BasicBlock.cpp revision b2e80a69514485c36442ea849063313e6db13e09
1//===-- BasicBlock.cpp - Implement BasicBlock related functions --*- C++ -*--=//
2//
3// This file implements the BasicBlock class for the VMCore library.
4//
5//===----------------------------------------------------------------------===//
6
7#include "llvm/BasicBlock.h"
8#include "llvm/iTerminators.h"
9#include "llvm/Type.h"
10#include "llvm/Support/CFG.h"
11#include "llvm/Constant.h"
12#include "llvm/iPHINode.h"
13#include "llvm/SymbolTable.h"
14#include "SymbolTableListTraitsImpl.h"
15#include <algorithm>
16
17// DummyInst - An instance of this class is used to mark the end of the
18// instruction list.  This is not a real instruction.
19//
20struct DummyInst : public Instruction {
21  DummyInst() : Instruction(Type::VoidTy, NumOtherOps) {}
22
23  virtual Instruction *clone() const {
24    assert(0 && "Cannot clone EOL");abort();
25    return 0;
26  }
27  virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
28
29  // Methods for support type inquiry through isa, cast, and dyn_cast...
30  static inline bool classof(const DummyInst *) { return true; }
31  static inline bool classof(const Instruction *I) {
32    return I->getOpcode() == NumOtherOps;
33  }
34  static inline bool classof(const Value *V) {
35    return isa<Instruction>(V) && classof(cast<Instruction>(V));
36  }
37};
38
39Instruction *ilist_traits<Instruction>::createNode() {
40  return new DummyInst();
41}
42iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
43  return BB->getInstList();
44}
45
46// Explicit instantiation of SymbolTableListTraits since some of the methods
47// are not in the public header file...
48template SymbolTableListTraits<Instruction, BasicBlock, Function>;
49
50
51BasicBlock::BasicBlock(const std::string &name, Function *Parent)
52  : Value(Type::LabelTy, Value::BasicBlockVal, name) {
53  // Initialize the instlist...
54  InstList.setItemParent(this);
55
56  if (Parent)
57    Parent->getBasicBlockList().push_back(this);
58}
59
60BasicBlock::~BasicBlock() {
61  dropAllReferences();
62  InstList.clear();
63}
64
65// Specialize setName to take care of symbol table majik
66void BasicBlock::setName(const std::string &name, SymbolTable *ST) {
67  Function *P;
68  assert((ST == 0 || (!getParent() || ST == getParent()->getSymbolTable())) &&
69	 "Invalid symtab argument!");
70  if ((P = getParent()) && hasName()) P->getSymbolTable()->remove(this);
71  Value::setName(name);
72  if (P && hasName()) P->getSymbolTable()->insert(this);
73}
74
75TerminatorInst *BasicBlock::getTerminator() {
76  if (InstList.empty()) return 0;
77  return dyn_cast<TerminatorInst>(&InstList.back());
78}
79
80const TerminatorInst *const BasicBlock::getTerminator() const {
81  if (InstList.empty()) return 0;
82  return dyn_cast<TerminatorInst>(&InstList.back());
83}
84
85void BasicBlock::dropAllReferences() {
86  for(iterator I = begin(), E = end(); I != E; ++I)
87    I->dropAllReferences();
88}
89
90// hasConstantReferences() - This predicate is true if there is a
91// reference to this basic block in the constant pool for this method.  For
92// example, if a block is reached through a switch table, that table resides
93// in the constant pool, and the basic block is reference from it.
94//
95bool BasicBlock::hasConstantReferences() const {
96  for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I)
97    if (::isa<Constant>((Value*)*I))
98      return true;
99
100  return false;
101}
102
103// removePredecessor - This method is used to notify a BasicBlock that the
104// specified Predecessor of the block is no longer able to reach it.  This is
105// actually not used to update the Predecessor list, but is actually used to
106// update the PHI nodes that reside in the block.  Note that this should be
107// called while the predecessor still refers to this block.
108//
109void BasicBlock::removePredecessor(BasicBlock *Pred) {
110  assert(find(pred_begin(this), pred_end(this), Pred) != pred_end(this) &&
111	 "removePredecessor: BB is not a predecessor!");
112  if (!isa<PHINode>(front())) return;   // Quick exit.
113
114  pred_iterator PI(pred_begin(this)), EI(pred_end(this));
115  unsigned max_idx;
116
117  // Loop over the rest of the predecessors until we run out, or until we find
118  // out that there are more than 2 predecessors.
119  for (max_idx = 0; PI != EI && max_idx < 3; ++PI, ++max_idx) /*empty*/;
120
121  // If there are exactly two predecessors, then we want to nuke the PHI nodes
122  // altogether.  We cannot do this, however if this in this case however:
123  //
124  //  Loop:
125  //    %x = phi [X, Loop]
126  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
127  //    br Loop                 ;; %x2 does not dominate all uses
128  //
129  // This is because the PHI node input is actually taken from the predecessor
130  // basic block.  The only case this can happen is with a self loop, so we
131  // check for this case explicitly now.
132  //
133  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
134  if (max_idx == 2) {
135    PI = pred_begin(this);
136    BasicBlock *Other = *PI == Pred ? *++PI : *PI;
137
138    // Disable PHI elimination!
139    if (this == Other) max_idx = 3;
140  }
141
142  if (max_idx <= 2) {                // <= Two predecessors BEFORE I remove one?
143    // Yup, loop through and nuke the PHI nodes
144    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
145      PN->removeIncomingValue(Pred); // Remove the predecessor first...
146
147      assert(PN->getNumIncomingValues() == max_idx-1 &&
148	     "PHI node shouldn't have this many values!!!");
149
150      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
151      if (max_idx == 2)
152	PN->replaceAllUsesWith(PN->getOperand(0));
153      else // Otherwise there are no incoming values/edges, replace with dummy
154        PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
155      getInstList().pop_front();    // Remove the PHI node
156    }
157  } else {
158    // Okay, now we know that we need to remove predecessor #pred_idx from all
159    // PHI nodes.  Iterate over each PHI node fixing them up
160    for (iterator II = begin(); PHINode *PN = dyn_cast<PHINode>(&*II); ++II)
161      PN->removeIncomingValue(Pred);
162  }
163}
164
165
166// splitBasicBlock - This splits a basic block into two at the specified
167// instruction.  Note that all instructions BEFORE the specified iterator stay
168// as part of the original basic block, an unconditional branch is added to
169// the new BB, and the rest of the instructions in the BB are moved to the new
170// BB, including the old terminator.  This invalidates the iterator.
171//
172// Note that this only works on well formed basic blocks (must have a
173// terminator), and 'I' must not be the end of instruction list (which would
174// cause a degenerate basic block to be formed, having a terminator inside of
175// the basic block).
176//
177BasicBlock *BasicBlock::splitBasicBlock(iterator I) {
178  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
179  assert(I != InstList.end() &&
180	 "Trying to get me to create degenerate basic block!");
181
182  BasicBlock *New = new BasicBlock("", getParent());
183
184  // Go from the end of the basic block through to the iterator pointer, moving
185  // to the new basic block...
186  Instruction *Inst = 0;
187  do {
188    iterator EndIt = end();
189    Inst = InstList.remove(--EndIt);                  // Remove from end
190    New->InstList.push_front(Inst);                   // Add to front
191  } while (Inst != &*I);   // Loop until we move the specified instruction.
192
193  // Add a branch instruction to the newly formed basic block.
194  InstList.push_back(new BranchInst(New));
195
196  // Now we must loop through all of the successors of the New block (which
197  // _were_ the successors of the 'this' block), and update any PHI nodes in
198  // successors.  If there were PHI nodes in the successors, then they need to
199  // know that incoming branches will be from New, not from Old.
200  //
201  for (BasicBlock::succ_iterator I = succ_begin(New), E = succ_end(New);
202       I != E; ++I) {
203    // Loop over any phi nodes in the basic block, updating the BB field of
204    // incoming values...
205    BasicBlock *Successor = *I;
206    for (BasicBlock::iterator II = Successor->begin();
207         PHINode *PN = dyn_cast<PHINode>(&*II); ++II) {
208      int IDX = PN->getBasicBlockIndex(this);
209      while (IDX != -1) {
210        PN->setIncomingBlock((unsigned)IDX, New);
211        IDX = PN->getBasicBlockIndex(this);
212      }
213    }
214  }
215  return New;
216}
217