    DenseMap<BasicBlock*, unsigned> BBNumbers;
206
207    /// BBNumPreds - Lazily compute the number of predecessors a block has.
208    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
209  public:
210    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
211                   DominanceFrontier &df, AliasSetTracker *ast)
212      : Allocas(A), DT(dt), DF(df), AST(ast) {}
213
214    void run();
215
216    /// properlyDominates - Return true if I1 properly dominates I2.
217    ///
218    bool properlyDominates(Instruction *I1, Instruction *I2) const {
219      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
220        I1 = II->getNormalDest()->begin();
221      return DT.properlyDominates(I1->getParent(), I2->getParent());
222    }
223
224    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
225    ///
226    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
227      return DT.dominates(BB1, BB2);
228    }
229
230  private:
231    void RemoveFromAllocasList(unsigned &AllocaIdx) {
232      Allocas[AllocaIdx] = Allocas.back();
233      Allocas.pop_back();
234      --AllocaIdx;
235    }
236
237    unsigned getNumPreds(const BasicBlock *BB) {
238      unsigned &NP = BBNumPreds[BB];
239      if (NP == 0)
240        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
241      return NP-1;
242    }
243
244    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
245                                 AllocaInfo &Info);
246    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
247                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
248                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
249
250    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
251                                  LargeBlockInfo &LBI);
252    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
253                                  LargeBlockInfo &LBI);
254
255
256    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
257                    RenamePassData::ValVector &IncVals,
258                    std::vector<RenamePassData> &Worklist);
259    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
260                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
261  };
262
263  struct AllocaInfo {
264    std::vector<BasicBlock*> DefiningBlocks;
265    std::vector<BasicBlock*> UsingBlocks;
266
267    StoreInst  *OnlyStore;
268    BasicBlock *OnlyBlock;
269    bool OnlyUsedInOneBlock;
270
271    Value *AllocaPointerVal;
272
273    void clear() {
274      DefiningBlocks.clear();
275      UsingBlocks.clear();
276      OnlyStore = 0;
277      OnlyBlock = 0;
278      OnlyUsedInOneBlock = true;
279      AllocaPointerVal = 0;
280    }
281
282    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
283    /// ivars.
284    void AnalyzeAlloca(AllocaInst *AI) {
285      clear();
286
287      // As we scan the uses of the alloca instruction, keep track of stores,
288      // and decide whether all of the loads and stores to the alloca are within
289      // the same basic block.
290      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
291           UI != E;)  {
292        Instruction *User = cast<Instruction>(*UI++);
293        if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
294          // Remove any uses of this alloca in DbgInfoInstrinsics.
295          assert(BC->hasOneUse() && "Unexpected alloca uses!");
296          DbgInfoIntrinsic *DI = cast<DbgInfoIntrinsic>(*BC->use_begin());
297          DI->eraseFromParent();
298          BC->eraseFromParent();
299          continue;
300        }
301
302        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
303          // Remember the basic blocks which define new values for the alloca
304          DefiningBlocks.push_back(SI->getParent());
305          AllocaPointerVal = SI->getOperand(0);
306          OnlyStore = SI;
307        } else {
308          LoadInst *LI = cast<LoadInst>(User);
309          // Otherwise it must be a load instruction, keep track of variable
310          // reads.
311          UsingBlocks.push_back(LI->getParent());
312          AllocaPointerVal = LI;
313        }
314
315        if (OnlyUsedInOneBlock) {
316          if (OnlyBlock == 0)
317            OnlyBlock = User->getParent();
318          else if (OnlyBlock != User->getParent())
319            OnlyUsedInOneBlock = false;
320        }
321      }
322    }
323  };
324}  // end of anonymous namespace
325
326
327void PromoteMem2Reg::run() {
328  Function &F = *DF.getRoot()->getParent();
329
330  if (AST) PointerAllocaValues.resize(Allocas.size());
331
332  AllocaInfo Info;
333  LargeBlockInfo LBI;
334
335  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
336    AllocaInst *AI = Allocas[AllocaNum];
337
338    assert(isAllocaPromotable(AI) &&
339           "Cannot promote non-promotable alloca!");
340    assert(AI->getParent()->getParent() == &F &&
341           "All allocas should be in the same function, which is same as DF!");
342
343    if (AI->use_empty()) {
344      // If there are no uses of the alloca, just delete it now.
345      if (AST) AST->deleteValue(AI);
346      AI->eraseFromParent();
347
348      // Remove the alloca from the Allocas list, since it has been processed
349      RemoveFromAllocasList(AllocaNum);
350      ++NumDeadAlloca;
351      continue;
352    }
353
354    // Calculate the set of read and write-locations for each alloca.  This is
355    // analogous to finding the 'uses' and 'definitions' of each variable.
356    Info.AnalyzeAlloca(AI);
357
358    // If there is only a single store to this value, replace any loads of
359    // it that are directly dominated by the definition with the value stored.
360    if (Info.DefiningBlocks.size() == 1) {
361      RewriteSingleStoreAlloca(AI, Info, LBI);
362
363      // Finally, after the scan, check to see if the store is all that is left.
364      if (Info.UsingBlocks.empty()) {
365        // Remove the (now dead) store and alloca.
366        Info.OnlyStore->eraseFromParent();
367        LBI.deleteValue(Info.OnlyStore);
368
369        if (AST) AST->deleteValue(AI);
370        AI->eraseFromParent();
371        LBI.deleteValue(AI);
372
373        // The alloca has been processed, move on.
374        RemoveFromAllocasList(AllocaNum);
375
376        ++NumSingleStore;
377        continue;
378      }
379    }
380
381    // If the alloca is only read and written in one basic block, just perform a
382    // linear sweep over the block to eliminate it.
383    if (Info.OnlyUsedInOneBlock) {
384      PromoteSingleBlockAlloca(AI, Info, LBI);
385
386      // Finally, after the scan, check to see if the stores are all that is
387      // left.
388      if (Info.UsingBlocks.empty()) {
389
390        // Remove the (now dead) stores and alloca.
391        while (!AI->use_empty()) {
392          StoreInst *SI = cast<StoreInst>(AI->use_back());
393          SI->eraseFromParent();
394          LBI.deleteValue(SI);
395        }
396
397        if (AST) AST->deleteValue(AI);
398        AI->eraseFromParent();
399        LBI.deleteValue(AI);
400
401        // The alloca has been processed, move on.
402        RemoveFromAllocasList(AllocaNum);
403
404        ++NumLocalPromoted;
405        continue;
406      }
407    }
408
409    // If we haven't computed a numbering for the BB's in the function, do so
410    // now.
411    if (BBNumbers.empty()) {
412      unsigned ID = 0;
413      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
414        BBNumbers[I] = ID++;
415    }
416
417    // If we have an AST to keep updated, remember some pointer value that is
418    // stored into the alloca.
419    if (AST)
420      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
421
422    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
423    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
424
425    // At this point, we're committed to promoting the alloca using IDF's, and
426    // the standard SSA construction algorithm.  Determine which blocks need PHI
427    // nodes and see if we can optimize out some work by avoiding insertion of
428    // dead phi nodes.
429    DetermineInsertionPoint(AI, AllocaNum, Info);
430  }
431
432  if (Allocas.empty())
433    return; // All of the allocas must have been trivial!
434
435  LBI.clear();
436
437
438  // Set the incoming values for the basic block to be null values for all of
439  // the alloca's.  We do this in case there is a load of a value that has not
440  // been stored yet.  In this case, it will get this null value.
441  //
442  RenamePassData::ValVector Values(Allocas.size());
443  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
444    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
445
446  // Walks all basic blocks in the function performing the SSA rename algorithm
447  // and inserting the phi nodes we marked as necessary
448  //
449  std::vector<RenamePassData> RenamePassWorkList;
450  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
451  do {
452    RenamePassData RPD;
453    RPD.swap(RenamePassWorkList.back());
454    RenamePassWorkList.pop_back();
455    // RenamePass may add new worklist entries.
456    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
457  } while (!RenamePassWorkList.empty());
458
459  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
460  Visited.clear();
461
462  // Remove the allocas themselves from the function.
463  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
464    Instruction *A = Allocas[i];
465
466    // If there are any uses of the alloca instructions left, they must be in
467    // sections of dead code that were not processed on the dominance frontier.
468    // Just delete the users now.
469    //
470    if (!A->use_empty())
471      A->replaceAllUsesWith(UndefValue::get(A->getType()));
472    if (AST) AST->deleteValue(A);
473    A->eraseFromParent();
474  }
475
476
477  // Loop over all of the PHI nodes and see if there are any that we can get
478  // rid of because they merge all of the same incoming values.  This can
479  // happen due to undef values coming into the PHI nodes.  This process is
480  // iterative, because eliminating one PHI node can cause others to be removed.
481  bool EliminatedAPHI = true;
482  while (EliminatedAPHI) {
483    EliminatedAPHI = false;
484
485    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
486           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
487      PHINode *PN = I->second;
488
489      // If this PHI node merges one value and/or undefs, get the value.
490      if (Value *V = PN->hasConstantValue(&DT)) {
491        if (AST && isa<PointerType>(PN->getType()))
492          AST->deleteValue(PN);
493        PN->replaceAllUsesWith(V);
494        PN->eraseFromParent();
495        NewPhiNodes.erase(I++);
496        EliminatedAPHI = true;
497        continue;
498      }
499      ++I;
500    }
501  }
502
503  // At this point, the renamer has added entries to PHI nodes for all reachable
504  // code.  Unfortunately, there may be unreachable blocks which the renamer
505  // hasn't traversed.  If this is the case, the PHI nodes may not
506  // have incoming values for all predecessors.  Loop over all PHI nodes we have
507  // created, inserting undef values if they are missing any incoming values.
508  //
509  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
510         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
511    // We want to do this once per basic block.  As such, only process a block
512    // when we find the PHI that is the first entry in the block.
513    PHINode *SomePHI = I->second;
514    BasicBlock *BB = SomePHI->getParent();
515    if (&BB->front() != SomePHI)
516      continue;
517
518    // Only do work here if there the PHI nodes are missing incoming values.  We
519    // know that all PHI nodes that were inserted in a block will have the same
520    // number of incoming values, so we can just check any of them.
521    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
522      continue;
523
524    // Get the preds for BB.
525    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
526
527    // Ok, now we know that all of the PHI nodes are missing entries for some
528    // basic blocks.  Start by sorting the incoming predecessors for efficient
529    // access.
530    std::sort(Preds.begin(), Preds.end());
531
532    // Now we loop through all BB's which have entries in SomePHI and remove
533    // them from the Preds list.
534    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
535      // Do a log(n) search of the Preds list for the entry we want.
536      SmallVector<BasicBlock*, 16>::iterator EntIt =
537        std::lower_bound(Preds.begin(), Preds.end(),
538                         SomePHI->getIncomingBlock(i));
539      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
540             "PHI node has entry for a block which is not a predecessor!");
541
542      // Remove the entry
543      Preds.erase(EntIt);
544    }
545
546    // At this point, the blocks left in the preds list must have dummy
547    // entries inserted into every PHI nodes for the block.  Update all the phi
548    // nodes in this block that we are inserting (there could be phis before
549    // mem2reg runs).
550    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
551    BasicBlock::iterator BBI = BB->begin();
552    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
553           SomePHI->getNumIncomingValues() == NumBadPreds) {
554      Value *UndefVal = UndefValue::get(SomePHI->getType());
555      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
556        SomePHI->addIncoming(UndefVal, Preds[pred]);
557    }
558  }
559
560  NewPhiNodes.clear();
561}
562
563
564/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
565/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
566/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
567/// would be dead).
568void PromoteMem2Reg::
569ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
570                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
571                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
572
573  // To determine liveness, we must iterate through the predecessors of blocks
574  // where the def is live.  Blocks are added to the worklist if we need to
575  // check their predecessors.  Start with all the using blocks.
576  SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
577  LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
578                             Info.UsingBlocks.begin(), Info.UsingBlocks.end());
579
580  // If any of the using blocks is also a definition block, check to see if the
581  // definition occurs before or after the use.  If it happens before the use,
582  // the value isn't really live-in.
583  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
584    BasicBlock *BB = LiveInBlockWorklist[i];
585    if (!DefBlocks.count(BB)) continue;
586
587    // Okay, this is a block that both uses and defines the value.  If the first
588    // reference to the alloca is a def (store), then we know it isn't live-in.
589    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
590      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
591        if (SI->getOperand(1) != AI) continue;
592
593        // We found a store to the alloca before a load.  The alloca is not
594        // actually live-in here.
595        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
596        LiveInBlockWorklist.pop_back();
597        --i, --e;
598        break;
599      }
600
601      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
602        if (LI->getOperand(0) != AI) continue;
603
604        // Okay, we found a load before a store to the alloca.  It is actually
605        // live into this block.
606        break;
607      }
608    }
609  }
610
611  // Now that we have a set of blocks where the phi is live-in, recursively add
612  // their predecessors until we find the full region the value is live.
613  while (!LiveInBlockWorklist.empty()) {
614    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
615
616    // The block really is live in here, insert it into the set.  If already in
617    // the set, then it has already been processed.
618    if (!LiveInBlocks.insert(BB))
619      continue;
620
621    // Since the value is live into BB, it is either defined in a predecessor or
622    // live into it to.  Add the preds to the worklist unless they are a
623    // defining block.
624    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
625      BasicBlock *P = *PI;
626
627      // The value is not live into a predecessor if it defines the value.
628      if (DefBlocks.count(P))
629        continue;
630
631      // Otherwise it is, add to the worklist.
632      LiveInBlockWorklist.push_back(P);
633    }
634  }
635}
636
637/// DetermineInsertionPoint - At this point, we're committed to promoting the
638/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
639/// which blocks need phi nodes and see if we can optimize out some work by
640/// avoiding insertion of dead phi nodes.
641void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
642                                             AllocaInfo &Info) {
643
644  // Unique the set of defining blocks for efficient lookup.
645  SmallPtrSet<BasicBlock*, 32> DefBlocks;
646  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
647
648  // Determine which blocks the value is live in.  These are blocks which lead
649  // to uses.
650  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
651  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
652
653  // Compute the locations where PhiNodes need to be inserted.  Look at the
654  // dominance frontier of EACH basic-block we have a write in.
655  unsigned CurrentVersion = 0;
656  SmallPtrSet<PHINode*, 16> InsertedPHINodes;
657  std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
658  while (!Info.DefiningBlocks.empty()) {
659    BasicBlock *BB = Info.DefiningBlocks.back();
660    Info.DefiningBlocks.pop_back();
661
662    // Look up the DF for this write, add it to defining blocks.
663    DominanceFrontier::const_iterator it = DF.find(BB);
664    if (it == DF.end()) continue;
665
666    const DominanceFrontier::DomSetType &S = it->second;
667
668    // In theory we don't need the indirection through the DFBlocks vector.
669    // In practice, the order of calling QueuePhiNode would depend on the
670    // (unspecified) ordering of basic blocks in the dominance frontier,
671    // which would give PHI nodes non-determinstic subscripts.  Fix this by
672    // processing blocks in order of the occurance in the function.
673    for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
674         PE = S.end(); P != PE; ++P) {
675      // If the frontier block is not in the live-in set for the alloca, don't
676      // bother processing it.
677      if (!LiveInBlocks.count(*P))
678        continue;
679
680      DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
681    }
682
683    // Sort by which the block ordering in the function.
684    if (DFBlocks.size() > 1)
685      std::sort(DFBlocks.begin(), DFBlocks.end());
686
687    for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
688      BasicBlock *BB = DFBlocks[i].second;
689      if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
690        Info.DefiningBlocks.push_back(BB);
691    }
692    DFBlocks.clear();
693  }
694}
695
696/// RewriteSingleStoreAlloca - If there is only a single store to this value,
697/// replace any loads of it that are directly dominated by the definition with
698/// the value stored.
699void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
700                                              AllocaInfo &Info,
701                                              LargeBlockInfo &LBI) {
702  StoreInst *OnlyStore = Info.OnlyStore;
703  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
704  BasicBlock *StoreBB = OnlyStore->getParent();
705  int StoreIndex = -1;
706
707  // Clear out UsingBlocks.  We will reconstruct it here if needed.
708  Info.UsingBlocks.clear();
709
710  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
711    Instruction *UserInst = cast<Instruction>(*UI++);
712    if (!isa<LoadInst>(UserInst)) {
713      assert(UserInst == OnlyStore && "Should only have load/stores");
714      continue;
715    }
716    LoadInst *LI = cast<LoadInst>(UserInst);
717
718    // Okay, if we have a load from the alloca, we want to replace it with the
719    // only value stored to the alloca.  We can do this if the value is
720    // dominated by the store.  If not, we use the rest of the mem2reg machinery
721    // to insert the phi nodes as needed.
722    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
723      if (LI->getParent() == StoreBB) {
724        // If we have a use that is in the same block as the store, compare the
725        // indices of the two instructions to see which one came first.  If the
726        // load came before the store, we can't handle it.
727        if (StoreIndex == -1)
728          StoreIndex = LBI.getInstructionIndex(OnlyStore);
729
730        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
731          // Can't handle this load, bail out.
732          Info.UsingBlocks.push_back(StoreBB);
733          continue;
734        }
735
736      } else if (LI->getParent() != StoreBB &&
737                 !dominates(StoreBB, LI->getParent())) {
738        // If the load and store are in different blocks, use BB dominance to
739        // check their relationships.  If the store doesn't dom the use, bail
740        // out.
741        Info.UsingBlocks.push_back(LI->getParent());
742        continue;
743      }
744    }
745
746    // Otherwise, we *can* safely rewrite this load.
747    Value *ReplVal = OnlyStore->getOperand(0);
748    // If the replacement value is the load, this must occur in unreachable
749    // code.
750    if (ReplVal == LI)
751      ReplVal = UndefValue::get(LI->getType());
752    LI->replaceAllUsesWith(ReplVal);
753    if (AST && isa<PointerType>(LI->getType()))
754      AST->deleteValue(LI);
755    LI->eraseFromParent();
756    LBI.deleteValue(LI);
757  }
758}
759
760namespace {
761
762/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
763/// first element of a pair.
764struct StoreIndexSearchPredicate {
765  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
766                  const std::pair<unsigned, StoreInst*> &RHS) {
767    return LHS.first < RHS.first;
768  }
769};
770
771}
772
773/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
774/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
775/// potentially useless PHI nodes by just performing a single linear pass over
776/// the basic block using the Alloca.
777///
778/// If we cannot promote this alloca (because it is read before it is written),
779/// return true.  This is necessary in cases where, due to control flow, the
780/// alloca is potentially undefined on some control flow paths.  e.g. code like
781/// this is potentially correct:
782///
783///   for (...) { if (c) { A = undef; undef = B; } }
784///
785/// ... so long as A is not used before undef is set.
786///
787void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
788                                              LargeBlockInfo &LBI) {
789  // The trickiest case to handle is when we have large blocks. Because of this,
790  // this code is optimized assuming that large blocks happen.  This does not
791  // significantly pessimize the small block case.  This uses LargeBlockInfo to
792  // make it efficient to get the index of various operations in the block.
793
794  // Clear out UsingBlocks.  We will reconstruct it here if needed.
795  Info.UsingBlocks.clear();
796
797  // Walk the use-def list of the alloca, getting the locations of all stores.
798  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
799  StoresByIndexTy StoresByIndex;
800
801  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
802       UI != E; ++UI)
803    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
804      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
805
806  // If there are no stores to the alloca, just replace any loads with undef.
807  if (StoresByIndex.empty()) {
808    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
809      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
810        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
811        if (AST && isa<PointerType>(LI->getType()))
812          AST->deleteValue(LI);
813        LBI.deleteValue(LI);
814        LI->eraseFromParent();
815      }
816    return;
817  }
818
819  // Sort the stores by their index, making it efficient to do a lookup with a
820  // binary search.
821  std::sort(StoresByIndex.begin(), StoresByIndex.end());
822
823  // Walk all of the loads from this alloca, replacing them with the nearest
824  // store above them, if any.
825  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
826    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
827    if (!LI) continue;
828
829    unsigned LoadIdx = LBI.getInstructionIndex(LI);
830
831    // Find the nearest store that has a lower than this load.
832    StoresByIndexTy::iterator I =
833      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
834                       std::pair<unsigned, StoreInst*>(LoadIdx, 0),
835                       StoreIndexSearchPredicate());
836
837    // If there is no store before this load, then we can't promote this load.
838    if (I == StoresByIndex.begin()) {
839      // Can't handle this load, bail out.
840      Info.UsingBlocks.push_back(LI->getParent());
841      continue;
842    }
843
844    // Otherwise, there was a store before this load, the load takes its value.
845    --I;
846    LI->replaceAllUsesWith(I->second->getOperand(0));
847    if (AST && isa<PointerType>(LI->getType()))
848      AST->deleteValue(LI);
849    LI->eraseFromParent();
850    LBI.deleteValue(LI);
851  }
852}
853
854
855// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
856// Alloca returns true if there wasn't already a phi-node for that variable
857//
858bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
859                                  unsigned &Version,
860                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
861  // Look up the basic-block in question.
862  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
863
864  // If the BB already has a phi node added for the i'th alloca then we're done!
865  if (PN) return false;
866
867  // Create a PhiNode using the dereferenced type... and add the phi-node to the
868  // BasicBlock.
869  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
870                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
871                       BB->begin());
872  ++NumPHIInsert;
873  PhiToAllocaMap[PN] = AllocaNo;
874  PN->reserveOperandSpace(getNumPreds(BB));
875
876  InsertedPHINodes.insert(PN);
877
878  if (AST && isa<PointerType>(PN->getType()))
879    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
880
881  return true;
882}
883
884// RenamePass - Recursively traverse the CFG of the function, renaming loads and
885// stores to the allocas which we are promoting.  IncomingVals indicates what
886// value each Alloca contains on exit from the predecessor block Pred.
887//
888void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
889                                RenamePassData::ValVector &IncomingVals,
890                                std::vector<RenamePassData> &Worklist) {
891NextIteration:
892  // If we are inserting any phi nodes into this BB, they will already be in the
893  // block.
894  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
895    // If we have PHI nodes to update, compute the number of edges from Pred to
896    // BB.
897    if (PhiToAllocaMap.count(APN)) {
898      // We want to be able to distinguish between PHI nodes being inserted by
899      // this invocation of mem2reg from those phi nodes that already existed in
900      // the IR before mem2reg was run.  We determine that APN is being inserted
901      // because it is missing incoming edges.  All other PHI nodes being
902      // inserted by this pass of mem2reg will have the same number of incoming
903      // operands so far.  Remember this count.
904      unsigned NewPHINumOperands = APN->getNumOperands();
905
906      unsigned NumEdges = 0;
907      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
908        if (*I == BB)
909          ++NumEdges;
910      assert(NumEdges && "Must be at least one edge from Pred to BB!");
911
912      // Add entries for all the phis.
913      BasicBlock::iterator PNI = BB->begin();
914      do {
915        unsigned AllocaNo = PhiToAllocaMap[APN];
916
917        // Add N incoming values to the PHI node.
918        for (unsigned i = 0; i != NumEdges; ++i)
919          APN->addIncoming(IncomingVals[AllocaNo], Pred);
920
921        // The currently active variable for this block is now the PHI.
922        IncomingVals[AllocaNo] = APN;
923
924        // Get the next phi node.
925        ++PNI;
926        APN = dyn_cast<PHINode>(PNI);
927        if (APN == 0) break;
928
929        // Verify that it is missing entries.  If not, it is not being inserted
930        // by this mem2reg invocation so we want to ignore it.
931      } while (APN->getNumOperands() == NewPHINumOperands);
932    }
933  }
934
935  // Don't revisit blocks.
936  if (!Visited.insert(BB)) return;
937
938  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
939    Instruction *I = II++; // get the instruction, increment iterator
940
941    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
942      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
943      if (!Src) continue;
944
945      std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
946      if (AI == AllocaLookup.end()) continue;
947
948      Value *V = IncomingVals[AI->second];
949
950      // Anything using the load now uses the current value.
951      LI->replaceAllUsesWith(V);
952      if (AST && isa<PointerType>(LI->getType()))
953        AST->deleteValue(LI);
954      BB->getInstList().erase(LI);
955    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
956      // Delete this instruction and mark the name as the current holder of the
957      // value
958      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
959      if (!Dest) continue;
960
961      std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
962      if (ai == AllocaLookup.end())
963        continue;
964
965      // what value were we writing?
966      IncomingVals[ai->second] = SI->getOperand(0);
967      BB->getInstList().erase(SI);
968    }
969  }
970
971  // 'Recurse' to our successors.
972  succ_iterator I = succ_begin(BB), E = succ_end(BB);
973  if (I == E) return;
974
975  // Keep track of the successors so we don't visit the same successor twice
976  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
977
978  // Handle the first successor without using the worklist.
979  VisitedSuccs.insert(*I);
980  Pred = BB;
981  BB = *I;
982  ++I;
983
984  for (; I != E; ++I)
985    if (VisitedSuccs.insert(*I))
986      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
987
988  goto NextIteration;
989}
990
991/// PromoteMemToReg - Promote the specified list of alloca instructions into
992/// scalar registers, inserting PHI nodes as appropriate.  This function makes
993/// use of DominanceFrontier information.  This function does not modify the CFG
994/// of the function at all.  All allocas must be from the same function.
995///
996/// If AST is specified, the specified tracker is updated to reflect changes
997/// made to the IR.
998///
999void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1000                           DominatorTree &DT, DominanceFrontier &DF,
1001                           AliasSetTracker *AST) {
1002  // If there is nothing to do, bail out...
1003  if (Allocas.empty()) return;
1004
1005  PromoteMem2Reg(Allocas, DT, DF, AST).run();
1006}
1007