BasicBlock.cpp revision 108e4ab159b59a616b0868e396dc7ddc1fb48616
1//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BasicBlock class for the VMCore library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/BasicBlock.h"
15#include "llvm/iTerminators.h"
16#include "llvm/Type.h"
17#include "llvm/Support/CFG.h"
18#include "llvm/Constant.h"
19#include "llvm/iPHINode.h"
20#include "llvm/SymbolTable.h"
21#include "Support/LeakDetector.h"
22#include "SymbolTableListTraitsImpl.h"
23#include <algorithm>
24using namespace llvm;
25
26namespace {
27  /// DummyInst - An instance of this class is used to mark the end of the
28  /// instruction list.  This is not a real instruction.
29  struct DummyInst : public Instruction {
30    DummyInst() : Instruction(Type::VoidTy, OtherOpsEnd) {
31      // This should not be garbage monitored.
32      LeakDetector::removeGarbageObject(this);
33    }
34
35    virtual Instruction *clone() const {
36      assert(0 && "Cannot clone EOL");abort();
37      return 0;
38    }
39    virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
40
41    // Methods for support type inquiry through isa, cast, and dyn_cast...
42    static inline bool classof(const DummyInst *) { return true; }
43    static inline bool classof(const Instruction *I) {
44      return I->getOpcode() == OtherOpsEnd;
45    }
46    static inline bool classof(const Value *V) {
47      return isa<Instruction>(V) && classof(cast<Instruction>(V));
48    }
49  };
50}
51
52Instruction *ilist_traits<Instruction>::createNode() {
53  return new DummyInst();
54}
55iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
56  return BB->getInstList();
57}
58
59// Explicit instantiation of SymbolTableListTraits since some of the methods
60// are not in the public header file...
61template class SymbolTableListTraits<Instruction, BasicBlock, Function>;
62
63
64// BasicBlock ctor - If the function parameter is specified, the basic block is
65// automatically inserted at the end of the function.
66//
67BasicBlock::BasicBlock(const std::string &name, Function *Parent)
68  : Value(Type::LabelTy, Value::BasicBlockVal, name) {
69  // Initialize the instlist...
70  InstList.setItemParent(this);
71
72  // Make sure that we get added to a function
73  LeakDetector::addGarbageObject(this);
74
75  if (Parent)
76    Parent->getBasicBlockList().push_back(this);
77}
78
79/// BasicBlock ctor - If the InsertBefore parameter is specified, the basic
80/// block is automatically inserted right before the specified block.
81///
82BasicBlock::BasicBlock(const std::string &Name, BasicBlock *InsertBefore)
83  : Value(Type::LabelTy, Value::BasicBlockVal, Name) {
84  // Initialize the instlist...
85  InstList.setItemParent(this);
86
87  // Make sure that we get added to a function
88  LeakDetector::addGarbageObject(this);
89
90  if (InsertBefore) {
91    assert(InsertBefore->getParent() &&
92           "Cannot insert block before another block that is not embedded into"
93           " a function yet!");
94    InsertBefore->getParent()->getBasicBlockList().insert(InsertBefore, this);
95  }
96}
97
98
99BasicBlock::~BasicBlock() {
100  dropAllReferences();
101  InstList.clear();
102}
103
104void BasicBlock::setParent(Function *parent) {
105  if (getParent())
106    LeakDetector::addGarbageObject(this);
107
108  InstList.setParent(parent);
109
110  if (getParent())
111    LeakDetector::removeGarbageObject(this);
112}
113
114// Specialize setName to take care of symbol table majik
115void BasicBlock::setName(const std::string &name, SymbolTable *ST) {
116  Function *P;
117  assert((ST == 0 || (!getParent() || ST == &getParent()->getSymbolTable())) &&
118	 "Invalid symtab argument!");
119  if ((P = getParent()) && hasName()) P->getSymbolTable().remove(this);
120  Value::setName(name);
121  if (P && hasName()) P->getSymbolTable().insert(this);
122}
123
124TerminatorInst *BasicBlock::getTerminator() {
125  if (InstList.empty()) return 0;
126  return dyn_cast<TerminatorInst>(&InstList.back());
127}
128
129const TerminatorInst *const BasicBlock::getTerminator() const {
130  if (InstList.empty()) return 0;
131  return dyn_cast<TerminatorInst>(&InstList.back());
132}
133
134void BasicBlock::dropAllReferences() {
135  for(iterator I = begin(), E = end(); I != E; ++I)
136    I->dropAllReferences();
137}
138
139// hasConstantReferences() - This predicate is true if there is a
140// reference to this basic block in the constant pool for this method.  For
141// example, if a block is reached through a switch table, that table resides
142// in the constant pool, and the basic block is reference from it.
143//
144bool BasicBlock::hasConstantReferences() const {
145  for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I)
146    if (isa<Constant>((Value*)*I))
147      return true;
148
149  return false;
150}
151
152// removePredecessor - This method is used to notify a BasicBlock that the
153// specified Predecessor of the block is no longer able to reach it.  This is
154// actually not used to update the Predecessor list, but is actually used to
155// update the PHI nodes that reside in the block.  Note that this should be
156// called while the predecessor still refers to this block.
157//
158void BasicBlock::removePredecessor(BasicBlock *Pred) {
159  assert(find(pred_begin(this), pred_end(this), Pred) != pred_end(this) &&
160	 "removePredecessor: BB is not a predecessor!");
161  if (!isa<PHINode>(front())) return;   // Quick exit.
162
163  pred_iterator PI(pred_begin(this)), EI(pred_end(this));
164  unsigned max_idx;
165
166  // Loop over the rest of the predecessors until we run out, or until we find
167  // out that there are more than 2 predecessors.
168  for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/;
169
170  // If there are exactly two predecessors, then we want to nuke the PHI nodes
171  // altogether.  We cannot do this, however if this in this case however:
172  //
173  //  Loop:
174  //    %x = phi [X, Loop]
175  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
176  //    br Loop                 ;; %x2 does not dominate all uses
177  //
178  // This is because the PHI node input is actually taken from the predecessor
179  // basic block.  The only case this can happen is with a self loop, so we
180  // check for this case explicitly now.
181  //
182  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
183  if (max_idx == 2) {
184    PI = pred_begin(this);
185    BasicBlock *Other = *PI == Pred ? *++PI : *PI;
186
187    // Disable PHI elimination!
188    if (this == Other) max_idx = 3;
189  }
190
191  if (max_idx <= 2) {                // <= Two predecessors BEFORE I remove one?
192    // Yup, loop through and nuke the PHI nodes
193    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
194      PN->removeIncomingValue(Pred); // Remove the predecessor first...
195
196      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
197      if (max_idx == 2) {
198        if (PN->getOperand(0) != PN)
199          PN->replaceAllUsesWith(PN->getOperand(0));
200        else
201          // We are left with an infinite loop with no entries: kill the PHI.
202          PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
203        getInstList().pop_front();    // Remove the PHI node
204      }
205
206      // If the PHI node already only had one entry, it got deleted by
207      // removeIncomingValue.
208    }
209  } else {
210    // Okay, now we know that we need to remove predecessor #pred_idx from all
211    // PHI nodes.  Iterate over each PHI node fixing them up
212    for (iterator II = begin(); PHINode *PN = dyn_cast<PHINode>(II); ++II)
213      PN->removeIncomingValue(Pred);
214  }
215}
216
217
218// splitBasicBlock - This splits a basic block into two at the specified
219// instruction.  Note that all instructions BEFORE the specified iterator stay
220// as part of the original basic block, an unconditional branch is added to
221// the new BB, and the rest of the instructions in the BB are moved to the new
222// BB, including the old terminator.  This invalidates the iterator.
223//
224// Note that this only works on well formed basic blocks (must have a
225// terminator), and 'I' must not be the end of instruction list (which would
226// cause a degenerate basic block to be formed, having a terminator inside of
227// the basic block).
228//
229BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
230  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
231  assert(I != InstList.end() &&
232	 "Trying to get me to create degenerate basic block!");
233
234  BasicBlock *New = new BasicBlock(BBName, getParent());
235
236  // Go from the end of the basic block through to the iterator pointer, moving
237  // to the new basic block...
238  Instruction *Inst = 0;
239  do {
240    iterator EndIt = end();
241    Inst = InstList.remove(--EndIt);                  // Remove from end
242    New->InstList.push_front(Inst);                   // Add to front
243  } while (Inst != &*I);   // Loop until we move the specified instruction.
244
245  // Add a branch instruction to the newly formed basic block.
246  new BranchInst(New, this);
247
248  // Now we must loop through all of the successors of the New block (which
249  // _were_ the successors of the 'this' block), and update any PHI nodes in
250  // successors.  If there were PHI nodes in the successors, then they need to
251  // know that incoming branches will be from New, not from Old.
252  //
253  for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
254    // Loop over any phi nodes in the basic block, updating the BB field of
255    // incoming values...
256    BasicBlock *Successor = *I;
257    for (BasicBlock::iterator II = Successor->begin();
258         PHINode *PN = dyn_cast<PHINode>(II); ++II) {
259      int IDX = PN->getBasicBlockIndex(this);
260      while (IDX != -1) {
261        PN->setIncomingBlock((unsigned)IDX, New);
262        IDX = PN->getBasicBlockIndex(this);
263      }
264    }
265  }
266  return New;
267}
268