PromoteMemoryToRegister.cpp revision 5f0eb8da62308126d5b61e3eee5bee75b9dc5194
1//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
2//
3// This pass is used to promote memory references to be register references.  A
4// simple example of the transformation performed by this pass is:
5//
6//        FROM CODE                           TO CODE
7//   %X = alloca int, uint 1                 ret int 42
8//   store int 42, int *%X
9//   %Y = load int* %X
10//   ret int %Y
11//
12// To do this transformation, a simple analysis is done to ensure it is safe.
13// Currently this just loops over all alloca instructions, looking for
14// instructions that are only used in simple load and stores.
15//
16// After this, the code is transformed by...something magical :)
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/Scalar.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/iMemory.h"
23#include "llvm/iPHINode.h"
24#include "llvm/iTerminators.h"
25#include "llvm/Function.h"
26#include "llvm/BasicBlock.h"
27#include "llvm/Constant.h"
28#include "llvm/Type.h"
29#include "Support/StatisticReporter.h"
30
31static Statistic<> NumPromoted("mem2reg\t\t- Number of alloca's promoted");
32
33using std::vector;
34using std::map;
35using std::set;
36
37namespace {
38  struct PromotePass : public FunctionPass {
39    vector<AllocaInst*>          Allocas;      // the alloca instruction..
40    map<Instruction*, unsigned>  AllocaLookup; // reverse mapping of above
41
42    vector<vector<BasicBlock*> > PhiNodes;     // index corresponds to Allocas
43
44    // List of instructions to remove at end of pass
45    vector<Instruction *>        KillList;
46
47    map<BasicBlock*,vector<PHINode*> > NewPhiNodes; // the PhiNodes we're adding
48
49  public:
50    // runOnFunction - To run this pass, first we calculate the alloca
51    // instructions that are safe for promotion, then we promote each one.
52    //
53    virtual bool runOnFunction(Function &F);
54
55    // getAnalysisUsage - We need dominance frontiers
56    //
57    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
58      AU.addRequired<DominanceFrontier>();
59      AU.preservesCFG();
60    }
61
62  private:
63    void Traverse(BasicBlock *BB, BasicBlock *Pred, vector<Value*> &IncVals,
64                  set<BasicBlock*> &Visited);
65    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
66    void FindSafeAllocas(Function &F);
67  };
68
69  RegisterOpt<PromotePass> X("mem2reg", "Promote Memory to Register");
70}  // end of anonymous namespace
71
72
73// isSafeAlloca - This predicate controls what types of alloca instructions are
74// allowed to be promoted...
75//
76static inline bool isSafeAlloca(const AllocaInst *AI) {
77  if (AI->isArrayAllocation()) return false;
78
79  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
80       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
81
82    // Only allow nonindexed memory access instructions...
83    if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
84      if (MAI->getPointerOperand() != (Value*)AI)
85        return false;  // Reject stores of alloca pointer into some other loc.
86
87      if (MAI->hasIndices()) {  // indexed?
88        // Allow the access if there is only one index and the index is
89        // zero.
90        if (*MAI->idx_begin() != Constant::getNullValue(Type::UIntTy) ||
91            MAI->idx_begin()+1 != MAI->idx_end())
92          return false;
93      }
94    } else {
95      return false;   // Not a load or store?
96    }
97  }
98
99  return true;
100}
101
102// FindSafeAllocas - Find allocas that are safe to promote
103//
104void PromotePass::FindSafeAllocas(Function &F) {
105  BasicBlock &BB = F.getEntryNode();  // Get the entry node for the function
106
107  // Look at all instructions in the entry node
108  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
109    if (AllocaInst *AI = dyn_cast<AllocaInst>(&*I))       // Is it an alloca?
110      if (isSafeAlloca(AI)) {   // If safe alloca, add alloca to safe list
111        AllocaLookup[AI] = Allocas.size();  // Keep reverse mapping
112        Allocas.push_back(AI);
113      }
114}
115
116
117
118bool PromotePass::runOnFunction(Function &F) {
119  // Calculate the set of safe allocas
120  FindSafeAllocas(F);
121
122  // If there is nothing to do, bail out...
123  if (Allocas.empty()) return false;
124
125  // Add each alloca to the KillList.  Note: KillList is destroyed MOST recently
126  // added to least recently.
127  KillList.assign(Allocas.begin(), Allocas.end());
128
129  // Calculate the set of write-locations for each alloca.  This is analogous to
130  // counting the number of 'redefinitions' of each variable.
131  vector<vector<BasicBlock*> > WriteSets;    // index corresponds to Allocas
132  WriteSets.resize(Allocas.size());
133  for (unsigned i = 0; i != Allocas.size(); ++i) {
134    AllocaInst *AI = Allocas[i];
135    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
136      if (StoreInst *SI = dyn_cast<StoreInst>(*U))
137        // jot down the basic-block it came from
138        WriteSets[i].push_back(SI->getParent());
139  }
140
141  // Get dominance frontier information...
142  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
143
144  // Compute the locations where PhiNodes need to be inserted.  Look at the
145  // dominance frontier of EACH basic-block we have a write in
146  //
147  PhiNodes.resize(Allocas.size());
148  for (unsigned i = 0; i != Allocas.size(); ++i) {
149    for (unsigned j = 0; j != WriteSets[i].size(); j++) {
150      // Look up the DF for this write, add it to PhiNodes
151      DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
152      DominanceFrontier::DomSetType     S = it->second;
153      for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
154           P != PE; ++P)
155        QueuePhiNode(*P, i);
156    }
157
158    // Perform iterative step
159    for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
160      DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
161      DominanceFrontier::DomSetType     S = it->second;
162      for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
163           P != PE; ++P)
164        QueuePhiNode(*P, i);
165    }
166  }
167
168  // Set the incoming values for the basic block to be null values for all of
169  // the alloca's.  We do this in case there is a load of a value that has not
170  // been stored yet.  In this case, it will get this null value.
171  //
172  vector<Value *> Values(Allocas.size());
173  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
174    Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
175
176  // Walks all basic blocks in the function performing the SSA rename algorithm
177  // and inserting the phi nodes we marked as necessary
178  //
179  set<BasicBlock*> Visited;         // The basic blocks we've already visited
180  Traverse(F.begin(), 0, Values, Visited);
181
182  // Remove all instructions marked by being placed in the KillList...
183  //
184  while (!KillList.empty()) {
185    Instruction *I = KillList.back();
186    KillList.pop_back();
187
188    I->getParent()->getInstList().erase(I);
189  }
190
191  NumPromoted += Allocas.size();
192
193  // Purge data structurse so they are available the next iteration...
194  Allocas.clear();
195  AllocaLookup.clear();
196  PhiNodes.clear();
197  NewPhiNodes.clear();
198  return true;
199}
200
201
202// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
203// Alloca returns true if there wasn't already a phi-node for that variable
204//
205bool PromotePass::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
206  // Look up the basic-block in question
207  vector<PHINode*> &BBPNs = NewPhiNodes[BB];
208  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
209
210  // If the BB already has a phi node added for the i'th alloca then we're done!
211  if (BBPNs[AllocaNo]) return false;
212
213  // Create a PhiNode using the dereferenced type...
214  PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
215                            Allocas[AllocaNo]->getName()+".mem2reg");
216  BBPNs[AllocaNo] = PN;
217
218  // Add the phi-node to the basic-block
219  BB->getInstList().push_front(PN);
220
221  PhiNodes[AllocaNo].push_back(BB);
222  return true;
223}
224
225void PromotePass::Traverse(BasicBlock *BB, BasicBlock *Pred,
226                           vector<Value*> &IncomingVals,
227                           set<BasicBlock*> &Visited) {
228  // If this is a BB needing a phi node, lookup/create the phinode for each
229  // variable we need phinodes for.
230  vector<PHINode *> &BBPNs = NewPhiNodes[BB];
231  for (unsigned k = 0; k != BBPNs.size(); ++k)
232    if (PHINode *PN = BBPNs[k]) {
233      // at this point we can assume that the array has phi nodes.. let's add
234      // the incoming data
235      PN->addIncoming(IncomingVals[k], Pred);
236
237      // also note that the active variable IS designated by the phi node
238      IncomingVals[k] = PN;
239    }
240
241  // don't revisit nodes
242  if (Visited.count(BB)) return;
243
244  // mark as visited
245  Visited.insert(BB);
246
247  // keep track of the value of each variable we're watching.. how?
248  for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
249    Instruction *I = II; // get the instruction
250
251    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
252      Value *Ptr = LI->getPointerOperand();
253
254      if (AllocaInst *Src = dyn_cast<AllocaInst>(Ptr)) {
255        map<Instruction*, unsigned>::iterator AI = AllocaLookup.find(Src);
256        if (AI != AllocaLookup.end()) {
257          Value *V = IncomingVals[AI->second];
258
259          // walk the use list of this load and replace all uses with r
260          LI->replaceAllUsesWith(V);
261          KillList.push_back(LI); // Mark the load to be deleted
262        }
263      }
264    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
265      // delete this instruction and mark the name as the current holder of the
266      // value
267      Value *Ptr = SI->getPointerOperand();
268      if (AllocaInst *Dest = dyn_cast<AllocaInst>(Ptr)) {
269        map<Instruction *, unsigned>::iterator ai = AllocaLookup.find(Dest);
270        if (ai != AllocaLookup.end()) {
271          // what value were we writing?
272          IncomingVals[ai->second] = SI->getOperand(0);
273          KillList.push_back(SI);  // Mark the store to be deleted
274        }
275      }
276
277    } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
278      // Recurse across our successors
279      for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
280        vector<Value*> OutgoingVals(IncomingVals);
281        Traverse(TI->getSuccessor(i), BB, OutgoingVals, Visited);
282      }
283    }
284  }
285}
286
287
288// createPromoteMemoryToRegister - Provide an entry point to create this pass.
289//
290Pass *createPromoteMemoryToRegister() {
291  return new PromotePass();
292}
293