PromoteMemoryToRegister.cpp revision 403a8cdda5e76ea689693de16474650b4b0df818
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "mem2reg"
20#include "llvm/Transforms/Utils/PromoteMemToReg.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Metadata.h"
27#include "llvm/Analysis/DebugInfo.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/AliasSetTracker.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/CFG.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
40STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
41STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
42STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
43
44namespace llvm {
45template<>
46struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
47  typedef std::pair<BasicBlock*, unsigned> EltTy;
48  static inline EltTy getEmptyKey() {
49    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
50  }
51  static inline EltTy getTombstoneKey() {
52    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
53  }
54  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
55    return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
56  }
57  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
58    return LHS == RHS;
59  }
60};
61}
62
63/// isAllocaPromotable - Return true if this alloca is legal for promotion.
64/// This is true if there are only loads and stores to the alloca.
65///
66bool llvm::isAllocaPromotable(const AllocaInst *AI) {
67  // FIXME: If the memory unit is of pointer or integer type, we can permit
68  // assignments to subsections of the memory unit.
69
70  // Only allow direct and non-volatile loads and stores...
71  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
72       UI != UE; ++UI)     // Loop over all of the uses of the alloca
73    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
74      if (LI->isVolatile())
75        return false;
76    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
77      if (SI->getOperand(0) == AI)
78        return false;   // Don't allow a store OF the AI, only INTO the AI.
79      if (SI->isVolatile())
80        return false;
81    } else {
82      return false;
83    }
84
85  return true;
86}
87
88/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
89/// alloca 'V', if any.
90static DbgDeclareInst *FindAllocaDbgDeclare(Value *V) {
91  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), &V, 1))
92    for (Value::use_iterator UI = DebugNode->use_begin(),
93         E = DebugNode->use_end(); UI != E; ++UI)
94      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
95        return DDI;
96
97  return 0;
98}
99
100namespace {
101  struct AllocaInfo;
102
103  // Data package used by RenamePass()
104  class RenamePassData {
105  public:
106    typedef std::vector<Value *> ValVector;
107
108    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
109    RenamePassData(BasicBlock *B, BasicBlock *P,
110                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
111    BasicBlock *BB;
112    BasicBlock *Pred;
113    ValVector Values;
114
115    void swap(RenamePassData &RHS) {
116      std::swap(BB, RHS.BB);
117      std::swap(Pred, RHS.Pred);
118      Values.swap(RHS.Values);
119    }
120  };
121
122  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
123  /// load/store instructions in the block that directly load or store an alloca.
124  ///
125  /// This functionality is important because it avoids scanning large basic
126  /// blocks multiple times when promoting many allocas in the same block.
127  class LargeBlockInfo {
128    /// InstNumbers - For each instruction that we track, keep the index of the
129    /// instruction.  The index starts out as the number of the instruction from
130    /// the start of the block.
131    DenseMap<const Instruction *, unsigned> InstNumbers;
132  public:
133
134    /// isInterestingInstruction - This code only looks at accesses to allocas.
135    static bool isInterestingInstruction(const Instruction *I) {
136      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
137             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
138    }
139
140    /// getInstructionIndex - Get or calculate the index of the specified
141    /// instruction.
142    unsigned getInstructionIndex(const Instruction *I) {
143      assert(isInterestingInstruction(I) &&
144             "Not a load/store to/from an alloca?");
145
146      // If we already have this instruction number, return it.
147      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
148      if (It != InstNumbers.end()) return It->second;
149
150      // Scan the whole block to get the instruction.  This accumulates
151      // information for every interesting instruction in the block, in order to
152      // avoid gratuitus rescans.
153      const BasicBlock *BB = I->getParent();
154      unsigned InstNo = 0;
155      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
156           BBI != E; ++BBI)
157        if (isInterestingInstruction(BBI))
158          InstNumbers[BBI] = InstNo++;
159      It = InstNumbers.find(I);
160
161      assert(It != InstNumbers.end() && "Didn't insert instruction?");
162      return It->second;
163    }
164
165    void deleteValue(const Instruction *I) {
166      InstNumbers.erase(I);
167    }
168
169    void clear() {
170      InstNumbers.clear();
171    }
172  };
173
174  struct PromoteMem2Reg {
175    /// Allocas - The alloca instructions being promoted.
176    ///
177    std::vector<AllocaInst*> Allocas;
178    DominatorTree &DT;
179    DominanceFrontier &DF;
180    DIFactory *DIF;
181
182    /// AST - An AliasSetTracker object to update.  If null, don't update it.
183    ///
184    AliasSetTracker *AST;
185
186    /// AllocaLookup - Reverse mapping of Allocas.
187    ///
188    std::map<AllocaInst*, unsigned>  AllocaLookup;
189
190    /// NewPhiNodes - The PhiNodes we're adding.
191    ///
192    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
193
194    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
195    /// it corresponds to.
196    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
197
198    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
199    /// each alloca that is of pointer type, we keep track of what to copyValue
200    /// to the inserted PHI nodes here.
201    ///
202    std::vector<Value*> PointerAllocaValues;
203
204    /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
205    /// intrinsic that describes it, if any, so that we can convert it to a
206    /// dbg.value intrinsic if the alloca gets promoted.
207    SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
208
209    /// Visited - The set of basic blocks the renamer has already visited.
210    ///
211    SmallPtrSet<BasicBlock*, 16> Visited;
212
213    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
214    /// non-determinstic behavior.
215    DenseMap<BasicBlock*, unsigned> BBNumbers;
216
217    /// BBNumPreds - Lazily compute the number of predecessors a block has.
218    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
219  public:
220    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
221                   DominanceFrontier &df, AliasSetTracker *ast)
222      : Allocas(A), DT(dt), DF(df), DIF(0), AST(ast) {}
223    ~PromoteMem2Reg() {
224      delete DIF;
225    }
226
227    void run();
228
229    /// properlyDominates - Return true if I1 properly dominates I2.
230    ///
231    bool properlyDominates(Instruction *I1, Instruction *I2) const {
232      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
233        I1 = II->getNormalDest()->begin();
234      return DT.properlyDominates(I1->getParent(), I2->getParent());
235    }
236
237    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
238    ///
239    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
240      return DT.dominates(BB1, BB2);
241    }
242
243  private:
244    void RemoveFromAllocasList(unsigned &AllocaIdx) {
245      Allocas[AllocaIdx] = Allocas.back();
246      Allocas.pop_back();
247      --AllocaIdx;
248    }
249
250    unsigned getNumPreds(const BasicBlock *BB) {
251      unsigned &NP = BBNumPreds[BB];
252      if (NP == 0)
253        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
254      return NP-1;
255    }
256
257    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
258                                 AllocaInfo &Info);
259    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
260                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
261                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
262
263    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
264                                  LargeBlockInfo &LBI);
265    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
266                                  LargeBlockInfo &LBI);
267    void ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI);
268
269
270    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
271                    RenamePassData::ValVector &IncVals,
272                    std::vector<RenamePassData> &Worklist);
273    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
274                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
275  };
276
277  struct AllocaInfo {
278    std::vector<BasicBlock*> DefiningBlocks;
279    std::vector<BasicBlock*> UsingBlocks;
280
281    StoreInst  *OnlyStore;
282    BasicBlock *OnlyBlock;
283    bool OnlyUsedInOneBlock;
284
285    Value *AllocaPointerVal;
286    DbgDeclareInst *DbgDeclare;
287
288    void clear() {
289      DefiningBlocks.clear();
290      UsingBlocks.clear();
291      OnlyStore = 0;
292      OnlyBlock = 0;
293      OnlyUsedInOneBlock = true;
294      AllocaPointerVal = 0;
295      DbgDeclare = 0;
296    }
297
298    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
299    /// ivars.
300    void AnalyzeAlloca(AllocaInst *AI) {
301      clear();
302
303      // As we scan the uses of the alloca instruction, keep track of stores,
304      // and decide whether all of the loads and stores to the alloca are within
305      // the same basic block.
306      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
307           UI != E;)  {
308        Instruction *User = cast<Instruction>(*UI++);
309
310        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
311          // Remember the basic blocks which define new values for the alloca
312          DefiningBlocks.push_back(SI->getParent());
313          AllocaPointerVal = SI->getOperand(0);
314          OnlyStore = SI;
315        } else {
316          LoadInst *LI = cast<LoadInst>(User);
317          // Otherwise it must be a load instruction, keep track of variable
318          // reads.
319          UsingBlocks.push_back(LI->getParent());
320          AllocaPointerVal = LI;
321        }
322
323        if (OnlyUsedInOneBlock) {
324          if (OnlyBlock == 0)
325            OnlyBlock = User->getParent();
326          else if (OnlyBlock != User->getParent())
327            OnlyUsedInOneBlock = false;
328        }
329      }
330
331      DbgDeclare = FindAllocaDbgDeclare(AI);
332    }
333  };
334}  // end of anonymous namespace
335
336
337void PromoteMem2Reg::run() {
338  Function &F = *DF.getRoot()->getParent();
339
340  if (AST) PointerAllocaValues.resize(Allocas.size());
341  AllocaDbgDeclares.resize(Allocas.size());
342
343  AllocaInfo Info;
344  LargeBlockInfo LBI;
345
346  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
347    AllocaInst *AI = Allocas[AllocaNum];
348
349    assert(isAllocaPromotable(AI) &&
350           "Cannot promote non-promotable alloca!");
351    assert(AI->getParent()->getParent() == &F &&
352           "All allocas should be in the same function, which is same as DF!");
353
354    if (AI->use_empty()) {
355      // If there are no uses of the alloca, just delete it now.
356      if (AST) AST->deleteValue(AI);
357      AI->eraseFromParent();
358
359      // Remove the alloca from the Allocas list, since it has been processed
360      RemoveFromAllocasList(AllocaNum);
361      ++NumDeadAlloca;
362      continue;
363    }
364
365    // Calculate the set of read and write-locations for each alloca.  This is
366    // analogous to finding the 'uses' and 'definitions' of each variable.
367    Info.AnalyzeAlloca(AI);
368
369    // If there is only a single store to this value, replace any loads of
370    // it that are directly dominated by the definition with the value stored.
371    if (Info.DefiningBlocks.size() == 1) {
372      RewriteSingleStoreAlloca(AI, Info, LBI);
373
374      // Finally, after the scan, check to see if the store is all that is left.
375      if (Info.UsingBlocks.empty()) {
376        // Record debuginfo for the store and remove the declaration's debuginfo.
377        if (DbgDeclareInst *DDI = Info.DbgDeclare) {
378          ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore);
379          DDI->eraseFromParent();
380        }
381        // Remove the (now dead) store and alloca.
382        Info.OnlyStore->eraseFromParent();
383        LBI.deleteValue(Info.OnlyStore);
384
385        if (AST) AST->deleteValue(AI);
386        AI->eraseFromParent();
387        LBI.deleteValue(AI);
388
389        // The alloca has been processed, move on.
390        RemoveFromAllocasList(AllocaNum);
391
392        ++NumSingleStore;
393        continue;
394      }
395    }
396
397    // If the alloca is only read and written in one basic block, just perform a
398    // linear sweep over the block to eliminate it.
399    if (Info.OnlyUsedInOneBlock) {
400      PromoteSingleBlockAlloca(AI, Info, LBI);
401
402      // Finally, after the scan, check to see if the stores are all that is
403      // left.
404      if (Info.UsingBlocks.empty()) {
405
406        // Remove the (now dead) stores and alloca.
407        while (!AI->use_empty()) {
408          StoreInst *SI = cast<StoreInst>(AI->use_back());
409          // Record debuginfo for the store before removing it.
410          if (DbgDeclareInst *DDI = Info.DbgDeclare)
411            ConvertDebugDeclareToDebugValue(DDI, SI);
412          SI->eraseFromParent();
413          LBI.deleteValue(SI);
414        }
415
416        if (AST) AST->deleteValue(AI);
417        AI->eraseFromParent();
418        LBI.deleteValue(AI);
419
420        // The alloca has been processed, move on.
421        RemoveFromAllocasList(AllocaNum);
422
423        // The alloca's debuginfo can be removed as well.
424        if (DbgDeclareInst *DDI = Info.DbgDeclare)
425          DDI->eraseFromParent();
426
427        ++NumLocalPromoted;
428        continue;
429      }
430    }
431
432    // If we haven't computed a numbering for the BB's in the function, do so
433    // now.
434    if (BBNumbers.empty()) {
435      unsigned ID = 0;
436      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
437        BBNumbers[I] = ID++;
438    }
439
440    // If we have an AST to keep updated, remember some pointer value that is
441    // stored into the alloca.
442    if (AST)
443      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
444
445    // Remember the dbg.declare intrinsic describing this alloca, if any.
446    if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
447
448    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
449    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
450
451    // At this point, we're committed to promoting the alloca using IDF's, and
452    // the standard SSA construction algorithm.  Determine which blocks need PHI
453    // nodes and see if we can optimize out some work by avoiding insertion of
454    // dead phi nodes.
455    DetermineInsertionPoint(AI, AllocaNum, Info);
456  }
457
458  if (Allocas.empty())
459    return; // All of the allocas must have been trivial!
460
461  LBI.clear();
462
463
464  // Set the incoming values for the basic block to be null values for all of
465  // the alloca's.  We do this in case there is a load of a value that has not
466  // been stored yet.  In this case, it will get this null value.
467  //
468  RenamePassData::ValVector Values(Allocas.size());
469  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
470    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
471
472  // Walks all basic blocks in the function performing the SSA rename algorithm
473  // and inserting the phi nodes we marked as necessary
474  //
475  std::vector<RenamePassData> RenamePassWorkList;
476  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
477  do {
478    RenamePassData RPD;
479    RPD.swap(RenamePassWorkList.back());
480    RenamePassWorkList.pop_back();
481    // RenamePass may add new worklist entries.
482    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
483  } while (!RenamePassWorkList.empty());
484
485  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
486  Visited.clear();
487
488  // Remove the allocas themselves from the function.
489  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
490    Instruction *A = Allocas[i];
491
492    // If there are any uses of the alloca instructions left, they must be in
493    // sections of dead code that were not processed on the dominance frontier.
494    // Just delete the users now.
495    //
496    if (!A->use_empty())
497      A->replaceAllUsesWith(UndefValue::get(A->getType()));
498    if (AST) AST->deleteValue(A);
499    A->eraseFromParent();
500  }
501
502  // Remove alloca's dbg.declare instrinsics from the function.
503  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
504    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
505      DDI->eraseFromParent();
506
507  // Loop over all of the PHI nodes and see if there are any that we can get
508  // rid of because they merge all of the same incoming values.  This can
509  // happen due to undef values coming into the PHI nodes.  This process is
510  // iterative, because eliminating one PHI node can cause others to be removed.
511  bool EliminatedAPHI = true;
512  while (EliminatedAPHI) {
513    EliminatedAPHI = false;
514
515    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
516           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
517      PHINode *PN = I->second;
518
519      // If this PHI node merges one value and/or undefs, get the value.
520      if (Value *V = PN->hasConstantValue(&DT)) {
521        if (AST && PN->getType()->isPointerTy())
522          AST->deleteValue(PN);
523        PN->replaceAllUsesWith(V);
524        PN->eraseFromParent();
525        NewPhiNodes.erase(I++);
526        EliminatedAPHI = true;
527        continue;
528      }
529      ++I;
530    }
531  }
532
533  // At this point, the renamer has added entries to PHI nodes for all reachable
534  // code.  Unfortunately, there may be unreachable blocks which the renamer
535  // hasn't traversed.  If this is the case, the PHI nodes may not
536  // have incoming values for all predecessors.  Loop over all PHI nodes we have
537  // created, inserting undef values if they are missing any incoming values.
538  //
539  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
540         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
541    // We want to do this once per basic block.  As such, only process a block
542    // when we find the PHI that is the first entry in the block.
543    PHINode *SomePHI = I->second;
544    BasicBlock *BB = SomePHI->getParent();
545    if (&BB->front() != SomePHI)
546      continue;
547
548    // Only do work here if there the PHI nodes are missing incoming values.  We
549    // know that all PHI nodes that were inserted in a block will have the same
550    // number of incoming values, so we can just check any of them.
551    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
552      continue;
553
554    // Get the preds for BB.
555    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
556
557    // Ok, now we know that all of the PHI nodes are missing entries for some
558    // basic blocks.  Start by sorting the incoming predecessors for efficient
559    // access.
560    std::sort(Preds.begin(), Preds.end());
561
562    // Now we loop through all BB's which have entries in SomePHI and remove
563    // them from the Preds list.
564    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
565      // Do a log(n) search of the Preds list for the entry we want.
566      SmallVector<BasicBlock*, 16>::iterator EntIt =
567        std::lower_bound(Preds.begin(), Preds.end(),
568                         SomePHI->getIncomingBlock(i));
569      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
570             "PHI node has entry for a block which is not a predecessor!");
571
572      // Remove the entry
573      Preds.erase(EntIt);
574    }
575
576    // At this point, the blocks left in the preds list must have dummy
577    // entries inserted into every PHI nodes for the block.  Update all the phi
578    // nodes in this block that we are inserting (there could be phis before
579    // mem2reg runs).
580    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
581    BasicBlock::iterator BBI = BB->begin();
582    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
583           SomePHI->getNumIncomingValues() == NumBadPreds) {
584      Value *UndefVal = UndefValue::get(SomePHI->getType());
585      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
586        SomePHI->addIncoming(UndefVal, Preds[pred]);
587    }
588  }
589
590  NewPhiNodes.clear();
591}
592
593
594/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
595/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
596/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
597/// would be dead).
598void PromoteMem2Reg::
599ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
600                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
601                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
602
603  // To determine liveness, we must iterate through the predecessors of blocks
604  // where the def is live.  Blocks are added to the worklist if we need to
605  // check their predecessors.  Start with all the using blocks.
606  SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
607                                                   Info.UsingBlocks.end());
608
609  // If any of the using blocks is also a definition block, check to see if the
610  // definition occurs before or after the use.  If it happens before the use,
611  // the value isn't really live-in.
612  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
613    BasicBlock *BB = LiveInBlockWorklist[i];
614    if (!DefBlocks.count(BB)) continue;
615
616    // Okay, this is a block that both uses and defines the value.  If the first
617    // reference to the alloca is a def (store), then we know it isn't live-in.
618    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
619      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
620        if (SI->getOperand(1) != AI) continue;
621
622        // We found a store to the alloca before a load.  The alloca is not
623        // actually live-in here.
624        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
625        LiveInBlockWorklist.pop_back();
626        --i, --e;
627        break;
628      }
629
630      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
631        if (LI->getOperand(0) != AI) continue;
632
633        // Okay, we found a load before a store to the alloca.  It is actually
634        // live into this block.
635        break;
636      }
637    }
638  }
639
640  // Now that we have a set of blocks where the phi is live-in, recursively add
641  // their predecessors until we find the full region the value is live.
642  while (!LiveInBlockWorklist.empty()) {
643    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
644
645    // The block really is live in here, insert it into the set.  If already in
646    // the set, then it has already been processed.
647    if (!LiveInBlocks.insert(BB))
648      continue;
649
650    // Since the value is live into BB, it is either defined in a predecessor or
651    // live into it to.  Add the preds to the worklist unless they are a
652    // defining block.
653    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
654      BasicBlock *P = *PI;
655
656      // The value is not live into a predecessor if it defines the value.
657      if (DefBlocks.count(P))
658        continue;
659
660      // Otherwise it is, add to the worklist.
661      LiveInBlockWorklist.push_back(P);
662    }
663  }
664}
665
666/// DetermineInsertionPoint - At this point, we're committed to promoting the
667/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
668/// which blocks need phi nodes and see if we can optimize out some work by
669/// avoiding insertion of dead phi nodes.
670void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
671                                             AllocaInfo &Info) {
672
673  // Unique the set of defining blocks for efficient lookup.
674  SmallPtrSet<BasicBlock*, 32> DefBlocks;
675  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
676
677  // Determine which blocks the value is live in.  These are blocks which lead
678  // to uses.
679  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
680  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
681
682  // Compute the locations where PhiNodes need to be inserted.  Look at the
683  // dominance frontier of EACH basic-block we have a write in.
684  unsigned CurrentVersion = 0;
685  SmallPtrSet<PHINode*, 16> InsertedPHINodes;
686  std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
687  while (!Info.DefiningBlocks.empty()) {
688    BasicBlock *BB = Info.DefiningBlocks.back();
689    Info.DefiningBlocks.pop_back();
690
691    // Look up the DF for this write, add it to defining blocks.
692    DominanceFrontier::const_iterator it = DF.find(BB);
693    if (it == DF.end()) continue;
694
695    const DominanceFrontier::DomSetType &S = it->second;
696
697    // In theory we don't need the indirection through the DFBlocks vector.
698    // In practice, the order of calling QueuePhiNode would depend on the
699    // (unspecified) ordering of basic blocks in the dominance frontier,
700    // which would give PHI nodes non-determinstic subscripts.  Fix this by
701    // processing blocks in order of the occurance in the function.
702    for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
703         PE = S.end(); P != PE; ++P) {
704      // If the frontier block is not in the live-in set for the alloca, don't
705      // bother processing it.
706      if (!LiveInBlocks.count(*P))
707        continue;
708
709      DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
710    }
711
712    // Sort by which the block ordering in the function.
713    if (DFBlocks.size() > 1)
714      std::sort(DFBlocks.begin(), DFBlocks.end());
715
716    for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
717      BasicBlock *BB = DFBlocks[i].second;
718      if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
719        Info.DefiningBlocks.push_back(BB);
720    }
721    DFBlocks.clear();
722  }
723}
724
725/// RewriteSingleStoreAlloca - If there is only a single store to this value,
726/// replace any loads of it that are directly dominated by the definition with
727/// the value stored.
728void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
729                                              AllocaInfo &Info,
730                                              LargeBlockInfo &LBI) {
731  StoreInst *OnlyStore = Info.OnlyStore;
732  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
733  BasicBlock *StoreBB = OnlyStore->getParent();
734  int StoreIndex = -1;
735
736  // Clear out UsingBlocks.  We will reconstruct it here if needed.
737  Info.UsingBlocks.clear();
738
739  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
740    Instruction *UserInst = cast<Instruction>(*UI++);
741    if (!isa<LoadInst>(UserInst)) {
742      assert(UserInst == OnlyStore && "Should only have load/stores");
743      continue;
744    }
745    LoadInst *LI = cast<LoadInst>(UserInst);
746
747    // Okay, if we have a load from the alloca, we want to replace it with the
748    // only value stored to the alloca.  We can do this if the value is
749    // dominated by the store.  If not, we use the rest of the mem2reg machinery
750    // to insert the phi nodes as needed.
751    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
752      if (LI->getParent() == StoreBB) {
753        // If we have a use that is in the same block as the store, compare the
754        // indices of the two instructions to see which one came first.  If the
755        // load came before the store, we can't handle it.
756        if (StoreIndex == -1)
757          StoreIndex = LBI.getInstructionIndex(OnlyStore);
758
759        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
760          // Can't handle this load, bail out.
761          Info.UsingBlocks.push_back(StoreBB);
762          continue;
763        }
764
765      } else if (LI->getParent() != StoreBB &&
766                 !dominates(StoreBB, LI->getParent())) {
767        // If the load and store are in different blocks, use BB dominance to
768        // check their relationships.  If the store doesn't dom the use, bail
769        // out.
770        Info.UsingBlocks.push_back(LI->getParent());
771        continue;
772      }
773    }
774
775    // Otherwise, we *can* safely rewrite this load.
776    Value *ReplVal = OnlyStore->getOperand(0);
777    // If the replacement value is the load, this must occur in unreachable
778    // code.
779    if (ReplVal == LI)
780      ReplVal = UndefValue::get(LI->getType());
781    LI->replaceAllUsesWith(ReplVal);
782    if (AST && LI->getType()->isPointerTy())
783      AST->deleteValue(LI);
784    LI->eraseFromParent();
785    LBI.deleteValue(LI);
786  }
787}
788
789namespace {
790
791/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
792/// first element of a pair.
793struct StoreIndexSearchPredicate {
794  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
795                  const std::pair<unsigned, StoreInst*> &RHS) {
796    return LHS.first < RHS.first;
797  }
798};
799
800}
801
802/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
803/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
804/// potentially useless PHI nodes by just performing a single linear pass over
805/// the basic block using the Alloca.
806///
807/// If we cannot promote this alloca (because it is read before it is written),
808/// return true.  This is necessary in cases where, due to control flow, the
809/// alloca is potentially undefined on some control flow paths.  e.g. code like
810/// this is potentially correct:
811///
812///   for (...) { if (c) { A = undef; undef = B; } }
813///
814/// ... so long as A is not used before undef is set.
815///
816void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
817                                              LargeBlockInfo &LBI) {
818  // The trickiest case to handle is when we have large blocks. Because of this,
819  // this code is optimized assuming that large blocks happen.  This does not
820  // significantly pessimize the small block case.  This uses LargeBlockInfo to
821  // make it efficient to get the index of various operations in the block.
822
823  // Clear out UsingBlocks.  We will reconstruct it here if needed.
824  Info.UsingBlocks.clear();
825
826  // Walk the use-def list of the alloca, getting the locations of all stores.
827  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
828  StoresByIndexTy StoresByIndex;
829
830  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
831       UI != E; ++UI)
832    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
833      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
834
835  // If there are no stores to the alloca, just replace any loads with undef.
836  if (StoresByIndex.empty()) {
837    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
838      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
839        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
840        if (AST && LI->getType()->isPointerTy())
841          AST->deleteValue(LI);
842        LBI.deleteValue(LI);
843        LI->eraseFromParent();
844      }
845    return;
846  }
847
848  // Sort the stores by their index, making it efficient to do a lookup with a
849  // binary search.
850  std::sort(StoresByIndex.begin(), StoresByIndex.end());
851
852  // Walk all of the loads from this alloca, replacing them with the nearest
853  // store above them, if any.
854  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
855    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
856    if (!LI) continue;
857
858    unsigned LoadIdx = LBI.getInstructionIndex(LI);
859
860    // Find the nearest store that has a lower than this load.
861    StoresByIndexTy::iterator I =
862      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
863                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
864                       StoreIndexSearchPredicate());
865
866    // If there is no store before this load, then we can't promote this load.
867    if (I == StoresByIndex.begin()) {
868      // Can't handle this load, bail out.
869      Info.UsingBlocks.push_back(LI->getParent());
870      continue;
871    }
872
873    // Otherwise, there was a store before this load, the load takes its value.
874    --I;
875    LI->replaceAllUsesWith(I->second->getOperand(0));
876    if (AST && LI->getType()->isPointerTy())
877      AST->deleteValue(LI);
878    LI->eraseFromParent();
879    LBI.deleteValue(LI);
880  }
881}
882
883// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
884// that has an associated llvm.dbg.decl intrinsic.
885void PromoteMem2Reg::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
886                                                     StoreInst *SI) {
887  DIVariable DIVar(DDI->getVariable());
888  if (!DIVar.Verify())
889    return;
890
891  if (!DIF)
892    DIF = new DIFactory(*SI->getParent()->getParent()->getParent());
893  Instruction *DbgVal = DIF->InsertDbgValueIntrinsic(SI->getOperand(0), 0,
894                                                     DIVar, SI);
895
896  // Propagate any debug metadata from the store onto the dbg.value.
897  if (MDNode *SIMD = SI->getMetadata("dbg"))
898    DbgVal->setMetadata("dbg", SIMD);
899  // Otherwise propagate debug metadata from dbg.declare.
900  else if (MDNode *MD = DDI->getMetadata("dbg"))
901      DbgVal->setMetadata("dbg", MD);
902}
903
904// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
905// Alloca returns true if there wasn't already a phi-node for that variable
906//
907bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
908                                  unsigned &Version,
909                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
910  // Look up the basic-block in question.
911  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
912
913  // If the BB already has a phi node added for the i'th alloca then we're done!
914  if (PN) return false;
915
916  // Create a PhiNode using the dereferenced type... and add the phi-node to the
917  // BasicBlock.
918  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
919                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
920                       BB->begin());
921  ++NumPHIInsert;
922  PhiToAllocaMap[PN] = AllocaNo;
923  PN->reserveOperandSpace(getNumPreds(BB));
924
925  InsertedPHINodes.insert(PN);
926
927  if (AST && PN->getType()->isPointerTy())
928    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
929
930  return true;
931}
932
933// RenamePass - Recursively traverse the CFG of the function, renaming loads and
934// stores to the allocas which we are promoting.  IncomingVals indicates what
935// value each Alloca contains on exit from the predecessor block Pred.
936//
937void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
938                                RenamePassData::ValVector &IncomingVals,
939                                std::vector<RenamePassData> &Worklist) {
940NextIteration:
941  // If we are inserting any phi nodes into this BB, they will already be in the
942  // block.
943  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
944    // If we have PHI nodes to update, compute the number of edges from Pred to
945    // BB.
946    if (PhiToAllocaMap.count(APN)) {
947      // We want to be able to distinguish between PHI nodes being inserted by
948      // this invocation of mem2reg from those phi nodes that already existed in
949      // the IR before mem2reg was run.  We determine that APN is being inserted
950      // because it is missing incoming edges.  All other PHI nodes being
951      // inserted by this pass of mem2reg will have the same number of incoming
952      // operands so far.  Remember this count.
953      unsigned NewPHINumOperands = APN->getNumOperands();
954
955      unsigned NumEdges = 0;
956      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
957        if (*I == BB)
958          ++NumEdges;
959      assert(NumEdges && "Must be at least one edge from Pred to BB!");
960
961      // Add entries for all the phis.
962      BasicBlock::iterator PNI = BB->begin();
963      do {
964        unsigned AllocaNo = PhiToAllocaMap[APN];
965
966        // Add N incoming values to the PHI node.
967        for (unsigned i = 0; i != NumEdges; ++i)
968          APN->addIncoming(IncomingVals[AllocaNo], Pred);
969
970        // The currently active variable for this block is now the PHI.
971        IncomingVals[AllocaNo] = APN;
972
973        // Get the next phi node.
974        ++PNI;
975        APN = dyn_cast<PHINode>(PNI);
976        if (APN == 0) break;
977
978        // Verify that it is missing entries.  If not, it is not being inserted
979        // by this mem2reg invocation so we want to ignore it.
980      } while (APN->getNumOperands() == NewPHINumOperands);
981    }
982  }
983
984  // Don't revisit blocks.
985  if (!Visited.insert(BB)) return;
986
987  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
988    Instruction *I = II++; // get the instruction, increment iterator
989
990    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
991      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
992      if (!Src) continue;
993
994      std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
995      if (AI == AllocaLookup.end()) continue;
996
997      Value *V = IncomingVals[AI->second];
998
999      // Anything using the load now uses the current value.
1000      LI->replaceAllUsesWith(V);
1001      if (AST && LI->getType()->isPointerTy())
1002        AST->deleteValue(LI);
1003      BB->getInstList().erase(LI);
1004    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1005      // Delete this instruction and mark the name as the current holder of the
1006      // value
1007      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1008      if (!Dest) continue;
1009
1010      std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1011      if (ai == AllocaLookup.end())
1012        continue;
1013
1014      // what value were we writing?
1015      IncomingVals[ai->second] = SI->getOperand(0);
1016      // Record debuginfo for the store before removing it.
1017      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1018        ConvertDebugDeclareToDebugValue(DDI, SI);
1019      BB->getInstList().erase(SI);
1020    }
1021  }
1022
1023  // 'Recurse' to our successors.
1024  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1025  if (I == E) return;
1026
1027  // Keep track of the successors so we don't visit the same successor twice
1028  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1029
1030  // Handle the first successor without using the worklist.
1031  VisitedSuccs.insert(*I);
1032  Pred = BB;
1033  BB = *I;
1034  ++I;
1035
1036  for (; I != E; ++I)
1037    if (VisitedSuccs.insert(*I))
1038      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1039
1040  goto NextIteration;
1041}
1042
1043/// PromoteMemToReg - Promote the specified list of alloca instructions into
1044/// scalar registers, inserting PHI nodes as appropriate.  This function makes
1045/// use of DominanceFrontier information.  This function does not modify the CFG
1046/// of the function at all.  All allocas must be from the same function.
1047///
1048/// If AST is specified, the specified tracker is updated to reflect changes
1049/// made to the IR.
1050///
1051void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1052                           DominatorTree &DT, DominanceFrontier &DF,
1053                           AliasSetTracker *AST) {
1054  // If there is nothing to do, bail out...
1055  if (Allocas.empty()) return;
1056
1057  PromoteMem2Reg(Allocas, DT, DF, AST).run();
1058}
1059