BasicBlock.cpp revision 0b16ae209a1d0876a7ea6800bb567d925443cba3
1//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2//
3// This file implements the BasicBlock class for the VMCore library.
4//
5//===----------------------------------------------------------------------===//
6
7#include "llvm/BasicBlock.h"
8#include "llvm/iTerminators.h"
9#include "llvm/Type.h"
10#include "llvm/Support/CFG.h"
11#include "llvm/Constant.h"
12#include "llvm/iPHINode.h"
13#include "llvm/SymbolTable.h"
14#include "Support/LeakDetector.h"
15#include "SymbolTableListTraitsImpl.h"
16#include <algorithm>
17
18// DummyInst - An instance of this class is used to mark the end of the
19// instruction list.  This is not a real instruction.
20//
21struct DummyInst : public Instruction {
22  DummyInst() : Instruction(Type::VoidTy, OtherOpsEnd) {
23    // This should not be garbage monitored.
24    LeakDetector::removeGarbageObject(this);
25  }
26
27  virtual Instruction *clone() const {
28    assert(0 && "Cannot clone EOL");abort();
29    return 0;
30  }
31  virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
32
33  // Methods for support type inquiry through isa, cast, and dyn_cast...
34  static inline bool classof(const DummyInst *) { return true; }
35  static inline bool classof(const Instruction *I) {
36    return I->getOpcode() == OtherOpsEnd;
37  }
38  static inline bool classof(const Value *V) {
39    return isa<Instruction>(V) && classof(cast<Instruction>(V));
40  }
41};
42
43Instruction *ilist_traits<Instruction>::createNode() {
44  return new DummyInst();
45}
46iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
47  return BB->getInstList();
48}
49
50// Explicit instantiation of SymbolTableListTraits since some of the methods
51// are not in the public header file...
52template SymbolTableListTraits<Instruction, BasicBlock, Function>;
53
54
55// BasicBlock ctor - If the function parameter is specified, the basic block is
56// automatically inserted at the end of the function.
57//
58BasicBlock::BasicBlock(const std::string &name, Function *Parent)
59  : Value(Type::LabelTy, Value::BasicBlockVal, name) {
60  // Initialize the instlist...
61  InstList.setItemParent(this);
62
63  // Make sure that we get added to a function
64  LeakDetector::addGarbageObject(this);
65
66  if (Parent)
67    Parent->getBasicBlockList().push_back(this);
68}
69
70/// BasicBlock ctor - If the InsertBefore parameter is specified, the basic
71/// block is automatically inserted right before the specified block.
72///
73BasicBlock::BasicBlock(const std::string &Name, BasicBlock *InsertBefore)
74  : Value(Type::LabelTy, Value::BasicBlockVal, Name) {
75  // Initialize the instlist...
76  InstList.setItemParent(this);
77
78  // Make sure that we get added to a function
79  LeakDetector::addGarbageObject(this);
80
81  if (InsertBefore) {
82    assert(InsertBefore->getParent() &&
83           "Cannot insert block before another block that is not embedded into"
84           " a function yet!");
85    InsertBefore->getParent()->getBasicBlockList().insert(InsertBefore, this);
86  }
87}
88
89
90BasicBlock::~BasicBlock() {
91  dropAllReferences();
92  InstList.clear();
93}
94
95void BasicBlock::setParent(Function *parent) {
96  if (getParent())
97    LeakDetector::addGarbageObject(this);
98
99  InstList.setParent(parent);
100
101  if (getParent())
102    LeakDetector::removeGarbageObject(this);
103}
104
105// Specialize setName to take care of symbol table majik
106void BasicBlock::setName(const std::string &name, SymbolTable *ST) {
107  Function *P;
108  assert((ST == 0 || (!getParent() || ST == getParent()->getSymbolTable())) &&
109	 "Invalid symtab argument!");
110  if ((P = getParent()) && hasName()) P->getSymbolTable()->remove(this);
111  Value::setName(name);
112  if (P && hasName()) P->getSymbolTable()->insert(this);
113}
114
115TerminatorInst *BasicBlock::getTerminator() {
116  if (InstList.empty()) return 0;
117  return dyn_cast<TerminatorInst>(&InstList.back());
118}
119
120const TerminatorInst *const BasicBlock::getTerminator() const {
121  if (InstList.empty()) return 0;
122  return dyn_cast<TerminatorInst>(&InstList.back());
123}
124
125void BasicBlock::dropAllReferences() {
126  for(iterator I = begin(), E = end(); I != E; ++I)
127    I->dropAllReferences();
128}
129
130// hasConstantReferences() - This predicate is true if there is a
131// reference to this basic block in the constant pool for this method.  For
132// example, if a block is reached through a switch table, that table resides
133// in the constant pool, and the basic block is reference from it.
134//
135bool BasicBlock::hasConstantReferences() const {
136  for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I)
137    if (::isa<Constant>((Value*)*I))
138      return true;
139
140  return false;
141}
142
143// removePredecessor - This method is used to notify a BasicBlock that the
144// specified Predecessor of the block is no longer able to reach it.  This is
145// actually not used to update the Predecessor list, but is actually used to
146// update the PHI nodes that reside in the block.  Note that this should be
147// called while the predecessor still refers to this block.
148//
149void BasicBlock::removePredecessor(BasicBlock *Pred) {
150  assert(find(pred_begin(this), pred_end(this), Pred) != pred_end(this) &&
151	 "removePredecessor: BB is not a predecessor!");
152  if (!isa<PHINode>(front())) return;   // Quick exit.
153
154  pred_iterator PI(pred_begin(this)), EI(pred_end(this));
155  unsigned max_idx;
156
157  // Loop over the rest of the predecessors until we run out, or until we find
158  // out that there are more than 2 predecessors.
159  for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/;
160
161  // If there are exactly two predecessors, then we want to nuke the PHI nodes
162  // altogether.  We cannot do this, however if this in this case however:
163  //
164  //  Loop:
165  //    %x = phi [X, Loop]
166  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
167  //    br Loop                 ;; %x2 does not dominate all uses
168  //
169  // This is because the PHI node input is actually taken from the predecessor
170  // basic block.  The only case this can happen is with a self loop, so we
171  // check for this case explicitly now.
172  //
173  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
174  if (max_idx == 2) {
175    PI = pred_begin(this);
176    BasicBlock *Other = *PI == Pred ? *++PI : *PI;
177
178    // Disable PHI elimination!
179    if (this == Other) max_idx = 3;
180  }
181
182  if (max_idx <= 2) {                // <= Two predecessors BEFORE I remove one?
183    // Yup, loop through and nuke the PHI nodes
184    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
185      PN->removeIncomingValue(Pred); // Remove the predecessor first...
186
187      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
188      if (max_idx == 2) {
189	PN->replaceAllUsesWith(PN->getOperand(0));
190        getInstList().pop_front();    // Remove the PHI node
191      }
192
193      // If the PHI node already only had one entry, it got deleted by
194      // removeIncomingValue.
195    }
196  } else {
197    // Okay, now we know that we need to remove predecessor #pred_idx from all
198    // PHI nodes.  Iterate over each PHI node fixing them up
199    for (iterator II = begin(); PHINode *PN = dyn_cast<PHINode>(&*II); ++II)
200      PN->removeIncomingValue(Pred);
201  }
202}
203
204
205// splitBasicBlock - This splits a basic block into two at the specified
206// instruction.  Note that all instructions BEFORE the specified iterator stay
207// as part of the original basic block, an unconditional branch is added to
208// the new BB, and the rest of the instructions in the BB are moved to the new
209// BB, including the old terminator.  This invalidates the iterator.
210//
211// Note that this only works on well formed basic blocks (must have a
212// terminator), and 'I' must not be the end of instruction list (which would
213// cause a degenerate basic block to be formed, having a terminator inside of
214// the basic block).
215//
216BasicBlock *BasicBlock::splitBasicBlock(iterator I) {
217  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
218  assert(I != InstList.end() &&
219	 "Trying to get me to create degenerate basic block!");
220
221  BasicBlock *New = new BasicBlock("", getParent());
222
223  // Go from the end of the basic block through to the iterator pointer, moving
224  // to the new basic block...
225  Instruction *Inst = 0;
226  do {
227    iterator EndIt = end();
228    Inst = InstList.remove(--EndIt);                  // Remove from end
229    New->InstList.push_front(Inst);                   // Add to front
230  } while (Inst != &*I);   // Loop until we move the specified instruction.
231
232  // Add a branch instruction to the newly formed basic block.
233  InstList.push_back(new BranchInst(New));
234
235  // Now we must loop through all of the successors of the New block (which
236  // _were_ the successors of the 'this' block), and update any PHI nodes in
237  // successors.  If there were PHI nodes in the successors, then they need to
238  // know that incoming branches will be from New, not from Old.
239  //
240  for (BasicBlock::succ_iterator I = succ_begin(New), E = succ_end(New);
241       I != E; ++I) {
242    // Loop over any phi nodes in the basic block, updating the BB field of
243    // incoming values...
244    BasicBlock *Successor = *I;
245    for (BasicBlock::iterator II = Successor->begin();
246         PHINode *PN = dyn_cast<PHINode>(&*II); ++II) {
247      int IDX = PN->getBasicBlockIndex(this);
248      while (IDX != -1) {
249        PN->setIncomingBlock((unsigned)IDX, New);
250        IDX = PN->getBasicBlockIndex(this);
251      }
252    }
253  }
254  return New;
255}
256