PromoteMemoryToRegister.cpp revision c837615cf0bfef743f98bb7101f27c23f6f21ba1
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promote memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/PromoteMemToReg.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/Instructions.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/AliasSetTracker.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Support/StableBasicBlockNumbering.h"
31#include "llvm/Support/Compiler.h"
32#include <algorithm>
33using namespace llvm;
34
35/// isAllocaPromotable - Return true if this alloca is legal for promotion.
36/// This is true if there are only loads and stores to the alloca.
37///
38bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
39  // FIXME: If the memory unit is of pointer or integer type, we can permit
40  // assignments to subsections of the memory unit.
41
42  // Only allow direct loads and stores...
43  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
44       UI != UE; ++UI)     // Loop over all of the uses of the alloca
45    if (isa<LoadInst>(*UI)) {
46      // noop
47    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
48      if (SI->getOperand(0) == AI)
49        return false;   // Don't allow a store OF the AI, only INTO the AI.
50    } else {
51      return false;   // Not a load or store.
52    }
53
54  return true;
55}
56
57namespace {
58  struct VISIBILITY_HIDDEN PromoteMem2Reg {
59    /// Allocas - The alloca instructions being promoted.
60    ///
61    std::vector<AllocaInst*> Allocas;
62    SmallVector<AllocaInst*, 16> &RetryList;
63    DominatorTree &DT;
64    DominanceFrontier &DF;
65    const TargetData &TD;
66
67    /// AST - An AliasSetTracker object to update.  If null, don't update it.
68    ///
69    AliasSetTracker *AST;
70
71    /// AllocaLookup - Reverse mapping of Allocas.
72    ///
73    std::map<AllocaInst*, unsigned>  AllocaLookup;
74
75    /// NewPhiNodes - The PhiNodes we're adding.
76    ///
77    std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
78
79    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
80    /// each alloca that is of pointer type, we keep track of what to copyValue
81    /// to the inserted PHI nodes here.
82    ///
83    std::vector<Value*> PointerAllocaValues;
84
85    /// Visited - The set of basic blocks the renamer has already visited.
86    ///
87    std::set<BasicBlock*> Visited;
88
89    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
90    /// non-determinstic behavior.
91    StableBasicBlockNumbering BBNumbers;
92
93  public:
94    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
95                   SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
96                   DominanceFrontier &df, const TargetData &td,
97                   AliasSetTracker *ast)
98      : Allocas(A), RetryList(Retry), DT(dt), DF(df), TD(td), AST(ast) {}
99
100    void run();
101
102    /// properlyDominates - Return true if I1 properly dominates I2.
103    ///
104    bool properlyDominates(Instruction *I1, Instruction *I2) const {
105      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
106        I1 = II->getNormalDest()->begin();
107      return DT[I1->getParent()]->properlyDominates(DT[I2->getParent()]);
108    }
109
110    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
111    ///
112    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
113      return DT[BB1]->dominates(DT[BB2]);
114    }
115
116  private:
117    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
118                               SmallPtrSet<PHINode*, 16> &DeadPHINodes);
119    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
120    void PromoteLocallyUsedAllocas(BasicBlock *BB,
121                                   const std::vector<AllocaInst*> &AIs);
122
123    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
124                    std::vector<Value*> &IncVals);
125    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
126                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
127  };
128}  // end of anonymous namespace
129
130void PromoteMem2Reg::run() {
131  Function &F = *DF.getRoot()->getParent();
132
133  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
134  // only used in a single basic block.  These instructions can be efficiently
135  // promoted by performing a single linear scan over that one block.  Since
136  // individual basic blocks are sometimes large, we group together all allocas
137  // that are live in a single basic block by the basic block they are live in.
138  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
139
140  if (AST) PointerAllocaValues.resize(Allocas.size());
141
142  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
143    AllocaInst *AI = Allocas[AllocaNum];
144
145    assert(isAllocaPromotable(AI, TD) &&
146           "Cannot promote non-promotable alloca!");
147    assert(AI->getParent()->getParent() == &F &&
148           "All allocas should be in the same function, which is same as DF!");
149
150    if (AI->use_empty()) {
151      // If there are no uses of the alloca, just delete it now.
152      if (AST) AST->deleteValue(AI);
153      AI->eraseFromParent();
154
155      // Remove the alloca from the Allocas list, since it has been processed
156      Allocas[AllocaNum] = Allocas.back();
157      Allocas.pop_back();
158      --AllocaNum;
159      continue;
160    }
161
162    // Calculate the set of read and write-locations for each alloca.  This is
163    // analogous to finding the 'uses' and 'definitions' of each variable.
164    std::vector<BasicBlock*> DefiningBlocks;
165    std::vector<BasicBlock*> UsingBlocks;
166
167    StoreInst  *OnlyStore = 0;
168    BasicBlock *OnlyBlock = 0;
169    bool OnlyUsedInOneBlock = true;
170
171    // As we scan the uses of the alloca instruction, keep track of stores, and
172    // decide whether all of the loads and stores to the alloca are within the
173    // same basic block.
174    Value *AllocaPointerVal = 0;
175    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){
176      Instruction *User = cast<Instruction>(*U);
177      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
178        // Remember the basic blocks which define new values for the alloca
179        DefiningBlocks.push_back(SI->getParent());
180        AllocaPointerVal = SI->getOperand(0);
181        OnlyStore = SI;
182      } else {
183        LoadInst *LI = cast<LoadInst>(User);
184        // Otherwise it must be a load instruction, keep track of variable reads
185        UsingBlocks.push_back(LI->getParent());
186        AllocaPointerVal = LI;
187      }
188
189      if (OnlyUsedInOneBlock) {
190        if (OnlyBlock == 0)
191          OnlyBlock = User->getParent();
192        else if (OnlyBlock != User->getParent())
193          OnlyUsedInOneBlock = false;
194      }
195    }
196
197    // If the alloca is only read and written in one basic block, just perform a
198    // linear sweep over the block to eliminate it.
199    if (OnlyUsedInOneBlock) {
200      LocallyUsedAllocas[OnlyBlock].push_back(AI);
201
202      // Remove the alloca from the Allocas list, since it will be processed.
203      Allocas[AllocaNum] = Allocas.back();
204      Allocas.pop_back();
205      --AllocaNum;
206      continue;
207    }
208
209    // If there is only a single store to this value, replace any loads of
210    // it that are directly dominated by the definition with the value stored.
211    if (DefiningBlocks.size() == 1) {
212      // Be aware of loads before the store.
213      std::set<BasicBlock*> ProcessedBlocks;
214      for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
215        // If the store dominates the block and if we haven't processed it yet,
216        // do so now.
217        if (dominates(OnlyStore->getParent(), UsingBlocks[i]))
218          if (ProcessedBlocks.insert(UsingBlocks[i]).second) {
219            BasicBlock *UseBlock = UsingBlocks[i];
220
221            // If the use and store are in the same block, do a quick scan to
222            // verify that there are no uses before the store.
223            if (UseBlock == OnlyStore->getParent()) {
224              BasicBlock::iterator I = UseBlock->begin();
225              for (; &*I != OnlyStore; ++I) { // scan block for store.
226                if (isa<LoadInst>(I) && I->getOperand(0) == AI)
227                  break;
228              }
229              if (&*I != OnlyStore) break;  // Do not handle this case.
230            }
231
232            // Otherwise, if this is a different block or if all uses happen
233            // after the store, do a simple linear scan to replace loads with
234            // the stored value.
235            for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end();
236                 I != E; ) {
237              if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
238                if (LI->getOperand(0) == AI) {
239                  LI->replaceAllUsesWith(OnlyStore->getOperand(0));
240                  if (AST && isa<PointerType>(LI->getType()))
241                    AST->deleteValue(LI);
242                  LI->eraseFromParent();
243                }
244              }
245            }
246
247            // Finally, remove this block from the UsingBlock set.
248            UsingBlocks[i] = UsingBlocks.back();
249            --i; --e;
250          }
251
252      // Finally, after the scan, check to see if the store is all that is left.
253      if (UsingBlocks.empty()) {
254        // The alloca has been processed, move on.
255        Allocas[AllocaNum] = Allocas.back();
256        Allocas.pop_back();
257        --AllocaNum;
258        continue;
259      }
260    }
261
262
263    if (AST)
264      PointerAllocaValues[AllocaNum] = AllocaPointerVal;
265
266    // If we haven't computed a numbering for the BB's in the function, do so
267    // now.
268    BBNumbers.compute(F);
269
270    // Compute the locations where PhiNodes need to be inserted.  Look at the
271    // dominance frontier of EACH basic-block we have a write in.
272    //
273    unsigned CurrentVersion = 0;
274    SmallPtrSet<PHINode*, 16> InsertedPHINodes;
275    std::vector<unsigned> DFBlocks;
276    while (!DefiningBlocks.empty()) {
277      BasicBlock *BB = DefiningBlocks.back();
278      DefiningBlocks.pop_back();
279
280      // Look up the DF for this write, add it to PhiNodes
281      DominanceFrontier::const_iterator it = DF.find(BB);
282      if (it != DF.end()) {
283        const DominanceFrontier::DomSetType &S = it->second;
284
285        // In theory we don't need the indirection through the DFBlocks vector.
286        // In practice, the order of calling QueuePhiNode would depend on the
287        // (unspecified) ordering of basic blocks in the dominance frontier,
288        // which would give PHI nodes non-determinstic subscripts.  Fix this by
289        // processing blocks in order of the occurance in the function.
290        for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
291             PE = S.end(); P != PE; ++P)
292          DFBlocks.push_back(BBNumbers.getNumber(*P));
293
294        // Sort by which the block ordering in the function.
295        std::sort(DFBlocks.begin(), DFBlocks.end());
296
297        for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
298          BasicBlock *BB = BBNumbers.getBlock(DFBlocks[i]);
299          if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
300            DefiningBlocks.push_back(BB);
301        }
302        DFBlocks.clear();
303      }
304    }
305
306    // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
307    // of the writes to the variable, scan through the reads of the variable,
308    // marking PHI nodes which are actually necessary as alive (by removing them
309    // from the InsertedPHINodes set).  This is not perfect: there may PHI
310    // marked alive because of loads which are dominated by stores, but there
311    // will be no unmarked PHI nodes which are actually used.
312    //
313    for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
314      MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes);
315    UsingBlocks.clear();
316
317    // If there are any PHI nodes which are now known to be dead, remove them!
318    for (SmallPtrSet<PHINode*, 16>::iterator I = InsertedPHINodes.begin(),
319           E = InsertedPHINodes.end(); I != E; ++I) {
320      PHINode *PN = *I;
321      std::vector<PHINode*> &BBPNs = NewPhiNodes[PN->getParent()];
322      BBPNs[AllocaNum] = 0;
323
324      // Check to see if we just removed the last inserted PHI node from this
325      // basic block.  If so, remove the entry for the basic block.
326      bool HasOtherPHIs = false;
327      for (unsigned i = 0, e = BBPNs.size(); i != e; ++i)
328        if (BBPNs[i]) {
329          HasOtherPHIs = true;
330          break;
331        }
332      if (!HasOtherPHIs)
333        NewPhiNodes.erase(PN->getParent());
334
335      if (AST && isa<PointerType>(PN->getType()))
336        AST->deleteValue(PN);
337      PN->eraseFromParent();
338    }
339
340    // Keep the reverse mapping of the 'Allocas' array.
341    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
342  }
343
344  // Process all allocas which are only used in a single basic block.
345  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
346         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
347    const std::vector<AllocaInst*> &LocAllocas = I->second;
348    assert(!LocAllocas.empty() && "empty alloca list??");
349
350    // It's common for there to only be one alloca in the list.  Handle it
351    // efficiently.
352    if (LocAllocas.size() == 1) {
353      // If we can do the quick promotion pass, do so now.
354      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
355        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
356    } else {
357      // Locally promote anything possible.  Note that if this is unable to
358      // promote a particular alloca, it puts the alloca onto the Allocas vector
359      // for global processing.
360      PromoteLocallyUsedAllocas(I->first, LocAllocas);
361    }
362  }
363
364  if (Allocas.empty())
365    return; // All of the allocas must have been trivial!
366
367  // Set the incoming values for the basic block to be null values for all of
368  // the alloca's.  We do this in case there is a load of a value that has not
369  // been stored yet.  In this case, it will get this null value.
370  //
371  std::vector<Value *> Values(Allocas.size());
372  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
373    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
374
375  // Walks all basic blocks in the function performing the SSA rename algorithm
376  // and inserting the phi nodes we marked as necessary
377  //
378  RenamePass(F.begin(), 0, Values);
379
380  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
381  Visited.clear();
382
383  // Remove the allocas themselves from the function.
384  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
385    Instruction *A = Allocas[i];
386
387    // If there are any uses of the alloca instructions left, they must be in
388    // sections of dead code that were not processed on the dominance frontier.
389    // Just delete the users now.
390    //
391    if (!A->use_empty())
392      A->replaceAllUsesWith(UndefValue::get(A->getType()));
393    if (AST) AST->deleteValue(A);
394    A->eraseFromParent();
395  }
396
397
398  // Loop over all of the PHI nodes and see if there are any that we can get
399  // rid of because they merge all of the same incoming values.  This can
400  // happen due to undef values coming into the PHI nodes.  This process is
401  // iterative, because eliminating one PHI node can cause others to be removed.
402  bool EliminatedAPHI = true;
403  while (EliminatedAPHI) {
404    EliminatedAPHI = false;
405
406    for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
407           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
408      std::vector<PHINode*> &PNs = I->second;
409      for (unsigned i = 0, e = PNs.size(); i != e; ++i) {
410        if (!PNs[i]) continue;
411
412        // If this PHI node merges one value and/or undefs, get the value.
413        if (Value *V = PNs[i]->hasConstantValue(true)) {
414          if (!isa<Instruction>(V) ||
415              properlyDominates(cast<Instruction>(V), PNs[i])) {
416            if (AST && isa<PointerType>(PNs[i]->getType()))
417              AST->deleteValue(PNs[i]);
418            PNs[i]->replaceAllUsesWith(V);
419            PNs[i]->eraseFromParent();
420            PNs[i] = 0;
421            EliminatedAPHI = true;
422            continue;
423          }
424        }
425      }
426    }
427  }
428
429  // At this point, the renamer has added entries to PHI nodes for all reachable
430  // code.  Unfortunately, there may be unreachable blocks which the renamer
431  // hasn't traversed.  If this is the case, the PHI nodes may not
432  // have incoming values for all predecessors.  Loop over all PHI nodes we have
433  // created, inserting undef values if they are missing any incoming values.
434  //
435  for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
436         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
437
438    std::vector<BasicBlock*> Preds(pred_begin(I->first), pred_end(I->first));
439    std::vector<PHINode*> &PNs = I->second;
440    assert(!PNs.empty() && "Empty PHI node list??");
441    PHINode *SomePHI = 0;
442    for (unsigned i = 0, e = PNs.size(); i != e; ++i)
443      if (PNs[i]) {
444        SomePHI = PNs[i];
445        break;
446      }
447
448    // Only do work here if there the PHI nodes are missing incoming values.  We
449    // know that all PHI nodes that were inserted in a block will have the same
450    // number of incoming values, so we can just check any PHI node.
451    if (SomePHI && Preds.size() != SomePHI->getNumIncomingValues()) {
452      // Ok, now we know that all of the PHI nodes are missing entries for some
453      // basic blocks.  Start by sorting the incoming predecessors for efficient
454      // access.
455      std::sort(Preds.begin(), Preds.end());
456
457      // Now we loop through all BB's which have entries in SomePHI and remove
458      // them from the Preds list.
459      for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
460        // Do a log(n) search of the Preds list for the entry we want.
461        std::vector<BasicBlock*>::iterator EntIt =
462          std::lower_bound(Preds.begin(), Preds.end(),
463                           SomePHI->getIncomingBlock(i));
464        assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
465               "PHI node has entry for a block which is not a predecessor!");
466
467        // Remove the entry
468        Preds.erase(EntIt);
469      }
470
471      // At this point, the blocks left in the preds list must have dummy
472      // entries inserted into every PHI nodes for the block.
473      for (unsigned i = 0, e = PNs.size(); i != e; ++i)
474        if (PHINode *PN = PNs[i]) {
475          Value *UndefVal = UndefValue::get(PN->getType());
476          for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
477            PN->addIncoming(UndefVal, Preds[pred]);
478        }
479    }
480  }
481}
482
483// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
484// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
485// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
486// each read of the variable.  For each block that reads the variable, this
487// function is called, which removes used PHI nodes from the DeadPHINodes set.
488// After all of the reads have been processed, any PHI nodes left in the
489// DeadPHINodes set are removed.
490//
491void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
492                                      SmallPtrSet<PHINode*, 16> &DeadPHINodes) {
493  // Scan the immediate dominators of this block looking for a block which has a
494  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
495  for (DominatorTree::Node *N = DT[BB]; N; N = N->getIDom()) {
496    BasicBlock *DomBB = N->getBlock();
497    std::map<BasicBlock*, std::vector<PHINode*> >::iterator
498      I = NewPhiNodes.find(DomBB);
499    if (I != NewPhiNodes.end() && I->second[AllocaNum]) {
500      // Ok, we found an inserted PHI node which dominates this value.
501      PHINode *DominatingPHI = I->second[AllocaNum];
502
503      // Find out if we previously thought it was dead.  If so, mark it as being
504      // live by removing it from the DeadPHINodes set.
505      if (DeadPHINodes.erase(DominatingPHI)) {
506        // Now that we have marked the PHI node alive, also mark any PHI nodes
507        // which it might use as being alive as well.
508        for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
509             PI != PE; ++PI)
510          MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
511      }
512    }
513  }
514}
515
516/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
517/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
518/// potentially useless PHI nodes by just performing a single linear pass over
519/// the basic block using the Alloca.
520///
521/// If we cannot promote this alloca (because it is read before it is written),
522/// return true.  This is necessary in cases where, due to control flow, the
523/// alloca is potentially undefined on some control flow paths.  e.g. code like
524/// this is potentially correct:
525///
526///   for (...) { if (c) { A = undef; undef = B; } }
527///
528/// ... so long as A is not used before undef is set.
529///
530bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
531  assert(!AI->use_empty() && "There are no uses of the alloca!");
532
533  // Handle degenerate cases quickly.
534  if (AI->hasOneUse()) {
535    Instruction *U = cast<Instruction>(AI->use_back());
536    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
537      // Must be a load of uninitialized value.
538      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
539      if (AST && isa<PointerType>(LI->getType()))
540        AST->deleteValue(LI);
541    } else {
542      // Otherwise it must be a store which is never read.
543      assert(isa<StoreInst>(U));
544    }
545    BB->getInstList().erase(U);
546  } else {
547    // Uses of the uninitialized memory location shall get undef.
548    Value *CurVal = 0;
549
550    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
551      Instruction *Inst = I++;
552      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
553        if (LI->getOperand(0) == AI) {
554          if (!CurVal) return true;  // Could not locally promote!
555
556          // Loads just returns the "current value"...
557          LI->replaceAllUsesWith(CurVal);
558          if (AST && isa<PointerType>(LI->getType()))
559            AST->deleteValue(LI);
560          BB->getInstList().erase(LI);
561        }
562      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
563        if (SI->getOperand(1) == AI) {
564          // Store updates the "current value"...
565          CurVal = SI->getOperand(0);
566          BB->getInstList().erase(SI);
567        }
568      }
569    }
570  }
571
572  // After traversing the basic block, there should be no more uses of the
573  // alloca, remove it now.
574  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
575  if (AST) AST->deleteValue(AI);
576  AI->getParent()->getInstList().erase(AI);
577  return false;
578}
579
580/// PromoteLocallyUsedAllocas - This method is just like
581/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
582/// instructions in parallel.  This is important in cases where we have large
583/// basic blocks, as we don't want to rescan the entire basic block for each
584/// alloca which is locally used in it (which might be a lot).
585void PromoteMem2Reg::
586PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
587  std::map<AllocaInst*, Value*> CurValues;
588  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
589    CurValues[AIs[i]] = 0; // Insert with null value
590
591  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
592    Instruction *Inst = I++;
593    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
594      // Is this a load of an alloca we are tracking?
595      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
596        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
597        if (AIt != CurValues.end()) {
598          // If loading an uninitialized value, allow the inter-block case to
599          // handle it.  Due to control flow, this might actually be ok.
600          if (AIt->second == 0) {  // Use of locally uninitialized value??
601            RetryList.push_back(AI);   // Retry elsewhere.
602            CurValues.erase(AIt);   // Stop tracking this here.
603            if (CurValues.empty()) return;
604          } else {
605            // Loads just returns the "current value"...
606            LI->replaceAllUsesWith(AIt->second);
607            if (AST && isa<PointerType>(LI->getType()))
608              AST->deleteValue(LI);
609            BB->getInstList().erase(LI);
610          }
611        }
612      }
613    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
614      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
615        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
616        if (AIt != CurValues.end()) {
617          // Store updates the "current value"...
618          AIt->second = SI->getOperand(0);
619          BB->getInstList().erase(SI);
620        }
621      }
622    }
623  }
624}
625
626
627
628// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
629// Alloca returns true if there wasn't already a phi-node for that variable
630//
631bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
632                                  unsigned &Version,
633                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
634  // Look up the basic-block in question.
635  std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
636  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
637
638  // If the BB already has a phi node added for the i'th alloca then we're done!
639  if (BBPNs[AllocaNo]) return false;
640
641  // Create a PhiNode using the dereferenced type... and add the phi-node to the
642  // BasicBlock.
643  PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
644                            Allocas[AllocaNo]->getName() + "." +
645                                        utostr(Version++), BB->begin());
646  BBPNs[AllocaNo] = PN;
647  InsertedPHINodes.insert(PN);
648
649  if (AST && isa<PointerType>(PN->getType()))
650    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
651
652  return true;
653}
654
655
656// RenamePass - Recursively traverse the CFG of the function, renaming loads and
657// stores to the allocas which we are promoting.  IncomingVals indicates what
658// value each Alloca contains on exit from the predecessor block Pred.
659//
660void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
661                                std::vector<Value*> &IncomingVals) {
662
663  // If this BB needs a PHI node, update the PHI node for each variable we need
664  // PHI nodes for.
665  std::map<BasicBlock*, std::vector<PHINode *> >::iterator
666    BBPNI = NewPhiNodes.find(BB);
667  if (BBPNI != NewPhiNodes.end()) {
668    std::vector<PHINode *> &BBPNs = BBPNI->second;
669    for (unsigned k = 0; k != BBPNs.size(); ++k)
670      if (PHINode *PN = BBPNs[k]) {
671        // Add this incoming value to the PHI node.
672        PN->addIncoming(IncomingVals[k], Pred);
673
674        // The currently active variable for this block is now the PHI.
675        IncomingVals[k] = PN;
676      }
677  }
678
679  // don't revisit nodes
680  if (Visited.count(BB)) return;
681
682  // mark as visited
683  Visited.insert(BB);
684
685  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
686    Instruction *I = II++; // get the instruction, increment iterator
687
688    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
689      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
690        std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
691        if (AI != AllocaLookup.end()) {
692          Value *V = IncomingVals[AI->second];
693
694          // walk the use list of this load and replace all uses with r
695          LI->replaceAllUsesWith(V);
696          if (AST && isa<PointerType>(LI->getType()))
697            AST->deleteValue(LI);
698          BB->getInstList().erase(LI);
699        }
700      }
701    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
702      // Delete this instruction and mark the name as the current holder of the
703      // value
704      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
705        std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
706        if (ai != AllocaLookup.end()) {
707          // what value were we writing?
708          IncomingVals[ai->second] = SI->getOperand(0);
709          BB->getInstList().erase(SI);
710        }
711      }
712    }
713  }
714
715  // Recurse to our successors.
716  TerminatorInst *TI = BB->getTerminator();
717  for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
718    std::vector<Value*> OutgoingVals(IncomingVals);
719    RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
720  }
721}
722
723/// PromoteMemToReg - Promote the specified list of alloca instructions into
724/// scalar registers, inserting PHI nodes as appropriate.  This function makes
725/// use of DominanceFrontier information.  This function does not modify the CFG
726/// of the function at all.  All allocas must be from the same function.
727///
728/// If AST is specified, the specified tracker is updated to reflect changes
729/// made to the IR.
730///
731void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
732                           DominatorTree &DT, DominanceFrontier &DF,
733                           const TargetData &TD, AliasSetTracker *AST) {
734  // If there is nothing to do, bail out...
735  if (Allocas.empty()) return;
736
737  SmallVector<AllocaInst*, 16> RetryList;
738  PromoteMem2Reg(Allocas, RetryList, DT, DF, TD, AST).run();
739
740  // PromoteMem2Reg may not have been able to promote all of the allocas in one
741  // pass, run it again if needed.
742  std::vector<AllocaInst*> NewAllocas;
743  while (!RetryList.empty()) {
744    // If we need to retry some allocas, this is due to there being no store
745    // before a read in a local block.  To counteract this, insert a store of
746    // undef into the alloca right after the alloca itself.
747    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
748      BasicBlock::iterator BBI = RetryList[i];
749
750      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
751                    RetryList[i], ++BBI);
752    }
753
754    NewAllocas.assign(RetryList.begin(), RetryList.end());
755    RetryList.clear();
756    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, TD, AST).run();
757    NewAllocas.clear();
758  }
759}
760