BasicBlock.cpp revision f8dfef74376dd85f37601855f7519d8256700dab
1//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BasicBlock class for the VMCore library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/BasicBlock.h"
15#include "llvm/Constants.h"
16#include "llvm/Instructions.h"
17#include "llvm/Type.h"
18#include "llvm/Support/CFG.h"
19#include "llvm/Support/LeakDetector.h"
20#include "llvm/Support/Compiler.h"
21#include "SymbolTableListTraitsImpl.h"
22#include <algorithm>
23using namespace llvm;
24
25inline ValueSymbolTable *
26ilist_traits<Instruction>::getSymTab(BasicBlock *BB) {
27  if (BB)
28    if (Function *F = BB->getParent())
29      return &F->getValueSymbolTable();
30  return 0;
31}
32
33
34namespace {
35  /// DummyInst - An instance of this class is used to mark the end of the
36  /// instruction list.  This is not a real instruction.
37  struct VISIBILITY_HIDDEN DummyInst : public Instruction {
38    DummyInst() : Instruction(Type::VoidTy, OtherOpsEnd, 0, 0) {
39      // This should not be garbage monitored.
40      LeakDetector::removeGarbageObject(this);
41    }
42
43    virtual Instruction *clone() const {
44      assert(0 && "Cannot clone EOL");abort();
45      return 0;
46    }
47    virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
48
49    // Methods for support type inquiry through isa, cast, and dyn_cast...
50    static inline bool classof(const DummyInst *) { return true; }
51    static inline bool classof(const Instruction *I) {
52      return I->getOpcode() == OtherOpsEnd;
53    }
54    static inline bool classof(const Value *V) {
55      return isa<Instruction>(V) && classof(cast<Instruction>(V));
56    }
57  };
58}
59
60Instruction *ilist_traits<Instruction>::createSentinel() {
61  return new DummyInst();
62}
63iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
64  return BB->getInstList();
65}
66
67// Explicit instantiation of SymbolTableListTraits since some of the methods
68// are not in the public header file...
69template class SymbolTableListTraits<Instruction, BasicBlock>;
70
71
72BasicBlock::BasicBlock(const std::string &Name, Function *NewParent,
73                       BasicBlock *InsertBefore)
74  : Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {
75
76  // Make sure that we get added to a function
77  LeakDetector::addGarbageObject(this);
78
79  if (InsertBefore) {
80    assert(NewParent &&
81           "Cannot insert block before another block with no function!");
82    NewParent->getBasicBlockList().insert(InsertBefore, this);
83  } else if (NewParent) {
84    NewParent->getBasicBlockList().push_back(this);
85  }
86
87  setName(Name);
88}
89
90
91BasicBlock::~BasicBlock() {
92  assert(getParent() == 0 && "BasicBlock still linked into the program!");
93  dropAllReferences();
94  InstList.clear();
95}
96
97void BasicBlock::setParent(Function *parent) {
98  if (getParent())
99    LeakDetector::addGarbageObject(this);
100
101  // Set Parent=parent, updating instruction symtab entries as appropriate.
102  InstList.setSymTabObject(&Parent, parent);
103
104  if (getParent())
105    LeakDetector::removeGarbageObject(this);
106}
107
108void BasicBlock::removeFromParent() {
109  getParent()->getBasicBlockList().remove(this);
110}
111
112void BasicBlock::eraseFromParent() {
113  getParent()->getBasicBlockList().erase(this);
114}
115
116/// moveBefore - Unlink this basic block from its current function and
117/// insert it into the function that MovePos lives in, right before MovePos.
118void BasicBlock::moveBefore(BasicBlock *MovePos) {
119  MovePos->getParent()->getBasicBlockList().splice(MovePos,
120                       getParent()->getBasicBlockList(), this);
121}
122
123/// moveAfter - Unlink this basic block from its current function and
124/// insert it into the function that MovePos lives in, right after MovePos.
125void BasicBlock::moveAfter(BasicBlock *MovePos) {
126  Function::iterator I = MovePos;
127  MovePos->getParent()->getBasicBlockList().splice(++I,
128                                       getParent()->getBasicBlockList(), this);
129}
130
131
132TerminatorInst *BasicBlock::getTerminator() {
133  if (InstList.empty()) return 0;
134  return dyn_cast<TerminatorInst>(&InstList.back());
135}
136
137const TerminatorInst *const BasicBlock::getTerminator() const {
138  if (InstList.empty()) return 0;
139  return dyn_cast<TerminatorInst>(&InstList.back());
140}
141
142Instruction* BasicBlock::getFirstNonPHI()
143{
144    BasicBlock::iterator i = begin();
145    // All valid basic blocks should have a terminator,
146    // which is not a PHINode. If we have invalid basic
147    // block we'll get assert when dereferencing past-the-end
148    // iterator.
149    while (isa<PHINode>(i)) ++i;
150    return &*i;
151}
152
153void BasicBlock::dropAllReferences() {
154  for(iterator I = begin(), E = end(); I != E; ++I)
155    I->dropAllReferences();
156}
157
158/// getSinglePredecessor - If this basic block has a single predecessor block,
159/// return the block, otherwise return a null pointer.
160BasicBlock *BasicBlock::getSinglePredecessor() {
161  pred_iterator PI = pred_begin(this), E = pred_end(this);
162  if (PI == E) return 0;         // No preds.
163  BasicBlock *ThePred = *PI;
164  ++PI;
165  return (PI == E) ? ThePred : 0 /*multiple preds*/;
166}
167
168/// removePredecessor - This method is used to notify a BasicBlock that the
169/// specified Predecessor of the block is no longer able to reach it.  This is
170/// actually not used to update the Predecessor list, but is actually used to
171/// update the PHI nodes that reside in the block.  Note that this should be
172/// called while the predecessor still refers to this block.
173///
174void BasicBlock::removePredecessor(BasicBlock *Pred,
175                                   bool DontDeleteUselessPHIs) {
176  assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
177          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
178         "removePredecessor: BB is not a predecessor!");
179
180  if (InstList.empty()) return;
181  PHINode *APN = dyn_cast<PHINode>(&front());
182  if (!APN) return;   // Quick exit.
183
184  // If there are exactly two predecessors, then we want to nuke the PHI nodes
185  // altogether.  However, we cannot do this, if this in this case:
186  //
187  //  Loop:
188  //    %x = phi [X, Loop]
189  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
190  //    br Loop                 ;; %x2 does not dominate all uses
191  //
192  // This is because the PHI node input is actually taken from the predecessor
193  // basic block.  The only case this can happen is with a self loop, so we
194  // check for this case explicitly now.
195  //
196  unsigned max_idx = APN->getNumIncomingValues();
197  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
198  if (max_idx == 2) {
199    BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
200
201    // Disable PHI elimination!
202    if (this == Other) max_idx = 3;
203  }
204
205  // <= Two predecessors BEFORE I remove one?
206  if (max_idx <= 2 && !DontDeleteUselessPHIs) {
207    // Yup, loop through and nuke the PHI nodes
208    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
209      // Remove the predecessor first.
210      PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
211
212      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
213      if (max_idx == 2) {
214        if (PN->getOperand(0) != PN)
215          PN->replaceAllUsesWith(PN->getOperand(0));
216        else
217          // We are left with an infinite loop with no entries: kill the PHI.
218          PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
219        getInstList().pop_front();    // Remove the PHI node
220      }
221
222      // If the PHI node already only had one entry, it got deleted by
223      // removeIncomingValue.
224    }
225  } else {
226    // Okay, now we know that we need to remove predecessor #pred_idx from all
227    // PHI nodes.  Iterate over each PHI node fixing them up
228    PHINode *PN;
229    for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
230      ++II;
231      PN->removeIncomingValue(Pred, false);
232      // If all incoming values to the Phi are the same, we can replace the Phi
233      // with that value.
234      Value* PNV = 0;
235      if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
236        PN->replaceAllUsesWith(PNV);
237        PN->eraseFromParent();
238      }
239    }
240  }
241}
242
243
244/// splitBasicBlock - This splits a basic block into two at the specified
245/// instruction.  Note that all instructions BEFORE the specified iterator stay
246/// as part of the original basic block, an unconditional branch is added to
247/// the new BB, and the rest of the instructions in the BB are moved to the new
248/// BB, including the old terminator.  This invalidates the iterator.
249///
250/// Note that this only works on well formed basic blocks (must have a
251/// terminator), and 'I' must not be the end of instruction list (which would
252/// cause a degenerate basic block to be formed, having a terminator inside of
253/// the basic block).
254///
255BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
256  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
257  assert(I != InstList.end() &&
258         "Trying to get me to create degenerate basic block!");
259
260  BasicBlock *New = new BasicBlock(BBName, getParent(), getNext());
261
262  // Move all of the specified instructions from the original basic block into
263  // the new basic block.
264  New->getInstList().splice(New->end(), this->getInstList(), I, end());
265
266  // Add a branch instruction to the newly formed basic block.
267  new BranchInst(New, this);
268
269  // Now we must loop through all of the successors of the New block (which
270  // _were_ the successors of the 'this' block), and update any PHI nodes in
271  // successors.  If there were PHI nodes in the successors, then they need to
272  // know that incoming branches will be from New, not from Old.
273  //
274  for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
275    // Loop over any phi nodes in the basic block, updating the BB field of
276    // incoming values...
277    BasicBlock *Successor = *I;
278    PHINode *PN;
279    for (BasicBlock::iterator II = Successor->begin();
280         (PN = dyn_cast<PHINode>(II)); ++II) {
281      int IDX = PN->getBasicBlockIndex(this);
282      while (IDX != -1) {
283        PN->setIncomingBlock((unsigned)IDX, New);
284        IDX = PN->getBasicBlockIndex(this);
285      }
286    }
287  }
288  return New;
289}
290