PromoteMemoryToRegister.cpp revision c6f3ae5c66c8e0dab6a2bd9601d0e253ef9ba794
1//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
2//
3// This pass is used to promote memory references to be register references.  A
4// simple example of the transformation performed by this pass is:
5//
6//        FROM CODE                           TO CODE
7//   %X = alloca int, uint 1                 ret int 42
8//   store int 42, int *%X
9//   %Y = load int* %X
10//   ret int %Y
11//
12// To do this transformation, a simple analysis is done to ensure it is safe.
13// Currently this just loops over all alloca instructions, looking for
14// instructions that are only used in simple load and stores.
15//
16// After this, the code is transformed by...something magical :)
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/Scalar/PromoteMemoryToRegister.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/iMemory.h"
23#include "llvm/iPHINode.h"
24#include "llvm/iTerminators.h"
25#include "llvm/Function.h"
26#include "llvm/BasicBlock.h"
27#include "llvm/Constant.h"
28
29using std::vector;
30using std::map;
31using std::set;
32
33namespace {
34  struct PromotePass : public FunctionPass {
35    vector<AllocaInst*>          Allocas;      // the alloca instruction..
36    map<Instruction*, unsigned>  AllocaLookup; // reverse mapping of above
37
38    vector<vector<BasicBlock*> > PhiNodes;     // index corresponds to Allocas
39
40    // List of instructions to remove at end of pass
41    vector<Instruction *>        KillList;
42
43    map<BasicBlock*,vector<PHINode*> > NewPhiNodes; // the PhiNodes we're adding
44
45  public:
46    const char *getPassName() const { return "Promote Memory to Register"; }
47
48    // runOnFunction - To run this pass, first we calculate the alloca
49    // instructions that are safe for promotion, then we promote each one.
50    //
51    virtual bool runOnFunction(Function *F);
52
53    // getAnalysisUsage - We need dominance frontiers
54    //
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      AU.addRequired(DominanceFrontier::ID);
57      AU.preservesCFG();
58    }
59
60  private:
61    void Traverse(BasicBlock *BB, BasicBlock *Pred, vector<Value*> &IncVals,
62                  set<BasicBlock*> &Visited);
63    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
64    void FindSafeAllocas(Function *F);
65  };
66
67}  // end of anonymous namespace
68
69
70// isSafeAlloca - This predicate controls what types of alloca instructions are
71// allowed to be promoted...
72//
73static inline bool isSafeAlloca(const AllocaInst *AI) {
74  if (AI->isArrayAllocation()) return false;
75
76  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
77       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
78
79    // Only allow nonindexed memory access instructions...
80    if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
81      if (MAI->hasIndices()) {  // indexed?
82        // Allow the access if there is only one index and the index is
83        // zero.
84        if (*MAI->idx_begin() != Constant::getNullValue(Type::UIntTy) ||
85            MAI->idx_begin()+1 != MAI->idx_end())
86          return false;
87      }
88    } else {
89      return false;   // Not a load or store?
90    }
91  }
92
93  return true;
94}
95
96// FindSafeAllocas - Find allocas that are safe to promote
97//
98void PromotePass::FindSafeAllocas(Function *F) {
99  BasicBlock *BB = F->getEntryNode();  // Get the entry node for the function
100
101  // Look at all instructions in the entry node
102  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
103    if (AllocaInst *AI = dyn_cast<AllocaInst>(*I))       // Is it an alloca?
104      if (isSafeAlloca(AI)) {   // If safe alloca, add alloca to safe list
105        AllocaLookup[AI] = Allocas.size();  // Keep reverse mapping
106        Allocas.push_back(AI);
107      }
108}
109
110
111
112bool PromotePass::runOnFunction(Function *F) {
113  // Calculate the set of safe allocas
114  FindSafeAllocas(F);
115
116  // If there is nothing to do, bail out...
117  if (Allocas.empty()) return false;
118
119  // Add each alloca to the KillList.  Note: KillList is destroyed MOST recently
120  // added to least recently.
121  KillList.assign(Allocas.begin(), Allocas.end());
122
123  // Calculate the set of write-locations for each alloca.  This is analogous to
124  // counting the number of 'redefinitions' of each variable.
125  vector<vector<BasicBlock*> > WriteSets;    // index corresponds to Allocas
126  WriteSets.resize(Allocas.size());
127  for (unsigned i = 0; i != Allocas.size(); ++i) {
128    AllocaInst *AI = Allocas[i];
129    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
130      if (StoreInst *SI = dyn_cast<StoreInst>(*U))
131        // jot down the basic-block it came from
132        WriteSets[i].push_back(SI->getParent());
133  }
134
135  // Get dominance frontier information...
136  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
137
138  // Compute the locations where PhiNodes need to be inserted.  Look at the
139  // dominance frontier of EACH basic-block we have a write in
140  //
141  PhiNodes.resize(Allocas.size());
142  for (unsigned i = 0; i != Allocas.size(); ++i) {
143    for (unsigned j = 0; j != WriteSets[i].size(); j++) {
144      // Look up the DF for this write, add it to PhiNodes
145      DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
146      DominanceFrontier::DomSetType     S = it->second;
147      for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
148           P != PE; ++P)
149        QueuePhiNode(*P, i);
150    }
151
152    // Perform iterative step
153    for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
154      DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
155      DominanceFrontier::DomSetType     S = it->second;
156      for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
157           P != PE; ++P)
158        QueuePhiNode(*P, i);
159    }
160  }
161
162  // Set the incoming values for the basic block to be null values for all of
163  // the alloca's.  We do this in case there is a load of a value that has not
164  // been stored yet.  In this case, it will get this null value.
165  //
166  vector<Value *> Values(Allocas.size());
167  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
168    Values[i] = Constant::getNullValue(Allocas[i]->getType()->getElementType());
169
170  // Walks all basic blocks in the function performing the SSA rename algorithm
171  // and inserting the phi nodes we marked as necessary
172  //
173  set<BasicBlock*> Visited;         // The basic blocks we've already visited
174  Traverse(F->front(), 0, Values, Visited);
175
176  // Remove all instructions marked by being placed in the KillList...
177  //
178  while (!KillList.empty()) {
179    Instruction *I = KillList.back();
180    KillList.pop_back();
181
182    I->getParent()->getInstList().remove(I);
183    delete I;
184  }
185
186  // Purge data structurse so they are available the next iteration...
187  Allocas.clear();
188  AllocaLookup.clear();
189  PhiNodes.clear();
190  NewPhiNodes.clear();
191  return true;
192}
193
194
195// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
196// Alloca returns true if there wasn't already a phi-node for that variable
197//
198bool PromotePass::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
199  // Look up the basic-block in question
200  vector<PHINode*> &BBPNs = NewPhiNodes[BB];
201  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
202
203  // If the BB already has a phi node added for the i'th alloca then we're done!
204  if (BBPNs[AllocaNo]) return false;
205
206  // Create a PhiNode using the dereferenced type...
207  PHINode *PN = new PHINode(Allocas[AllocaNo]->getType()->getElementType(),
208                            Allocas[AllocaNo]->getName()+".mem2reg");
209  BBPNs[AllocaNo] = PN;
210
211  // Add the phi-node to the basic-block
212  BB->getInstList().push_front(PN);
213
214  PhiNodes[AllocaNo].push_back(BB);
215  return true;
216}
217
218void PromotePass::Traverse(BasicBlock *BB, BasicBlock *Pred,
219                           vector<Value*> &IncomingVals,
220                           set<BasicBlock*> &Visited) {
221  // If this is a BB needing a phi node, lookup/create the phinode for each
222  // variable we need phinodes for.
223  vector<PHINode *> &BBPNs = NewPhiNodes[BB];
224  for (unsigned k = 0; k != BBPNs.size(); ++k)
225    if (PHINode *PN = BBPNs[k]) {
226      // at this point we can assume that the array has phi nodes.. let's add
227      // the incoming data
228      PN->addIncoming(IncomingVals[k], Pred);
229
230      // also note that the active variable IS designated by the phi node
231      IncomingVals[k] = PN;
232    }
233
234  // don't revisit nodes
235  if (Visited.count(BB)) return;
236
237  // mark as visited
238  Visited.insert(BB);
239
240  // keep track of the value of each variable we're watching.. how?
241  for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
242    Instruction *I = *II; //get the instruction
243
244    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
245      Value *Ptr = LI->getPointerOperand();
246
247      if (AllocaInst *Src = dyn_cast<AllocaInst>(Ptr)) {
248        map<Instruction*, unsigned>::iterator AI = AllocaLookup.find(Src);
249        if (AI != AllocaLookup.end()) {
250          Value *V = IncomingVals[AI->second];
251
252          // walk the use list of this load and replace all uses with r
253          LI->replaceAllUsesWith(V);
254          KillList.push_back(LI); // Mark the load to be deleted
255        }
256      }
257    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
258      // delete this instruction and mark the name as the current holder of the
259      // value
260      Value *Ptr = SI->getPointerOperand();
261      if (AllocaInst *Dest = dyn_cast<AllocaInst>(Ptr)) {
262        map<Instruction *, unsigned>::iterator ai = AllocaLookup.find(Dest);
263        if (ai != AllocaLookup.end()) {
264          // what value were we writing?
265          IncomingVals[ai->second] = SI->getOperand(0);
266          KillList.push_back(SI);  // Mark the store to be deleted
267        }
268      }
269
270    } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
271      // Recurse across our successors
272      for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
273        vector<Value*> OutgoingVals(IncomingVals);
274        Traverse(TI->getSuccessor(i), BB, OutgoingVals, Visited);
275      }
276    }
277  }
278}
279
280
281// createPromoteMemoryToRegister - Provide an entry point to create this pass.
282//
283Pass *createPromoteMemoryToRegister() {
284  return new PromotePass();
285}
286