PromoteMemoryToRegister.cpp revision fb312c7e449bbb8b780603bf44620be91d6a65bb
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promote memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "mem2reg"
20#include "llvm/Transforms/Utils/PromoteMemToReg.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/AliasSetTracker.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Compiler.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
38STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
39STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
40
41// Provide DenseMapKeyInfo for all pointers.
42namespace llvm {
43template<>
44struct DenseMapKeyInfo<std::pair<BasicBlock*, unsigned> > {
45  static inline std::pair<BasicBlock*, unsigned> getEmptyKey() {
46    return std::make_pair((BasicBlock*)-1, ~0U);
47  }
48  static inline std::pair<BasicBlock*, unsigned> getTombstoneKey() {
49    return std::make_pair((BasicBlock*)-2, 0U);
50  }
51  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
52    return DenseMapKeyInfo<void*>::getHashValue(Val.first) + Val.second*2;
53  }
54  static bool isPod() { return true; }
55};
56}
57
58/// isAllocaPromotable - Return true if this alloca is legal for promotion.
59/// This is true if there are only loads and stores to the alloca.
60///
61bool llvm::isAllocaPromotable(const AllocaInst *AI) {
62  // FIXME: If the memory unit is of pointer or integer type, we can permit
63  // assignments to subsections of the memory unit.
64
65  // Only allow direct loads and stores...
66  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
67       UI != UE; ++UI)     // Loop over all of the uses of the alloca
68    if (isa<LoadInst>(*UI)) {
69      // noop
70    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
71      if (SI->getOperand(0) == AI)
72        return false;   // Don't allow a store OF the AI, only INTO the AI.
73    } else {
74      return false;   // Not a load or store.
75    }
76
77  return true;
78}
79
80namespace {
81  struct AllocaInfo;
82
83  // Data package used by RenamePass()
84  class VISIBILITY_HIDDEN RenamePassData {
85  public:
86    typedef std::vector<Value *> ValVector;
87
88    RenamePassData() {}
89    RenamePassData(BasicBlock *B, BasicBlock *P,
90                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
91    BasicBlock *BB;
92    BasicBlock *Pred;
93    ValVector Values;
94
95    void swap(RenamePassData &RHS) {
96      std::swap(BB, RHS.BB);
97      std::swap(Pred, RHS.Pred);
98      Values.swap(RHS.Values);
99    }
100  };
101
102  struct VISIBILITY_HIDDEN PromoteMem2Reg {
103    /// Allocas - The alloca instructions being promoted.
104    ///
105    std::vector<AllocaInst*> Allocas;
106    SmallVector<AllocaInst*, 16> &RetryList;
107    DominatorTree &DT;
108    DominanceFrontier &DF;
109
110    /// AST - An AliasSetTracker object to update.  If null, don't update it.
111    ///
112    AliasSetTracker *AST;
113
114    /// AllocaLookup - Reverse mapping of Allocas.
115    ///
116    std::map<AllocaInst*, unsigned>  AllocaLookup;
117
118    /// NewPhiNodes - The PhiNodes we're adding.
119    ///
120    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
121
122    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
123    /// it corresponds to.
124    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
125
126    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
127    /// each alloca that is of pointer type, we keep track of what to copyValue
128    /// to the inserted PHI nodes here.
129    ///
130    std::vector<Value*> PointerAllocaValues;
131
132    /// Visited - The set of basic blocks the renamer has already visited.
133    ///
134    SmallPtrSet<BasicBlock*, 16> Visited;
135
136    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
137    /// non-determinstic behavior.
138    DenseMap<BasicBlock*, unsigned> BBNumbers;
139
140  public:
141    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
142                   SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
143                   DominanceFrontier &df, AliasSetTracker *ast)
144      : Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
145
146    void run();
147
148    /// properlyDominates - Return true if I1 properly dominates I2.
149    ///
150    bool properlyDominates(Instruction *I1, Instruction *I2) const {
151      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
152        I1 = II->getNormalDest()->begin();
153      return DT.properlyDominates(I1->getParent(), I2->getParent());
154    }
155
156    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
157    ///
158    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
159      return DT.dominates(BB1, BB2);
160    }
161
162  private:
163    void RemoveFromAllocasList(unsigned &AllocaIdx) {
164      Allocas[AllocaIdx] = Allocas.back();
165      Allocas.pop_back();
166      --AllocaIdx;
167    }
168
169    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info);
170
171    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
172                               SmallPtrSet<PHINode*, 16> &DeadPHINodes);
173    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
174    void PromoteLocallyUsedAllocas(BasicBlock *BB,
175                                   const std::vector<AllocaInst*> &AIs);
176
177    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
178                    RenamePassData::ValVector &IncVals,
179                    std::vector<RenamePassData> &Worklist);
180    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
181                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
182  };
183
184  struct AllocaInfo {
185    std::vector<BasicBlock*> DefiningBlocks;
186    std::vector<BasicBlock*> UsingBlocks;
187
188    StoreInst  *OnlyStore;
189    BasicBlock *OnlyBlock;
190    bool OnlyUsedInOneBlock;
191
192    Value *AllocaPointerVal;
193
194    void clear() {
195      DefiningBlocks.clear();
196      UsingBlocks.clear();
197      OnlyStore = 0;
198      OnlyBlock = 0;
199      OnlyUsedInOneBlock = true;
200      AllocaPointerVal = 0;
201    }
202
203    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
204    /// ivars.
205    void AnalyzeAlloca(AllocaInst *AI) {
206      clear();
207
208      // As we scan the uses of the alloca instruction, keep track of stores,
209      // and decide whether all of the loads and stores to the alloca are within
210      // the same basic block.
211      for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
212           U != E; ++U){
213        Instruction *User = cast<Instruction>(*U);
214        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
215          // Remember the basic blocks which define new values for the alloca
216          DefiningBlocks.push_back(SI->getParent());
217          AllocaPointerVal = SI->getOperand(0);
218          OnlyStore = SI;
219        } else {
220          LoadInst *LI = cast<LoadInst>(User);
221          // Otherwise it must be a load instruction, keep track of variable reads
222          UsingBlocks.push_back(LI->getParent());
223          AllocaPointerVal = LI;
224        }
225
226        if (OnlyUsedInOneBlock) {
227          if (OnlyBlock == 0)
228            OnlyBlock = User->getParent();
229          else if (OnlyBlock != User->getParent())
230            OnlyUsedInOneBlock = false;
231        }
232      }
233    }
234  };
235
236}  // end of anonymous namespace
237
238
239void PromoteMem2Reg::run() {
240  Function &F = *DF.getRoot()->getParent();
241
242  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
243  // only used in a single basic block.  These instructions can be efficiently
244  // promoted by performing a single linear scan over that one block.  Since
245  // individual basic blocks are sometimes large, we group together all allocas
246  // that are live in a single basic block by the basic block they are live in.
247  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
248
249  if (AST) PointerAllocaValues.resize(Allocas.size());
250
251  AllocaInfo Info;
252
253  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
254    AllocaInst *AI = Allocas[AllocaNum];
255
256    assert(isAllocaPromotable(AI) &&
257           "Cannot promote non-promotable alloca!");
258    assert(AI->getParent()->getParent() == &F &&
259           "All allocas should be in the same function, which is same as DF!");
260
261    if (AI->use_empty()) {
262      // If there are no uses of the alloca, just delete it now.
263      if (AST) AST->deleteValue(AI);
264      AI->eraseFromParent();
265
266      // Remove the alloca from the Allocas list, since it has been processed
267      RemoveFromAllocasList(AllocaNum);
268      ++NumDeadAlloca;
269      continue;
270    }
271
272    // Calculate the set of read and write-locations for each alloca.  This is
273    // analogous to finding the 'uses' and 'definitions' of each variable.
274    Info.AnalyzeAlloca(AI);
275
276    // If there is only a single store to this value, replace any loads of
277    // it that are directly dominated by the definition with the value stored.
278    if (Info.DefiningBlocks.size() == 1) {
279      RewriteSingleStoreAlloca(AI, Info);
280
281      // Finally, after the scan, check to see if the store is all that is left.
282      if (Info.UsingBlocks.empty()) {
283        // Remove the (now dead) store and alloca.
284        Info.OnlyStore->eraseFromParent();
285        if (AST) AST->deleteValue(AI);
286        AI->eraseFromParent();
287
288        // The alloca has been processed, move on.
289        RemoveFromAllocasList(AllocaNum);
290
291        ++NumSingleStore;
292        continue;
293      }
294    }
295
296    // If the alloca is only read and written in one basic block, just perform a
297    // linear sweep over the block to eliminate it.
298    if (Info.OnlyUsedInOneBlock) {
299      LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
300
301      // Remove the alloca from the Allocas list, since it will be processed.
302      RemoveFromAllocasList(AllocaNum);
303      continue;
304    }
305
306    if (AST)
307      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
308
309    // If we haven't computed a numbering for the BB's in the function, do so
310    // now.
311    if (BBNumbers.empty()) {
312      unsigned ID = 0;
313      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
314        BBNumbers[I] = ID++;
315    }
316
317    // Compute the locations where PhiNodes need to be inserted.  Look at the
318    // dominance frontier of EACH basic-block we have a write in.
319    //
320    unsigned CurrentVersion = 0;
321    SmallPtrSet<PHINode*, 16> InsertedPHINodes;
322    std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
323    while (!Info.DefiningBlocks.empty()) {
324      BasicBlock *BB = Info.DefiningBlocks.back();
325      Info.DefiningBlocks.pop_back();
326
327      // Look up the DF for this write, add it to PhiNodes
328      DominanceFrontier::const_iterator it = DF.find(BB);
329      if (it != DF.end()) {
330        const DominanceFrontier::DomSetType &S = it->second;
331
332        // In theory we don't need the indirection through the DFBlocks vector.
333        // In practice, the order of calling QueuePhiNode would depend on the
334        // (unspecified) ordering of basic blocks in the dominance frontier,
335        // which would give PHI nodes non-determinstic subscripts.  Fix this by
336        // processing blocks in order of the occurance in the function.
337        for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
338             PE = S.end(); P != PE; ++P)
339          DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
340
341        // Sort by which the block ordering in the function.
342        std::sort(DFBlocks.begin(), DFBlocks.end());
343
344        for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
345          BasicBlock *BB = DFBlocks[i].second;
346          if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
347            Info.DefiningBlocks.push_back(BB);
348        }
349        DFBlocks.clear();
350      }
351    }
352
353    // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
354    // of the writes to the variable, scan through the reads of the variable,
355    // marking PHI nodes which are actually necessary as alive (by removing them
356    // from the InsertedPHINodes set).  This is not perfect: there may PHI
357    // marked alive because of loads which are dominated by stores, but there
358    // will be no unmarked PHI nodes which are actually used.
359    //
360    for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i)
361      MarkDominatingPHILive(Info.UsingBlocks[i], AllocaNum, InsertedPHINodes);
362    Info.UsingBlocks.clear();
363
364    // If there are any PHI nodes which are now known to be dead, remove them!
365    for (SmallPtrSet<PHINode*, 16>::iterator I = InsertedPHINodes.begin(),
366           E = InsertedPHINodes.end(); I != E; ++I) {
367      PHINode *PN = *I;
368      bool Erased=NewPhiNodes.erase(std::make_pair(PN->getParent(), AllocaNum));
369      Erased=Erased;
370      assert(Erased && "PHI already removed?");
371
372      if (AST && isa<PointerType>(PN->getType()))
373        AST->deleteValue(PN);
374      PN->eraseFromParent();
375      PhiToAllocaMap.erase(PN);
376    }
377
378    // Keep the reverse mapping of the 'Allocas' array.
379    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
380  }
381
382  // Process all allocas which are only used in a single basic block.
383  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
384         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
385    const std::vector<AllocaInst*> &LocAllocas = I->second;
386    assert(!LocAllocas.empty() && "empty alloca list??");
387
388    // It's common for there to only be one alloca in the list.  Handle it
389    // efficiently.
390    if (LocAllocas.size() == 1) {
391      // If we can do the quick promotion pass, do so now.
392      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
393        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
394    } else {
395      // Locally promote anything possible.  Note that if this is unable to
396      // promote a particular alloca, it puts the alloca onto the Allocas vector
397      // for global processing.
398      PromoteLocallyUsedAllocas(I->first, LocAllocas);
399    }
400  }
401
402  if (Allocas.empty())
403    return; // All of the allocas must have been trivial!
404
405  // Set the incoming values for the basic block to be null values for all of
406  // the alloca's.  We do this in case there is a load of a value that has not
407  // been stored yet.  In this case, it will get this null value.
408  //
409  RenamePassData::ValVector Values(Allocas.size());
410  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
411    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
412
413  // Walks all basic blocks in the function performing the SSA rename algorithm
414  // and inserting the phi nodes we marked as necessary
415  //
416  std::vector<RenamePassData> RenamePassWorkList;
417  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
418  while (!RenamePassWorkList.empty()) {
419    RenamePassData RPD;
420    RPD.swap(RenamePassWorkList.back());
421    RenamePassWorkList.pop_back();
422    // RenamePass may add new worklist entries.
423    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
424  }
425
426  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
427  Visited.clear();
428
429  // Remove the allocas themselves from the function.
430  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
431    Instruction *A = Allocas[i];
432
433    // If there are any uses of the alloca instructions left, they must be in
434    // sections of dead code that were not processed on the dominance frontier.
435    // Just delete the users now.
436    //
437    if (!A->use_empty())
438      A->replaceAllUsesWith(UndefValue::get(A->getType()));
439    if (AST) AST->deleteValue(A);
440    A->eraseFromParent();
441  }
442
443
444  // Loop over all of the PHI nodes and see if there are any that we can get
445  // rid of because they merge all of the same incoming values.  This can
446  // happen due to undef values coming into the PHI nodes.  This process is
447  // iterative, because eliminating one PHI node can cause others to be removed.
448  bool EliminatedAPHI = true;
449  while (EliminatedAPHI) {
450    EliminatedAPHI = false;
451
452    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
453           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
454      PHINode *PN = I->second;
455
456      // If this PHI node merges one value and/or undefs, get the value.
457      if (Value *V = PN->hasConstantValue(true)) {
458        if (!isa<Instruction>(V) ||
459            properlyDominates(cast<Instruction>(V), PN)) {
460          if (AST && isa<PointerType>(PN->getType()))
461            AST->deleteValue(PN);
462          PN->replaceAllUsesWith(V);
463          PN->eraseFromParent();
464          NewPhiNodes.erase(I++);
465          EliminatedAPHI = true;
466          continue;
467        }
468      }
469      ++I;
470    }
471  }
472
473  // At this point, the renamer has added entries to PHI nodes for all reachable
474  // code.  Unfortunately, there may be unreachable blocks which the renamer
475  // hasn't traversed.  If this is the case, the PHI nodes may not
476  // have incoming values for all predecessors.  Loop over all PHI nodes we have
477  // created, inserting undef values if they are missing any incoming values.
478  //
479  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
480         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
481    // We want to do this once per basic block.  As such, only process a block
482    // when we find the PHI that is the first entry in the block.
483    PHINode *SomePHI = I->second;
484    BasicBlock *BB = SomePHI->getParent();
485    if (&BB->front() != SomePHI)
486      continue;
487
488    // Count the number of preds for BB.
489    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
490
491    // Only do work here if there the PHI nodes are missing incoming values.  We
492    // know that all PHI nodes that were inserted in a block will have the same
493    // number of incoming values, so we can just check any of them.
494    if (SomePHI->getNumIncomingValues() == Preds.size())
495      continue;
496
497    // Ok, now we know that all of the PHI nodes are missing entries for some
498    // basic blocks.  Start by sorting the incoming predecessors for efficient
499    // access.
500    std::sort(Preds.begin(), Preds.end());
501
502    // Now we loop through all BB's which have entries in SomePHI and remove
503    // them from the Preds list.
504    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
505      // Do a log(n) search of the Preds list for the entry we want.
506      SmallVector<BasicBlock*, 16>::iterator EntIt =
507        std::lower_bound(Preds.begin(), Preds.end(),
508                         SomePHI->getIncomingBlock(i));
509      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
510             "PHI node has entry for a block which is not a predecessor!");
511
512      // Remove the entry
513      Preds.erase(EntIt);
514    }
515
516    // At this point, the blocks left in the preds list must have dummy
517    // entries inserted into every PHI nodes for the block.  Update all the phi
518    // nodes in this block that we are inserting (there could be phis before
519    // mem2reg runs).
520    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
521    BasicBlock::iterator BBI = BB->begin();
522    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
523           SomePHI->getNumIncomingValues() == NumBadPreds) {
524      Value *UndefVal = UndefValue::get(SomePHI->getType());
525      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
526        SomePHI->addIncoming(UndefVal, Preds[pred]);
527    }
528  }
529
530  NewPhiNodes.clear();
531}
532
533
534/// RewriteSingleStoreAlloca - If there is only a single store to this value,
535/// replace any loads of it that are directly dominated by the definition with
536/// the value stored.
537void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
538                                              AllocaInfo &Info) {
539  StoreInst *OnlyStore = Info.OnlyStore;
540  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
541
542  // Be aware of loads before the store.
543  SmallPtrSet<BasicBlock*, 32> ProcessedBlocks;
544  for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i) {
545    BasicBlock *UseBlock = Info.UsingBlocks[i];
546
547    // If we already processed this block, don't reprocess it.
548    if (!ProcessedBlocks.insert(UseBlock)) {
549      Info.UsingBlocks[i] = Info.UsingBlocks.back();
550      Info.UsingBlocks.pop_back();
551      --i; --e;
552      continue;
553    }
554
555    // If the store dominates the block and if we haven't processed it yet,
556    // do so now.  We can't handle the case where the store doesn't dominate a
557    // block because there may be a path between the store and the use, but we
558    // may need to insert phi nodes to handle dominance properly.
559    if (!StoringGlobalVal && !dominates(OnlyStore->getParent(), UseBlock))
560      continue;
561
562    // If the use and store are in the same block, do a quick scan to
563    // verify that there are no uses before the store.
564    if (UseBlock == OnlyStore->getParent()) {
565      BasicBlock::iterator I = UseBlock->begin();
566      for (; &*I != OnlyStore; ++I) { // scan block for store.
567        if (isa<LoadInst>(I) && I->getOperand(0) == AI)
568          break;
569      }
570      if (&*I != OnlyStore)
571        continue;  // Do not promote the uses of this in this block.
572    }
573
574    // Otherwise, if this is a different block or if all uses happen
575    // after the store, do a simple linear scan to replace loads with
576    // the stored value.
577    for (BasicBlock::iterator I = UseBlock->begin(), E = UseBlock->end();
578         I != E; ) {
579      if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
580        if (LI->getOperand(0) == AI) {
581          LI->replaceAllUsesWith(OnlyStore->getOperand(0));
582          if (AST && isa<PointerType>(LI->getType()))
583            AST->deleteValue(LI);
584          LI->eraseFromParent();
585        }
586      }
587    }
588
589    // Finally, remove this block from the UsingBlock set.
590    Info.UsingBlocks[i] = Info.UsingBlocks.back();
591    Info.UsingBlocks.pop_back();
592    --i; --e;
593  }
594}
595
596
597// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
598// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
599// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
600// each read of the variable.  For each block that reads the variable, this
601// function is called, which removes used PHI nodes from the DeadPHINodes set.
602// After all of the reads have been processed, any PHI nodes left in the
603// DeadPHINodes set are removed.
604//
605void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
606                                      SmallPtrSet<PHINode*, 16> &DeadPHINodes) {
607  // Scan the immediate dominators of this block looking for a block which has a
608  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
609  DomTreeNode *IDomNode = DT.getNode(BB);
610  for (DomTreeNode *IDom = IDomNode; IDom; IDom = IDom->getIDom()) {
611    BasicBlock *DomBB = IDom->getBlock();
612    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator
613      I = NewPhiNodes.find(std::make_pair(DomBB, AllocaNum));
614    if (I != NewPhiNodes.end()) {
615      // Ok, we found an inserted PHI node which dominates this value.
616      PHINode *DominatingPHI = I->second;
617
618      // Find out if we previously thought it was dead.  If so, mark it as being
619      // live by removing it from the DeadPHINodes set.
620      if (DeadPHINodes.erase(DominatingPHI)) {
621        // Now that we have marked the PHI node alive, also mark any PHI nodes
622        // which it might use as being alive as well.
623        for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
624             PI != PE; ++PI)
625          MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
626      }
627    }
628  }
629}
630
631/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
632/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
633/// potentially useless PHI nodes by just performing a single linear pass over
634/// the basic block using the Alloca.
635///
636/// If we cannot promote this alloca (because it is read before it is written),
637/// return true.  This is necessary in cases where, due to control flow, the
638/// alloca is potentially undefined on some control flow paths.  e.g. code like
639/// this is potentially correct:
640///
641///   for (...) { if (c) { A = undef; undef = B; } }
642///
643/// ... so long as A is not used before undef is set.
644///
645bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
646  assert(!AI->use_empty() && "There are no uses of the alloca!");
647
648  // Handle degenerate cases quickly.
649  if (AI->hasOneUse()) {
650    Instruction *U = cast<Instruction>(AI->use_back());
651    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
652      // Must be a load of uninitialized value.
653      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
654      if (AST && isa<PointerType>(LI->getType()))
655        AST->deleteValue(LI);
656    } else {
657      // Otherwise it must be a store which is never read.
658      assert(isa<StoreInst>(U));
659    }
660    BB->getInstList().erase(U);
661  } else {
662    // Uses of the uninitialized memory location shall get undef.
663    Value *CurVal = 0;
664
665    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
666      Instruction *Inst = I++;
667      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
668        if (LI->getOperand(0) == AI) {
669          if (!CurVal) return true;  // Could not locally promote!
670
671          // Loads just returns the "current value"...
672          LI->replaceAllUsesWith(CurVal);
673          if (AST && isa<PointerType>(LI->getType()))
674            AST->deleteValue(LI);
675          BB->getInstList().erase(LI);
676        }
677      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
678        if (SI->getOperand(1) == AI) {
679          // Store updates the "current value"...
680          CurVal = SI->getOperand(0);
681          BB->getInstList().erase(SI);
682        }
683      }
684    }
685  }
686
687  // After traversing the basic block, there should be no more uses of the
688  // alloca: remove it now.
689  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
690  if (AST) AST->deleteValue(AI);
691  AI->eraseFromParent();
692
693  ++NumLocalPromoted;
694  return false;
695}
696
697/// PromoteLocallyUsedAllocas - This method is just like
698/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
699/// instructions in parallel.  This is important in cases where we have large
700/// basic blocks, as we don't want to rescan the entire basic block for each
701/// alloca which is locally used in it (which might be a lot).
702void PromoteMem2Reg::
703PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
704  DenseMap<AllocaInst*, Value*> CurValues;
705  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
706    CurValues[AIs[i]] = 0; // Insert with null value
707
708  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
709    Instruction *Inst = I++;
710    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
711      // Is this a load of an alloca we are tracking?
712      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
713        DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
714        if (AIt != CurValues.end()) {
715          // If loading an uninitialized value, allow the inter-block case to
716          // handle it.  Due to control flow, this might actually be ok.
717          if (AIt->second == 0) {  // Use of locally uninitialized value??
718            RetryList.push_back(AI);   // Retry elsewhere.
719            CurValues.erase(AIt);   // Stop tracking this here.
720            if (CurValues.empty()) return;
721          } else {
722            // Loads just returns the "current value"...
723            LI->replaceAllUsesWith(AIt->second);
724            if (AST && isa<PointerType>(LI->getType()))
725              AST->deleteValue(LI);
726            BB->getInstList().erase(LI);
727          }
728        }
729      }
730    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
731      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
732        DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
733        if (AIt != CurValues.end()) {
734          // Store updates the "current value"...
735          AIt->second = SI->getOperand(0);
736          SI->eraseFromParent();
737        }
738      }
739    }
740  }
741
742  // At the end of the block scan, all allocas in CurValues are dead.
743  for (DenseMap<AllocaInst*, Value*>::iterator I = CurValues.begin(),
744       E = CurValues.end(); I != E; ++I) {
745    AllocaInst *AI = I->first;
746    assert(AI->use_empty() && "Uses of alloca from more than one BB??");
747    if (AST) AST->deleteValue(AI);
748    AI->eraseFromParent();
749  }
750
751  NumLocalPromoted += CurValues.size();
752}
753
754
755
756// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
757// Alloca returns true if there wasn't already a phi-node for that variable
758//
759bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
760                                  unsigned &Version,
761                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
762  // Look up the basic-block in question.
763  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
764
765  // If the BB already has a phi node added for the i'th alloca then we're done!
766  if (PN) return false;
767
768  // Create a PhiNode using the dereferenced type... and add the phi-node to the
769  // BasicBlock.
770  PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
771                   Allocas[AllocaNo]->getName() + "." +
772                   utostr(Version++), BB->begin());
773  PhiToAllocaMap[PN] = AllocaNo;
774
775  InsertedPHINodes.insert(PN);
776
777  if (AST && isa<PointerType>(PN->getType()))
778    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
779
780  return true;
781}
782
783
784// RenamePass - Recursively traverse the CFG of the function, renaming loads and
785// stores to the allocas which we are promoting.  IncomingVals indicates what
786// value each Alloca contains on exit from the predecessor block Pred.
787//
788void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
789                                RenamePassData::ValVector &IncomingVals,
790                                std::vector<RenamePassData> &Worklist) {
791  // If we are inserting any phi nodes into this BB, they will already be in the
792  // block.
793  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
794    // Pred may have multiple edges to BB.  If so, we want to add N incoming
795    // values to each PHI we are inserting on the first time we see the edge.
796    // Check to see if APN already has incoming values from Pred.  This also
797    // prevents us from modifying PHI nodes that are not currently being
798    // inserted.
799    bool HasPredEntries = false;
800    for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
801      if (APN->getIncomingBlock(i) == Pred) {
802        HasPredEntries = true;
803        break;
804      }
805    }
806
807    // If we have PHI nodes to update, compute the number of edges from Pred to
808    // BB.
809    if (!HasPredEntries) {
810      TerminatorInst *PredTerm = Pred->getTerminator();
811      unsigned NumEdges = 0;
812      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
813        if (PredTerm->getSuccessor(i) == BB)
814          ++NumEdges;
815      }
816      assert(NumEdges && "Must be at least one edge from Pred to BB!");
817
818      // Add entries for all the phis.
819      BasicBlock::iterator PNI = BB->begin();
820      do {
821        unsigned AllocaNo = PhiToAllocaMap[APN];
822
823        // Add N incoming values to the PHI node.
824        for (unsigned i = 0; i != NumEdges; ++i)
825          APN->addIncoming(IncomingVals[AllocaNo], Pred);
826
827        // The currently active variable for this block is now the PHI.
828        IncomingVals[AllocaNo] = APN;
829
830        // Get the next phi node.
831        ++PNI;
832        APN = dyn_cast<PHINode>(PNI);
833        if (APN == 0) break;
834
835        // Verify it doesn't already have entries for Pred.  If it does, it is
836        // not being inserted by this mem2reg invocation.
837        HasPredEntries = false;
838        for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
839          if (APN->getIncomingBlock(i) == Pred) {
840            HasPredEntries = true;
841            break;
842          }
843        }
844      } while (!HasPredEntries);
845    }
846  }
847
848  // Don't revisit blocks.
849  if (!Visited.insert(BB)) return;
850
851  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
852    Instruction *I = II++; // get the instruction, increment iterator
853
854    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
855      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
856        std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
857        if (AI != AllocaLookup.end()) {
858          Value *V = IncomingVals[AI->second];
859
860          // walk the use list of this load and replace all uses with r
861          LI->replaceAllUsesWith(V);
862          if (AST && isa<PointerType>(LI->getType()))
863            AST->deleteValue(LI);
864          BB->getInstList().erase(LI);
865        }
866      }
867    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
868      // Delete this instruction and mark the name as the current holder of the
869      // value
870      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
871        std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
872        if (ai != AllocaLookup.end()) {
873          // what value were we writing?
874          IncomingVals[ai->second] = SI->getOperand(0);
875          BB->getInstList().erase(SI);
876        }
877      }
878    }
879  }
880
881  // Recurse to our successors.
882  TerminatorInst *TI = BB->getTerminator();
883  for (unsigned i = 0; i != TI->getNumSuccessors(); i++)
884    Worklist.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals));
885}
886
887/// PromoteMemToReg - Promote the specified list of alloca instructions into
888/// scalar registers, inserting PHI nodes as appropriate.  This function makes
889/// use of DominanceFrontier information.  This function does not modify the CFG
890/// of the function at all.  All allocas must be from the same function.
891///
892/// If AST is specified, the specified tracker is updated to reflect changes
893/// made to the IR.
894///
895void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
896                           DominatorTree &DT, DominanceFrontier &DF,
897                           AliasSetTracker *AST) {
898  // If there is nothing to do, bail out...
899  if (Allocas.empty()) return;
900
901  SmallVector<AllocaInst*, 16> RetryList;
902  PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
903
904  // PromoteMem2Reg may not have been able to promote all of the allocas in one
905  // pass, run it again if needed.
906  std::vector<AllocaInst*> NewAllocas;
907  while (!RetryList.empty()) {
908    // If we need to retry some allocas, this is due to there being no store
909    // before a read in a local block.  To counteract this, insert a store of
910    // undef into the alloca right after the alloca itself.
911    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
912      BasicBlock::iterator BBI = RetryList[i];
913
914      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
915                    RetryList[i], ++BBI);
916    }
917
918    NewAllocas.assign(RetryList.begin(), RetryList.end());
919    RetryList.clear();
920    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
921    NewAllocas.clear();
922  }
923}
924