AsmWriter.cpp revision 30794269d5ba15613d4e013d9fe1eb9e892fa6da
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cctype>
37using namespace llvm;
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42//===----------------------------------------------------------------------===//
43// Helper Functions
44//===----------------------------------------------------------------------===//
45
46static const Module *getModuleFromVal(const Value *V) {
47  if (const Argument *MA = dyn_cast<Argument>(V))
48    return MA->getParent() ? MA->getParent()->getParent() : 0;
49
50  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
51    return BB->getParent() ? BB->getParent()->getParent() : 0;
52
53  if (const Instruction *I = dyn_cast<Instruction>(V)) {
54    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
55    return M ? M->getParent() : 0;
56  }
57
58  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
59    return GV->getParent();
60  return 0;
61}
62
63// PrintEscapedString - Print each character of the specified string, escaping
64// it if it is not printable or if it is an escape char.
65static void PrintEscapedString(const char *Str, unsigned Length,
66                               raw_ostream &Out) {
67  for (unsigned i = 0; i != Length; ++i) {
68    unsigned char C = Str[i];
69    if (isprint(C) && C != '\\' && C != '"' && isprint(C))
70      Out << C;
71    else
72      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
73  }
74}
75
76// PrintEscapedString - Print each character of the specified string, escaping
77// it if it is not printable or if it is an escape char.
78static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
79  PrintEscapedString(Str.c_str(), Str.size(), Out);
80}
81
82enum PrefixType {
83  GlobalPrefix,
84  LabelPrefix,
85  LocalPrefix,
86  NoPrefix
87};
88
89/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
90/// prefixed with % (if the string only contains simple characters) or is
91/// surrounded with ""'s (if it has special chars in it).  Print it out.
92static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
93                          unsigned NameLen, PrefixType Prefix) {
94  assert(NameStr && "Cannot get empty name!");
95  switch (Prefix) {
96  default: assert(0 && "Bad prefix!");
97  case NoPrefix: break;
98  case GlobalPrefix: OS << '@'; break;
99  case LabelPrefix:  break;
100  case LocalPrefix:  OS << '%'; break;
101  }
102
103  // Scan the name to see if it needs quotes first.
104  bool NeedsQuotes = isdigit(NameStr[0]);
105  if (!NeedsQuotes) {
106    for (unsigned i = 0; i != NameLen; ++i) {
107      char C = NameStr[i];
108      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
109        NeedsQuotes = true;
110        break;
111      }
112    }
113  }
114
115  // If we didn't need any quotes, just write out the name in one blast.
116  if (!NeedsQuotes) {
117    OS.write(NameStr, NameLen);
118    return;
119  }
120
121  // Okay, we need quotes.  Output the quotes and escape any scary characters as
122  // needed.
123  OS << '"';
124  PrintEscapedString(NameStr, NameLen, OS);
125  OS << '"';
126}
127
128/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
129/// prefixed with % (if the string only contains simple characters) or is
130/// surrounded with ""'s (if it has special chars in it).  Print it out.
131static void PrintLLVMName(raw_ostream &OS, const Value *V) {
132  PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
133                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
134}
135
136//===----------------------------------------------------------------------===//
137// TypePrinting Class: Type printing machinery
138//===----------------------------------------------------------------------===//
139
140namespace {
141  /// TypePrinting - Type printing machinery.
142  class TypePrinting {
143    std::map<const Type *, std::string> TypeNames;
144  public:
145    TypePrinting(const Module *M);
146
147    void print(const Type *Ty, raw_ostream &OS);
148    void printAtLeastOneLevel(const Type *Ty, raw_ostream &OS);
149
150  private:
151    void CalcTypeName(const Type *Ty, SmallVectorImpl<const Type *> &TypeStack,
152                      raw_ostream &OS);
153  };
154} // end anonymous namespace.
155
156TypePrinting::TypePrinting(const Module *M) {
157  if (M == 0) return;
158
159  // If the module has a symbol table, take all global types and stuff their
160  // names into the TypeNames map.
161  const TypeSymbolTable &ST = M->getTypeSymbolTable();
162  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
163       TI != E; ++TI) {
164    const Type *Ty = cast<Type>(TI->second);
165
166    // As a heuristic, don't insert pointer to primitive types, because
167    // they are used too often to have a single useful name.
168    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
169      const Type *PETy = PTy->getElementType();
170      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
171          !isa<OpaqueType>(PETy))
172        continue;
173    }
174
175    // Likewise don't insert primitives either.
176    if (Ty->isInteger() || Ty->isPrimitiveType())
177      continue;
178
179    // Get the name as a string and insert it into TypeNames.
180    std::string NameStr;
181    raw_string_ostream NameOS(NameStr);
182    PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
183    TypeNames.insert(std::make_pair(Ty, NameOS.str()));
184  }
185}
186
187/// CalcTypeName - Write the specified type to the specified raw_ostream, making
188/// use of type names or up references to shorten the type name where possible.
189void TypePrinting::CalcTypeName(const Type *Ty,
190                                SmallVectorImpl<const Type *> &TypeStack,
191                                raw_ostream &OS) {
192  // Check to see if the type is named.
193  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
194  if (I != TypeNames.end() &&
195      // If the name wasn't temporarily removed use it.
196      !I->second.empty()) {
197    OS << I->second;
198    return;
199  }
200
201  // Check to see if the Type is already on the stack...
202  unsigned Slot = 0, CurSize = TypeStack.size();
203  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
204
205  // This is another base case for the recursion.  In this case, we know
206  // that we have looped back to a type that we have previously visited.
207  // Generate the appropriate upreference to handle this.
208  if (Slot < CurSize) {
209    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
210    return;
211  }
212
213  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
214
215  switch (Ty->getTypeID()) {
216  case Type::VoidTyID:      OS << "void"; break;
217  case Type::FloatTyID:     OS << "float"; break;
218  case Type::DoubleTyID:    OS << "double"; break;
219  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
220  case Type::FP128TyID:     OS << "fp128"; break;
221  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
222  case Type::LabelTyID:     OS << "label"; break;
223  case Type::IntegerTyID:
224    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
225    break;
226
227  case Type::FunctionTyID: {
228    const FunctionType *FTy = cast<FunctionType>(Ty);
229    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
230    OS << " (";
231    for (FunctionType::param_iterator I = FTy->param_begin(),
232         E = FTy->param_end(); I != E; ++I) {
233      if (I != FTy->param_begin())
234        OS << ", ";
235      CalcTypeName(*I, TypeStack, OS);
236    }
237    if (FTy->isVarArg()) {
238      if (FTy->getNumParams()) OS << ", ";
239      OS << "...";
240    }
241    OS << ')';
242    break;
243  }
244  case Type::StructTyID: {
245    const StructType *STy = cast<StructType>(Ty);
246    if (STy->isPacked())
247      OS << '<';
248    OS << "{ ";
249    for (StructType::element_iterator I = STy->element_begin(),
250         E = STy->element_end(); I != E; ++I) {
251      CalcTypeName(*I, TypeStack, OS);
252      if (next(I) != STy->element_end())
253        OS << ',';
254      OS << ' ';
255    }
256    OS << '}';
257    if (STy->isPacked())
258      OS << '>';
259    break;
260  }
261  case Type::PointerTyID: {
262    const PointerType *PTy = cast<PointerType>(Ty);
263    CalcTypeName(PTy->getElementType(), TypeStack, OS);
264    if (unsigned AddressSpace = PTy->getAddressSpace())
265      OS << " addrspace(" << AddressSpace << ')';
266    OS << '*';
267    break;
268  }
269  case Type::ArrayTyID: {
270    const ArrayType *ATy = cast<ArrayType>(Ty);
271    OS << '[' << ATy->getNumElements() << " x ";
272    CalcTypeName(ATy->getElementType(), TypeStack, OS);
273    OS << ']';
274    break;
275  }
276  case Type::VectorTyID: {
277    const VectorType *PTy = cast<VectorType>(Ty);
278    OS << "<" << PTy->getNumElements() << " x ";
279    CalcTypeName(PTy->getElementType(), TypeStack, OS);
280    OS << '>';
281    break;
282  }
283  case Type::OpaqueTyID:
284    OS << "opaque";
285    break;
286  default:
287    OS << "<unrecognized-type>";
288    break;
289  }
290
291  TypeStack.pop_back();       // Remove self from stack.
292}
293
294/// printTypeInt - The internal guts of printing out a type that has a
295/// potentially named portion.
296///
297void TypePrinting::print(const Type *Ty, raw_ostream &OS) {
298  // Check to see if the type is named.
299  std::map<const Type*, std::string>::iterator I = TypeNames.find(Ty);
300  if (I != TypeNames.end()) {
301    OS << I->second;
302    return;
303  }
304
305  // Otherwise we have a type that has not been named but is a derived type.
306  // Carefully recurse the type hierarchy to print out any contained symbolic
307  // names.
308  SmallVector<const Type *, 16> TypeStack;
309  std::string TypeName;
310
311  raw_string_ostream TypeOS(TypeName);
312  CalcTypeName(Ty, TypeStack, TypeOS);
313  OS << TypeOS.str();
314
315  // Cache type name for later use.
316  TypeNames.insert(std::make_pair(Ty, TypeOS.str()));
317}
318
319/// printAtLeastOneLevel - Print out one level of the possibly complex type
320/// without considering any symbolic types that we may have equal to it.
321void TypePrinting::printAtLeastOneLevel(const Type *Ty, raw_ostream &OS) {
322  // If the type does not have a name, then it is already guaranteed to print at
323  // least one level.
324  std::map<const Type*, std::string>::iterator I = TypeNames.find(Ty);
325  if (I == TypeNames.end())
326    return print(Ty, OS);
327
328  // Otherwise, temporarily remove the name and print it.
329  std::string OldName;
330  std::swap(OldName, I->second);
331
332  // Print the type without the name.
333  SmallVector<const Type *, 16> TypeStack;
334  CalcTypeName(Ty, TypeStack, OS);
335
336  // Restore the name.
337  std::swap(OldName, I->second);
338}
339
340
341/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
342/// type, iff there is an entry in the modules symbol table for the specified
343/// type or one of it's component types.
344///
345void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M){
346  TypePrinting(M).print(Ty, OS);
347}
348
349//===----------------------------------------------------------------------===//
350// SlotTracker Class: Enumerate slot numbers for unnamed values
351//===----------------------------------------------------------------------===//
352
353namespace {
354
355/// This class provides computation of slot numbers for LLVM Assembly writing.
356///
357class SlotTracker {
358public:
359  /// ValueMap - A mapping of Values to slot numbers
360  typedef DenseMap<const Value*, unsigned> ValueMap;
361
362private:
363  /// TheModule - The module for which we are holding slot numbers
364  const Module* TheModule;
365
366  /// TheFunction - The function for which we are holding slot numbers
367  const Function* TheFunction;
368  bool FunctionProcessed;
369
370  /// mMap - The TypePlanes map for the module level data
371  ValueMap mMap;
372  unsigned mNext;
373
374  /// fMap - The TypePlanes map for the function level data
375  ValueMap fMap;
376  unsigned fNext;
377
378public:
379  /// Construct from a module
380  explicit SlotTracker(const Module *M);
381  /// Construct from a function, starting out in incorp state.
382  explicit SlotTracker(const Function *F);
383
384  /// Return the slot number of the specified value in it's type
385  /// plane.  If something is not in the SlotTracker, return -1.
386  int getLocalSlot(const Value *V);
387  int getGlobalSlot(const GlobalValue *V);
388
389  /// If you'd like to deal with a function instead of just a module, use
390  /// this method to get its data into the SlotTracker.
391  void incorporateFunction(const Function *F) {
392    TheFunction = F;
393    FunctionProcessed = false;
394  }
395
396  /// After calling incorporateFunction, use this method to remove the
397  /// most recently incorporated function from the SlotTracker. This
398  /// will reset the state of the machine back to just the module contents.
399  void purgeFunction();
400
401  // Implementation Details
402private:
403  /// This function does the actual initialization.
404  inline void initialize();
405
406  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
407  void CreateModuleSlot(const GlobalValue *V);
408
409  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
410  void CreateFunctionSlot(const Value *V);
411
412  /// Add all of the module level global variables (and their initializers)
413  /// and function declarations, but not the contents of those functions.
414  void processModule();
415
416  /// Add all of the functions arguments, basic blocks, and instructions
417  void processFunction();
418
419  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
420  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
421};
422
423}  // end anonymous namespace
424
425
426static SlotTracker *createSlotTracker(const Value *V) {
427  if (const Argument *FA = dyn_cast<Argument>(V))
428    return new SlotTracker(FA->getParent());
429
430  if (const Instruction *I = dyn_cast<Instruction>(V))
431    return new SlotTracker(I->getParent()->getParent());
432
433  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
434    return new SlotTracker(BB->getParent());
435
436  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
437    return new SlotTracker(GV->getParent());
438
439  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
440    return new SlotTracker(GA->getParent());
441
442  if (const Function *Func = dyn_cast<Function>(V))
443    return new SlotTracker(Func);
444
445  return 0;
446}
447
448#if 0
449#define ST_DEBUG(X) cerr << X
450#else
451#define ST_DEBUG(X)
452#endif
453
454// Module level constructor. Causes the contents of the Module (sans functions)
455// to be added to the slot table.
456SlotTracker::SlotTracker(const Module *M)
457  : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
458}
459
460// Function level constructor. Causes the contents of the Module and the one
461// function provided to be added to the slot table.
462SlotTracker::SlotTracker(const Function *F)
463  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
464    mNext(0), fNext(0) {
465}
466
467inline void SlotTracker::initialize() {
468  if (TheModule) {
469    processModule();
470    TheModule = 0; ///< Prevent re-processing next time we're called.
471  }
472
473  if (TheFunction && !FunctionProcessed)
474    processFunction();
475}
476
477// Iterate through all the global variables, functions, and global
478// variable initializers and create slots for them.
479void SlotTracker::processModule() {
480  ST_DEBUG("begin processModule!\n");
481
482  // Add all of the unnamed global variables to the value table.
483  for (Module::const_global_iterator I = TheModule->global_begin(),
484       E = TheModule->global_end(); I != E; ++I)
485    if (!I->hasName())
486      CreateModuleSlot(I);
487
488  // Add all the unnamed functions to the table.
489  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
490       I != E; ++I)
491    if (!I->hasName())
492      CreateModuleSlot(I);
493
494  ST_DEBUG("end processModule!\n");
495}
496
497
498// Process the arguments, basic blocks, and instructions  of a function.
499void SlotTracker::processFunction() {
500  ST_DEBUG("begin processFunction!\n");
501  fNext = 0;
502
503  // Add all the function arguments with no names.
504  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
505      AE = TheFunction->arg_end(); AI != AE; ++AI)
506    if (!AI->hasName())
507      CreateFunctionSlot(AI);
508
509  ST_DEBUG("Inserting Instructions:\n");
510
511  // Add all of the basic blocks and instructions with no names.
512  for (Function::const_iterator BB = TheFunction->begin(),
513       E = TheFunction->end(); BB != E; ++BB) {
514    if (!BB->hasName())
515      CreateFunctionSlot(BB);
516    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
517      if (I->getType() != Type::VoidTy && !I->hasName())
518        CreateFunctionSlot(I);
519  }
520
521  FunctionProcessed = true;
522
523  ST_DEBUG("end processFunction!\n");
524}
525
526/// Clean up after incorporating a function. This is the only way to get out of
527/// the function incorporation state that affects get*Slot/Create*Slot. Function
528/// incorporation state is indicated by TheFunction != 0.
529void SlotTracker::purgeFunction() {
530  ST_DEBUG("begin purgeFunction!\n");
531  fMap.clear(); // Simply discard the function level map
532  TheFunction = 0;
533  FunctionProcessed = false;
534  ST_DEBUG("end purgeFunction!\n");
535}
536
537/// getGlobalSlot - Get the slot number of a global value.
538int SlotTracker::getGlobalSlot(const GlobalValue *V) {
539  // Check for uninitialized state and do lazy initialization.
540  initialize();
541
542  // Find the type plane in the module map
543  ValueMap::iterator MI = mMap.find(V);
544  return MI == mMap.end() ? -1 : (int)MI->second;
545}
546
547
548/// getLocalSlot - Get the slot number for a value that is local to a function.
549int SlotTracker::getLocalSlot(const Value *V) {
550  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
551
552  // Check for uninitialized state and do lazy initialization.
553  initialize();
554
555  ValueMap::iterator FI = fMap.find(V);
556  return FI == fMap.end() ? -1 : (int)FI->second;
557}
558
559
560/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
561void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
562  assert(V && "Can't insert a null Value into SlotTracker!");
563  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
564  assert(!V->hasName() && "Doesn't need a slot!");
565
566  unsigned DestSlot = mNext++;
567  mMap[V] = DestSlot;
568
569  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
570           DestSlot << " [");
571  // G = Global, F = Function, A = Alias, o = other
572  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
573            (isa<Function>(V) ? 'F' :
574             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
575}
576
577
578/// CreateSlot - Create a new slot for the specified value if it has no name.
579void SlotTracker::CreateFunctionSlot(const Value *V) {
580  assert(V->getType() != Type::VoidTy && !V->hasName() &&
581         "Doesn't need a slot!");
582
583  unsigned DestSlot = fNext++;
584  fMap[V] = DestSlot;
585
586  // G = Global, F = Function, o = other
587  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
588           DestSlot << " [o]\n");
589}
590
591
592
593//===----------------------------------------------------------------------===//
594// AsmWriter Implementation
595//===----------------------------------------------------------------------===//
596
597static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
598                                   TypePrinting &TypePrinter,
599                                   SlotTracker *Machine);
600
601
602
603static const char *getPredicateText(unsigned predicate) {
604  const char * pred = "unknown";
605  switch (predicate) {
606    case FCmpInst::FCMP_FALSE: pred = "false"; break;
607    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
608    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
609    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
610    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
611    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
612    case FCmpInst::FCMP_ONE:   pred = "one"; break;
613    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
614    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
615    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
616    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
617    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
618    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
619    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
620    case FCmpInst::FCMP_UNE:   pred = "une"; break;
621    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
622    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
623    case ICmpInst::ICMP_NE:    pred = "ne"; break;
624    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
625    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
626    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
627    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
628    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
629    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
630    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
631    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
632  }
633  return pred;
634}
635
636static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
637                             TypePrinting &TypePrinter, SlotTracker *Machine) {
638  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
639    if (CI->getType() == Type::Int1Ty) {
640      Out << (CI->getZExtValue() ? "true" : "false");
641      return;
642    }
643    Out << CI->getValue();
644    return;
645  }
646
647  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
648    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
649        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
650      // We would like to output the FP constant value in exponential notation,
651      // but we cannot do this if doing so will lose precision.  Check here to
652      // make sure that we only output it in exponential format if we can parse
653      // the value back and get the same value.
654      //
655      bool ignored;
656      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
657      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
658                              CFP->getValueAPF().convertToFloat();
659      std::string StrVal = ftostr(CFP->getValueAPF());
660
661      // Check to make sure that the stringized number is not some string like
662      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
663      // that the string matches the "[-+]?[0-9]" regex.
664      //
665      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
666          ((StrVal[0] == '-' || StrVal[0] == '+') &&
667           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
668        // Reparse stringized version!
669        if (atof(StrVal.c_str()) == Val) {
670          Out << StrVal;
671          return;
672        }
673      }
674      // Otherwise we could not reparse it to exactly the same value, so we must
675      // output the string in hexadecimal format!  Note that loading and storing
676      // floating point types changes the bits of NaNs on some hosts, notably
677      // x86, so we must not use these types.
678      assert(sizeof(double) == sizeof(uint64_t) &&
679             "assuming that double is 64 bits!");
680      char Buffer[40];
681      APFloat apf = CFP->getValueAPF();
682      // Floats are represented in ASCII IR as double, convert.
683      if (!isDouble)
684        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
685                          &ignored);
686      Out << "0x" <<
687              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
688                            Buffer+40);
689      return;
690    }
691
692    // Some form of long double.  These appear as a magic letter identifying
693    // the type, then a fixed number of hex digits.
694    Out << "0x";
695    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
696      Out << 'K';
697    else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
698      Out << 'L';
699    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
700      Out << 'M';
701    else
702      assert(0 && "Unsupported floating point type");
703    // api needed to prevent premature destruction
704    APInt api = CFP->getValueAPF().bitcastToAPInt();
705    const uint64_t* p = api.getRawData();
706    uint64_t word = *p;
707    int shiftcount=60;
708    int width = api.getBitWidth();
709    for (int j=0; j<width; j+=4, shiftcount-=4) {
710      unsigned int nibble = (word>>shiftcount) & 15;
711      if (nibble < 10)
712        Out << (unsigned char)(nibble + '0');
713      else
714        Out << (unsigned char)(nibble - 10 + 'A');
715      if (shiftcount == 0 && j+4 < width) {
716        word = *(++p);
717        shiftcount = 64;
718        if (width-j-4 < 64)
719          shiftcount = width-j-4;
720      }
721    }
722    return;
723  }
724
725  if (isa<ConstantAggregateZero>(CV)) {
726    Out << "zeroinitializer";
727    return;
728  }
729
730  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
731    // As a special case, print the array as a string if it is an array of
732    // i8 with ConstantInt values.
733    //
734    const Type *ETy = CA->getType()->getElementType();
735    if (CA->isString()) {
736      Out << "c\"";
737      PrintEscapedString(CA->getAsString(), Out);
738      Out << '"';
739    } else {                // Cannot output in string format...
740      Out << '[';
741      if (CA->getNumOperands()) {
742        TypePrinter.print(ETy, Out);
743        Out << ' ';
744        WriteAsOperandInternal(Out, CA->getOperand(0),
745                               TypePrinter, Machine);
746        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
747          Out << ", ";
748          TypePrinter.print(ETy, Out);
749          Out << ' ';
750          WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
751        }
752      }
753      Out << ']';
754    }
755    return;
756  }
757
758  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
759    if (CS->getType()->isPacked())
760      Out << '<';
761    Out << '{';
762    unsigned N = CS->getNumOperands();
763    if (N) {
764      Out << ' ';
765      TypePrinter.print(CS->getOperand(0)->getType(), Out);
766      Out << ' ';
767
768      WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
769
770      for (unsigned i = 1; i < N; i++) {
771        Out << ", ";
772        TypePrinter.print(CS->getOperand(i)->getType(), Out);
773        Out << ' ';
774
775        WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
776      }
777      Out << ' ';
778    }
779
780    Out << '}';
781    if (CS->getType()->isPacked())
782      Out << '>';
783    return;
784  }
785
786  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
787    const Type *ETy = CP->getType()->getElementType();
788    assert(CP->getNumOperands() > 0 &&
789           "Number of operands for a PackedConst must be > 0");
790    Out << '<';
791    TypePrinter.print(ETy, Out);
792    Out << ' ';
793    WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
794    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
795      Out << ", ";
796      TypePrinter.print(ETy, Out);
797      Out << ' ';
798      WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
799    }
800    Out << '>';
801    return;
802  }
803
804  if (isa<ConstantPointerNull>(CV)) {
805    Out << "null";
806    return;
807  }
808
809  if (isa<UndefValue>(CV)) {
810    Out << "undef";
811    return;
812  }
813
814  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
815    Out << CE->getOpcodeName();
816    if (CE->isCompare())
817      Out << ' ' << getPredicateText(CE->getPredicate());
818    Out << " (";
819
820    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
821      TypePrinter.print((*OI)->getType(), Out);
822      Out << ' ';
823      WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
824      if (OI+1 != CE->op_end())
825        Out << ", ";
826    }
827
828    if (CE->hasIndices()) {
829      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
830      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
831        Out << ", " << Indices[i];
832    }
833
834    if (CE->isCast()) {
835      Out << " to ";
836      TypePrinter.print(CE->getType(), Out);
837    }
838
839    Out << ')';
840    return;
841  }
842
843  Out << "<placeholder or erroneous Constant>";
844}
845
846
847/// WriteAsOperand - Write the name of the specified value out to the specified
848/// ostream.  This can be useful when you just want to print int %reg126, not
849/// the whole instruction that generated it.
850///
851static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
852                                   TypePrinting &TypePrinter,
853                                   SlotTracker *Machine) {
854  if (V->hasName()) {
855    PrintLLVMName(Out, V);
856    return;
857  }
858
859  const Constant *CV = dyn_cast<Constant>(V);
860  if (CV && !isa<GlobalValue>(CV)) {
861    WriteConstantInt(Out, CV, TypePrinter, Machine);
862    return;
863  }
864
865  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
866    Out << "asm ";
867    if (IA->hasSideEffects())
868      Out << "sideeffect ";
869    Out << '"';
870    PrintEscapedString(IA->getAsmString(), Out);
871    Out << "\", \"";
872    PrintEscapedString(IA->getConstraintString(), Out);
873    Out << '"';
874    return;
875  }
876
877  char Prefix = '%';
878  int Slot;
879  if (Machine) {
880    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
881      Slot = Machine->getGlobalSlot(GV);
882      Prefix = '@';
883    } else {
884      Slot = Machine->getLocalSlot(V);
885    }
886  } else {
887    Machine = createSlotTracker(V);
888    if (Machine) {
889      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
890        Slot = Machine->getGlobalSlot(GV);
891        Prefix = '@';
892      } else {
893        Slot = Machine->getLocalSlot(V);
894      }
895    } else {
896      Slot = -1;
897    }
898    delete Machine;
899  }
900
901  if (Slot != -1)
902    Out << Prefix << Slot;
903  else
904    Out << "<badref>";
905}
906
907/// WriteAsOperand - Write the name of the specified value out to the specified
908/// ostream.  This can be useful when you just want to print int %reg126, not
909/// the whole instruction that generated it.
910///
911void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
912                          const Module *Context) {
913  raw_os_ostream OS(Out);
914  WriteAsOperand(OS, V, PrintType, Context);
915}
916
917void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
918                          const Module *Context) {
919  if (Context == 0) Context = getModuleFromVal(V);
920
921  TypePrinting TypePrinter(Context);
922  if (PrintType) {
923    TypePrinter.print(V->getType(), Out);
924    Out << ' ';
925  }
926
927  WriteAsOperandInternal(Out, V, TypePrinter, 0);
928}
929
930
931namespace {
932
933class AssemblyWriter {
934  raw_ostream &Out;
935  SlotTracker &Machine;
936  const Module *TheModule;
937  TypePrinting TypePrinter;
938  AssemblyAnnotationWriter *AnnotationWriter;
939public:
940  inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
941                        AssemblyAnnotationWriter *AAW)
942    : Out(o), Machine(Mac), TheModule(M), TypePrinter(M),
943      AnnotationWriter(AAW) {
944  }
945
946  void write(const Module *M) { printModule(M);       }
947
948  void write(const GlobalValue *G) {
949    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
950      printGlobal(GV);
951    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
952      printAlias(GA);
953    else if (const Function *F = dyn_cast<Function>(G))
954      printFunction(F);
955    else
956      assert(0 && "Unknown global");
957  }
958
959  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
960  void write(const Instruction *I)    { printInstruction(*I); }
961
962  void writeOperand(const Value *Op, bool PrintType);
963  void writeParamOperand(const Value *Operand, Attributes Attrs);
964
965  const Module* getModule() { return TheModule; }
966
967private:
968  void printModule(const Module *M);
969  void printTypeSymbolTable(const TypeSymbolTable &ST);
970  void printGlobal(const GlobalVariable *GV);
971  void printAlias(const GlobalAlias *GV);
972  void printFunction(const Function *F);
973  void printArgument(const Argument *FA, Attributes Attrs);
974  void printBasicBlock(const BasicBlock *BB);
975  void printInstruction(const Instruction &I);
976
977  // printInfoComment - Print a little comment after the instruction indicating
978  // which slot it occupies.
979  void printInfoComment(const Value &V);
980};
981}  // end of llvm namespace
982
983
984void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
985  if (Operand == 0) {
986    Out << "<null operand!>";
987  } else {
988    if (PrintType) {
989      TypePrinter.print(Operand->getType(), Out);
990      Out << ' ';
991    }
992    WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
993  }
994}
995
996void AssemblyWriter::writeParamOperand(const Value *Operand,
997                                       Attributes Attrs) {
998  if (Operand == 0) {
999    Out << "<null operand!>";
1000  } else {
1001    // Print the type
1002    TypePrinter.print(Operand->getType(), Out);
1003    // Print parameter attributes list
1004    if (Attrs != Attribute::None)
1005      Out << ' ' << Attribute::getAsString(Attrs);
1006    Out << ' ';
1007    // Print the operand
1008    WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1009  }
1010}
1011
1012void AssemblyWriter::printModule(const Module *M) {
1013  if (!M->getModuleIdentifier().empty() &&
1014      // Don't print the ID if it will start a new line (which would
1015      // require a comment char before it).
1016      M->getModuleIdentifier().find('\n') == std::string::npos)
1017    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1018
1019  if (!M->getDataLayout().empty())
1020    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1021  if (!M->getTargetTriple().empty())
1022    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1023
1024  if (!M->getModuleInlineAsm().empty()) {
1025    // Split the string into lines, to make it easier to read the .ll file.
1026    std::string Asm = M->getModuleInlineAsm();
1027    size_t CurPos = 0;
1028    size_t NewLine = Asm.find_first_of('\n', CurPos);
1029    while (NewLine != std::string::npos) {
1030      // We found a newline, print the portion of the asm string from the
1031      // last newline up to this newline.
1032      Out << "module asm \"";
1033      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1034                         Out);
1035      Out << "\"\n";
1036      CurPos = NewLine+1;
1037      NewLine = Asm.find_first_of('\n', CurPos);
1038    }
1039    Out << "module asm \"";
1040    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1041    Out << "\"\n";
1042  }
1043
1044  // Loop over the dependent libraries and emit them.
1045  Module::lib_iterator LI = M->lib_begin();
1046  Module::lib_iterator LE = M->lib_end();
1047  if (LI != LE) {
1048    Out << "deplibs = [ ";
1049    while (LI != LE) {
1050      Out << '"' << *LI << '"';
1051      ++LI;
1052      if (LI != LE)
1053        Out << ", ";
1054    }
1055    Out << " ]\n";
1056  }
1057
1058  // Loop over the symbol table, emitting all named constants.
1059  printTypeSymbolTable(M->getTypeSymbolTable());
1060
1061  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1062       I != E; ++I)
1063    printGlobal(I);
1064
1065  // Output all aliases.
1066  if (!M->alias_empty()) Out << "\n";
1067  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1068       I != E; ++I)
1069    printAlias(I);
1070
1071  // Output all of the functions.
1072  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1073    printFunction(I);
1074}
1075
1076static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1077  switch (LT) {
1078  case GlobalValue::PrivateLinkage:      Out << "private "; break;
1079  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1080  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1081  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1082  case GlobalValue::CommonLinkage:       Out << "common "; break;
1083  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1084  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1085  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1086  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1087  case GlobalValue::ExternalLinkage: break;
1088  case GlobalValue::GhostLinkage:
1089    Out << "GhostLinkage not allowed in AsmWriter!\n";
1090    abort();
1091  }
1092}
1093
1094
1095static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1096                            raw_ostream &Out) {
1097  switch (Vis) {
1098  default: assert(0 && "Invalid visibility style!");
1099  case GlobalValue::DefaultVisibility: break;
1100  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1101  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1102  }
1103}
1104
1105void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1106  if (GV->hasName()) {
1107    PrintLLVMName(Out, GV);
1108    Out << " = ";
1109  }
1110
1111  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1112    Out << "external ";
1113
1114  PrintLinkage(GV->getLinkage(), Out);
1115  PrintVisibility(GV->getVisibility(), Out);
1116
1117  if (GV->isThreadLocal()) Out << "thread_local ";
1118  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1119    Out << "addrspace(" << AddressSpace << ") ";
1120  Out << (GV->isConstant() ? "constant " : "global ");
1121  TypePrinter.print(GV->getType()->getElementType(), Out);
1122
1123  if (GV->hasInitializer()) {
1124    Out << ' ';
1125    writeOperand(GV->getInitializer(), false);
1126  }
1127
1128  if (GV->hasSection())
1129    Out << ", section \"" << GV->getSection() << '"';
1130  if (GV->getAlignment())
1131    Out << ", align " << GV->getAlignment();
1132
1133  printInfoComment(*GV);
1134  Out << '\n';
1135}
1136
1137void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1138  // Don't crash when dumping partially built GA
1139  if (!GA->hasName())
1140    Out << "<<nameless>> = ";
1141  else {
1142    PrintLLVMName(Out, GA);
1143    Out << " = ";
1144  }
1145  PrintVisibility(GA->getVisibility(), Out);
1146
1147  Out << "alias ";
1148
1149  PrintLinkage(GA->getLinkage(), Out);
1150
1151  const Constant *Aliasee = GA->getAliasee();
1152
1153  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1154    TypePrinter.print(GV->getType(), Out);
1155    Out << ' ';
1156    PrintLLVMName(Out, GV);
1157  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1158    TypePrinter.print(F->getFunctionType(), Out);
1159    Out << "* ";
1160
1161    WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1162  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1163    TypePrinter.print(GA->getType(), Out);
1164    Out << ' ';
1165    PrintLLVMName(Out, GA);
1166  } else {
1167    const ConstantExpr *CE = 0;
1168    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1169        (CE->getOpcode() == Instruction::BitCast)) {
1170      writeOperand(CE, false);
1171    } else
1172      assert(0 && "Unsupported aliasee");
1173  }
1174
1175  printInfoComment(*GA);
1176  Out << '\n';
1177}
1178
1179void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1180  // Print the types.
1181  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1182       TI != TE; ++TI) {
1183    Out << '\t';
1184    PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
1185    Out << " = type ";
1186
1187    // Make sure we print out at least one level of the type structure, so
1188    // that we do not get %FILE = type %FILE
1189    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1190    Out << '\n';
1191  }
1192}
1193
1194/// printFunction - Print all aspects of a function.
1195///
1196void AssemblyWriter::printFunction(const Function *F) {
1197  // Print out the return type and name.
1198  Out << '\n';
1199
1200  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1201
1202  if (F->isDeclaration())
1203    Out << "declare ";
1204  else
1205    Out << "define ";
1206
1207  PrintLinkage(F->getLinkage(), Out);
1208  PrintVisibility(F->getVisibility(), Out);
1209
1210  // Print the calling convention.
1211  switch (F->getCallingConv()) {
1212  case CallingConv::C: break;   // default
1213  case CallingConv::Fast:         Out << "fastcc "; break;
1214  case CallingConv::Cold:         Out << "coldcc "; break;
1215  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1216  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1217  default: Out << "cc" << F->getCallingConv() << " "; break;
1218  }
1219
1220  const FunctionType *FT = F->getFunctionType();
1221  const AttrListPtr &Attrs = F->getAttributes();
1222  Attributes RetAttrs = Attrs.getRetAttributes();
1223  if (RetAttrs != Attribute::None)
1224    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1225  TypePrinter.print(F->getReturnType(), Out);
1226  Out << ' ';
1227  WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1228  Out << '(';
1229  Machine.incorporateFunction(F);
1230
1231  // Loop over the arguments, printing them...
1232
1233  unsigned Idx = 1;
1234  if (!F->isDeclaration()) {
1235    // If this isn't a declaration, print the argument names as well.
1236    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1237         I != E; ++I) {
1238      // Insert commas as we go... the first arg doesn't get a comma
1239      if (I != F->arg_begin()) Out << ", ";
1240      printArgument(I, Attrs.getParamAttributes(Idx));
1241      Idx++;
1242    }
1243  } else {
1244    // Otherwise, print the types from the function type.
1245    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1246      // Insert commas as we go... the first arg doesn't get a comma
1247      if (i) Out << ", ";
1248
1249      // Output type...
1250      TypePrinter.print(FT->getParamType(i), Out);
1251
1252      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1253      if (ArgAttrs != Attribute::None)
1254        Out << ' ' << Attribute::getAsString(ArgAttrs);
1255    }
1256  }
1257
1258  // Finish printing arguments...
1259  if (FT->isVarArg()) {
1260    if (FT->getNumParams()) Out << ", ";
1261    Out << "...";  // Output varargs portion of signature!
1262  }
1263  Out << ')';
1264  Attributes FnAttrs = Attrs.getFnAttributes();
1265  if (FnAttrs != Attribute::None)
1266    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1267  if (F->hasSection())
1268    Out << " section \"" << F->getSection() << '"';
1269  if (F->getAlignment())
1270    Out << " align " << F->getAlignment();
1271  if (F->hasGC())
1272    Out << " gc \"" << F->getGC() << '"';
1273  if (F->isDeclaration()) {
1274    Out << "\n";
1275  } else {
1276    Out << " {";
1277
1278    // Output all of its basic blocks... for the function
1279    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1280      printBasicBlock(I);
1281
1282    Out << "}\n";
1283  }
1284
1285  Machine.purgeFunction();
1286}
1287
1288/// printArgument - This member is called for every argument that is passed into
1289/// the function.  Simply print it out
1290///
1291void AssemblyWriter::printArgument(const Argument *Arg,
1292                                   Attributes Attrs) {
1293  // Output type...
1294  TypePrinter.print(Arg->getType(), Out);
1295
1296  // Output parameter attributes list
1297  if (Attrs != Attribute::None)
1298    Out << ' ' << Attribute::getAsString(Attrs);
1299
1300  // Output name, if available...
1301  if (Arg->hasName()) {
1302    Out << ' ';
1303    PrintLLVMName(Out, Arg);
1304  }
1305}
1306
1307/// printBasicBlock - This member is called for each basic block in a method.
1308///
1309void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1310  if (BB->hasName()) {              // Print out the label if it exists...
1311    Out << "\n";
1312    PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
1313    Out << ':';
1314  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1315    Out << "\n; <label>:";
1316    int Slot = Machine.getLocalSlot(BB);
1317    if (Slot != -1)
1318      Out << Slot;
1319    else
1320      Out << "<badref>";
1321  }
1322
1323  if (BB->getParent() == 0)
1324    Out << "\t\t; Error: Block without parent!";
1325  else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1326    // Output predecessors for the block...
1327    Out << "\t\t;";
1328    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1329
1330    if (PI == PE) {
1331      Out << " No predecessors!";
1332    } else {
1333      Out << " preds = ";
1334      writeOperand(*PI, false);
1335      for (++PI; PI != PE; ++PI) {
1336        Out << ", ";
1337        writeOperand(*PI, false);
1338      }
1339    }
1340  }
1341
1342  Out << "\n";
1343
1344  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1345
1346  // Output all of the instructions in the basic block...
1347  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1348    printInstruction(*I);
1349
1350  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1351}
1352
1353
1354/// printInfoComment - Print a little comment after the instruction indicating
1355/// which slot it occupies.
1356///
1357void AssemblyWriter::printInfoComment(const Value &V) {
1358  if (V.getType() != Type::VoidTy) {
1359    Out << "\t\t; <";
1360    TypePrinter.print(V.getType(), Out);
1361    Out << '>';
1362
1363    if (!V.hasName() && !isa<Instruction>(V)) {
1364      int SlotNum;
1365      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1366        SlotNum = Machine.getGlobalSlot(GV);
1367      else
1368        SlotNum = Machine.getLocalSlot(&V);
1369      if (SlotNum == -1)
1370        Out << ":<badref>";
1371      else
1372        Out << ':' << SlotNum; // Print out the def slot taken.
1373    }
1374    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1375  }
1376}
1377
1378// This member is called for each Instruction in a function..
1379void AssemblyWriter::printInstruction(const Instruction &I) {
1380  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1381
1382  Out << '\t';
1383
1384  // Print out name if it exists...
1385  if (I.hasName()) {
1386    PrintLLVMName(Out, &I);
1387    Out << " = ";
1388  } else if (I.getType() != Type::VoidTy) {
1389    // Print out the def slot taken.
1390    int SlotNum = Machine.getLocalSlot(&I);
1391    if (SlotNum == -1)
1392      Out << "<badref> = ";
1393    else
1394      Out << '%' << SlotNum << " = ";
1395  }
1396
1397  // If this is a volatile load or store, print out the volatile marker.
1398  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1399      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1400      Out << "volatile ";
1401  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1402    // If this is a call, check if it's a tail call.
1403    Out << "tail ";
1404  }
1405
1406  // Print out the opcode...
1407  Out << I.getOpcodeName();
1408
1409  // Print out the compare instruction predicates
1410  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1411    Out << ' ' << getPredicateText(CI->getPredicate());
1412
1413  // Print out the type of the operands...
1414  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1415
1416  // Special case conditional branches to swizzle the condition out to the front
1417  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1418    BranchInst &BI(cast<BranchInst>(I));
1419    Out << ' ';
1420    writeOperand(BI.getCondition(), true);
1421    Out << ", ";
1422    writeOperand(BI.getSuccessor(0), true);
1423    Out << ", ";
1424    writeOperand(BI.getSuccessor(1), true);
1425
1426  } else if (isa<SwitchInst>(I)) {
1427    // Special case switch statement to get formatting nice and correct...
1428    Out << ' ';
1429    writeOperand(Operand        , true);
1430    Out << ", ";
1431    writeOperand(I.getOperand(1), true);
1432    Out << " [";
1433
1434    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1435      Out << "\n\t\t";
1436      writeOperand(I.getOperand(op  ), true);
1437      Out << ", ";
1438      writeOperand(I.getOperand(op+1), true);
1439    }
1440    Out << "\n\t]";
1441  } else if (isa<PHINode>(I)) {
1442    Out << ' ';
1443    TypePrinter.print(I.getType(), Out);
1444    Out << ' ';
1445
1446    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1447      if (op) Out << ", ";
1448      Out << "[ ";
1449      writeOperand(I.getOperand(op  ), false); Out << ", ";
1450      writeOperand(I.getOperand(op+1), false); Out << " ]";
1451    }
1452  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1453    Out << ' ';
1454    writeOperand(I.getOperand(0), true);
1455    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1456      Out << ", " << *i;
1457  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1458    Out << ' ';
1459    writeOperand(I.getOperand(0), true); Out << ", ";
1460    writeOperand(I.getOperand(1), true);
1461    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1462      Out << ", " << *i;
1463  } else if (isa<ReturnInst>(I) && !Operand) {
1464    Out << " void";
1465  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1466    // Print the calling convention being used.
1467    switch (CI->getCallingConv()) {
1468    case CallingConv::C: break;   // default
1469    case CallingConv::Fast:  Out << " fastcc"; break;
1470    case CallingConv::Cold:  Out << " coldcc"; break;
1471    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1472    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1473    default: Out << " cc" << CI->getCallingConv(); break;
1474    }
1475
1476    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1477    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1478    const Type         *RetTy = FTy->getReturnType();
1479    const AttrListPtr &PAL = CI->getAttributes();
1480
1481    if (PAL.getRetAttributes() != Attribute::None)
1482      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1483
1484    // If possible, print out the short form of the call instruction.  We can
1485    // only do this if the first argument is a pointer to a nonvararg function,
1486    // and if the return type is not a pointer to a function.
1487    //
1488    Out << ' ';
1489    if (!FTy->isVarArg() &&
1490        (!isa<PointerType>(RetTy) ||
1491         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1492      TypePrinter.print(RetTy, Out);
1493      Out << ' ';
1494      writeOperand(Operand, false);
1495    } else {
1496      writeOperand(Operand, true);
1497    }
1498    Out << '(';
1499    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1500      if (op > 1)
1501        Out << ", ";
1502      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1503    }
1504    Out << ')';
1505    if (PAL.getFnAttributes() != Attribute::None)
1506      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1507  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1508    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1509    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1510    const Type         *RetTy = FTy->getReturnType();
1511    const AttrListPtr &PAL = II->getAttributes();
1512
1513    // Print the calling convention being used.
1514    switch (II->getCallingConv()) {
1515    case CallingConv::C: break;   // default
1516    case CallingConv::Fast:  Out << " fastcc"; break;
1517    case CallingConv::Cold:  Out << " coldcc"; break;
1518    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1519    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1520    default: Out << " cc" << II->getCallingConv(); break;
1521    }
1522
1523    if (PAL.getRetAttributes() != Attribute::None)
1524      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1525
1526    // If possible, print out the short form of the invoke instruction. We can
1527    // only do this if the first argument is a pointer to a nonvararg function,
1528    // and if the return type is not a pointer to a function.
1529    //
1530    Out << ' ';
1531    if (!FTy->isVarArg() &&
1532        (!isa<PointerType>(RetTy) ||
1533         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1534      TypePrinter.print(RetTy, Out);
1535      Out << ' ';
1536      writeOperand(Operand, false);
1537    } else {
1538      writeOperand(Operand, true);
1539    }
1540    Out << '(';
1541    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1542      if (op > 3)
1543        Out << ", ";
1544      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1545    }
1546
1547    Out << ')';
1548    if (PAL.getFnAttributes() != Attribute::None)
1549      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1550
1551    Out << "\n\t\t\tto ";
1552    writeOperand(II->getNormalDest(), true);
1553    Out << " unwind ";
1554    writeOperand(II->getUnwindDest(), true);
1555
1556  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1557    Out << ' ';
1558    TypePrinter.print(AI->getType()->getElementType(), Out);
1559    if (AI->isArrayAllocation()) {
1560      Out << ", ";
1561      writeOperand(AI->getArraySize(), true);
1562    }
1563    if (AI->getAlignment()) {
1564      Out << ", align " << AI->getAlignment();
1565    }
1566  } else if (isa<CastInst>(I)) {
1567    if (Operand) {
1568      Out << ' ';
1569      writeOperand(Operand, true);   // Work with broken code
1570    }
1571    Out << " to ";
1572    TypePrinter.print(I.getType(), Out);
1573  } else if (isa<VAArgInst>(I)) {
1574    if (Operand) {
1575      Out << ' ';
1576      writeOperand(Operand, true);   // Work with broken code
1577    }
1578    Out << ", ";
1579    TypePrinter.print(I.getType(), Out);
1580  } else if (Operand) {   // Print the normal way.
1581
1582    // PrintAllTypes - Instructions who have operands of all the same type
1583    // omit the type from all but the first operand.  If the instruction has
1584    // different type operands (for example br), then they are all printed.
1585    bool PrintAllTypes = false;
1586    const Type *TheType = Operand->getType();
1587
1588    // Select, Store and ShuffleVector always print all types.
1589    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1590        || isa<ReturnInst>(I)) {
1591      PrintAllTypes = true;
1592    } else {
1593      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1594        Operand = I.getOperand(i);
1595        // note that Operand shouldn't be null, but the test helps make dump()
1596        // more tolerant of malformed IR
1597        if (Operand && Operand->getType() != TheType) {
1598          PrintAllTypes = true;    // We have differing types!  Print them all!
1599          break;
1600        }
1601      }
1602    }
1603
1604    if (!PrintAllTypes) {
1605      Out << ' ';
1606      TypePrinter.print(TheType, Out);
1607    }
1608
1609    Out << ' ';
1610    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1611      if (i) Out << ", ";
1612      writeOperand(I.getOperand(i), PrintAllTypes);
1613    }
1614  }
1615
1616  // Print post operand alignment for load/store
1617  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1618    Out << ", align " << cast<LoadInst>(I).getAlignment();
1619  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1620    Out << ", align " << cast<StoreInst>(I).getAlignment();
1621  }
1622
1623  printInfoComment(I);
1624  Out << '\n';
1625}
1626
1627
1628//===----------------------------------------------------------------------===//
1629//                       External Interface declarations
1630//===----------------------------------------------------------------------===//
1631
1632void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1633  raw_os_ostream OS(o);
1634  print(OS, AAW);
1635}
1636void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1637  SlotTracker SlotTable(this);
1638  AssemblyWriter W(OS, SlotTable, this, AAW);
1639  W.write(this);
1640}
1641
1642void Type::print(std::ostream &o) const {
1643  raw_os_ostream OS(o);
1644  print(OS);
1645}
1646
1647void Type::print(raw_ostream &OS) const {
1648  if (this == 0) {
1649    OS << "<null Type>";
1650    return;
1651  }
1652  TypePrinting(0).print(this, OS);
1653}
1654
1655void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1656  if (this == 0) {
1657    OS << "printing a <null> value\n";
1658    return;
1659  }
1660
1661  if (const Instruction *I = dyn_cast<Instruction>(this)) {
1662    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1663    SlotTracker SlotTable(F);
1664    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
1665    W.write(I);
1666  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1667    SlotTracker SlotTable(BB->getParent());
1668    AssemblyWriter W(OS, SlotTable,
1669                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
1670    W.write(BB);
1671  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1672    SlotTracker SlotTable(GV->getParent());
1673    AssemblyWriter W(OS, SlotTable, GV->getParent(), 0);
1674    W.write(GV);
1675  } else if (const Constant *C = dyn_cast<Constant>(this)) {
1676    TypePrinting TypePrinter(0);
1677    TypePrinter.print(C->getType(), OS);
1678    OS << ' ';
1679    WriteConstantInt(OS, C, TypePrinter, 0);
1680  } else if (const Argument *A = dyn_cast<Argument>(this)) {
1681    WriteAsOperand(OS, this, true,
1682                   A->getParent() ? A->getParent()->getParent() : 0);
1683  } else if (isa<InlineAsm>(this)) {
1684    WriteAsOperand(OS, this, true, 0);
1685  } else {
1686    assert(0 && "Unknown value to print out!");
1687  }
1688}
1689
1690void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
1691  raw_os_ostream OS(O);
1692  print(OS, AAW);
1693}
1694
1695// Value::dump - allow easy printing of Values from the debugger.
1696void Value::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
1697
1698// Type::dump - allow easy printing of Types from the debugger.
1699// This one uses type names from the given context module
1700void Type::dump(const Module *Context) const {
1701  WriteTypeSymbolic(errs(), this, Context);
1702  errs() << '\n';
1703  errs().flush();
1704}
1705
1706// Type::dump - allow easy printing of Types from the debugger.
1707void Type::dump() const { dump(0); }
1708
1709
1710// Module::dump() - Allow printing of Modules from the debugger.
1711void Module::dump() const { print(errs(), 0); errs().flush(); }
1712
1713
1714