BasicBlock.cpp revision fed90b6d097d50881afb45e4d79f430db66dd741
1//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BasicBlock class for the VMCore library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/BasicBlock.h"
15#include "llvm/Constants.h"
16#include "llvm/Instructions.h"
17#include "llvm/Type.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/LeakDetector.h"
21#include "llvm/Support/Compiler.h"
22#include "SymbolTableListTraitsImpl.h"
23#include <algorithm>
24using namespace llvm;
25
26inline ValueSymbolTable *
27ilist_traits<Instruction>::getSymTab(BasicBlock *BB) {
28  if (BB)
29    if (Function *F = BB->getParent())
30      return &F->getValueSymbolTable();
31  return 0;
32}
33
34
35namespace {
36  /// DummyInst - An instance of this class is used to mark the end of the
37  /// instruction list.  This is not a real instruction.
38  struct VISIBILITY_HIDDEN DummyInst : public Instruction {
39    // allocate space for exactly zero operands
40    void *operator new(size_t s) {
41      return User::operator new(s, 0);
42    }
43    DummyInst() : Instruction(Type::VoidTy, OtherOpsEnd, 0, 0) {
44      // This should not be garbage monitored.
45      LeakDetector::removeGarbageObject(this);
46    }
47
48    Instruction *clone() const {
49      assert(0 && "Cannot clone EOL");abort();
50      return 0;
51    }
52    const char *getOpcodeName() const { return "*end-of-list-inst*"; }
53
54    // Methods for support type inquiry through isa, cast, and dyn_cast...
55    static inline bool classof(const DummyInst *) { return true; }
56    static inline bool classof(const Instruction *I) {
57      return I->getOpcode() == OtherOpsEnd;
58    }
59    static inline bool classof(const Value *V) {
60      return isa<Instruction>(V) && classof(cast<Instruction>(V));
61    }
62  };
63}
64
65Instruction *ilist_traits<Instruction>::createSentinel() {
66  return new DummyInst();
67}
68iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
69  return BB->getInstList();
70}
71
72// Explicit instantiation of SymbolTableListTraits since some of the methods
73// are not in the public header file...
74template class SymbolTableListTraits<Instruction, BasicBlock>;
75
76
77BasicBlock::BasicBlock(const std::string &Name, Function *NewParent,
78                       BasicBlock *InsertBefore)
79  : Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {
80
81  // Make sure that we get added to a function
82  LeakDetector::addGarbageObject(this);
83
84  if (InsertBefore) {
85    assert(NewParent &&
86           "Cannot insert block before another block with no function!");
87    NewParent->getBasicBlockList().insert(InsertBefore, this);
88  } else if (NewParent) {
89    NewParent->getBasicBlockList().push_back(this);
90  }
91
92  setName(Name);
93}
94
95
96BasicBlock::~BasicBlock() {
97  assert(getParent() == 0 && "BasicBlock still linked into the program!");
98  dropAllReferences();
99  InstList.clear();
100}
101
102void BasicBlock::setParent(Function *parent) {
103  if (getParent())
104    LeakDetector::addGarbageObject(this);
105
106  // Set Parent=parent, updating instruction symtab entries as appropriate.
107  InstList.setSymTabObject(&Parent, parent);
108
109  if (getParent())
110    LeakDetector::removeGarbageObject(this);
111}
112
113void BasicBlock::removeFromParent() {
114  getParent()->getBasicBlockList().remove(this);
115}
116
117void BasicBlock::eraseFromParent() {
118  getParent()->getBasicBlockList().erase(this);
119}
120
121/// moveBefore - Unlink this basic block from its current function and
122/// insert it into the function that MovePos lives in, right before MovePos.
123void BasicBlock::moveBefore(BasicBlock *MovePos) {
124  MovePos->getParent()->getBasicBlockList().splice(MovePos,
125                       getParent()->getBasicBlockList(), this);
126}
127
128/// moveAfter - Unlink this basic block from its current function and
129/// insert it into the function that MovePos lives in, right after MovePos.
130void BasicBlock::moveAfter(BasicBlock *MovePos) {
131  Function::iterator I = MovePos;
132  MovePos->getParent()->getBasicBlockList().splice(++I,
133                                       getParent()->getBasicBlockList(), this);
134}
135
136
137TerminatorInst *BasicBlock::getTerminator() {
138  if (InstList.empty()) return 0;
139  return dyn_cast<TerminatorInst>(&InstList.back());
140}
141
142const TerminatorInst *BasicBlock::getTerminator() const {
143  if (InstList.empty()) return 0;
144  return dyn_cast<TerminatorInst>(&InstList.back());
145}
146
147Instruction* BasicBlock::getFirstNonPHI() {
148  BasicBlock::iterator i = begin();
149  // All valid basic blocks should have a terminator,
150  // which is not a PHINode. If we have an invalid basic
151  // block we'll get an assertion failure when dereferencing
152  // a past-the-end iterator.
153  while (isa<PHINode>(i)) ++i;
154  return &*i;
155}
156
157void BasicBlock::dropAllReferences() {
158  for(iterator I = begin(), E = end(); I != E; ++I)
159    I->dropAllReferences();
160}
161
162/// getSinglePredecessor - If this basic block has a single predecessor block,
163/// return the block, otherwise return a null pointer.
164BasicBlock *BasicBlock::getSinglePredecessor() {
165  pred_iterator PI = pred_begin(this), E = pred_end(this);
166  if (PI == E) return 0;         // No preds.
167  BasicBlock *ThePred = *PI;
168  ++PI;
169  return (PI == E) ? ThePred : 0 /*multiple preds*/;
170}
171
172/// removePredecessor - This method is used to notify a BasicBlock that the
173/// specified Predecessor of the block is no longer able to reach it.  This is
174/// actually not used to update the Predecessor list, but is actually used to
175/// update the PHI nodes that reside in the block.  Note that this should be
176/// called while the predecessor still refers to this block.
177///
178void BasicBlock::removePredecessor(BasicBlock *Pred,
179                                   bool DontDeleteUselessPHIs) {
180  assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
181          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
182         "removePredecessor: BB is not a predecessor!");
183
184  if (InstList.empty()) return;
185  PHINode *APN = dyn_cast<PHINode>(&front());
186  if (!APN) return;   // Quick exit.
187
188  // If there are exactly two predecessors, then we want to nuke the PHI nodes
189  // altogether.  However, we cannot do this, if this in this case:
190  //
191  //  Loop:
192  //    %x = phi [X, Loop]
193  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
194  //    br Loop                 ;; %x2 does not dominate all uses
195  //
196  // This is because the PHI node input is actually taken from the predecessor
197  // basic block.  The only case this can happen is with a self loop, so we
198  // check for this case explicitly now.
199  //
200  unsigned max_idx = APN->getNumIncomingValues();
201  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
202  if (max_idx == 2) {
203    BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
204
205    // Disable PHI elimination!
206    if (this == Other) max_idx = 3;
207  }
208
209  // <= Two predecessors BEFORE I remove one?
210  if (max_idx <= 2 && !DontDeleteUselessPHIs) {
211    // Yup, loop through and nuke the PHI nodes
212    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
213      // Remove the predecessor first.
214      PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
215
216      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
217      if (max_idx == 2) {
218        if (PN->getOperand(0) != PN)
219          PN->replaceAllUsesWith(PN->getOperand(0));
220        else
221          // We are left with an infinite loop with no entries: kill the PHI.
222          PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
223        getInstList().pop_front();    // Remove the PHI node
224      }
225
226      // If the PHI node already only had one entry, it got deleted by
227      // removeIncomingValue.
228    }
229  } else {
230    // Okay, now we know that we need to remove predecessor #pred_idx from all
231    // PHI nodes.  Iterate over each PHI node fixing them up
232    PHINode *PN;
233    for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
234      ++II;
235      PN->removeIncomingValue(Pred, false);
236      // If all incoming values to the Phi are the same, we can replace the Phi
237      // with that value.
238      Value* PNV = 0;
239      if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
240        PN->replaceAllUsesWith(PNV);
241        PN->eraseFromParent();
242      }
243    }
244  }
245}
246
247
248/// splitBasicBlock - This splits a basic block into two at the specified
249/// instruction.  Note that all instructions BEFORE the specified iterator stay
250/// as part of the original basic block, an unconditional branch is added to
251/// the new BB, and the rest of the instructions in the BB are moved to the new
252/// BB, including the old terminator.  This invalidates the iterator.
253///
254/// Note that this only works on well formed basic blocks (must have a
255/// terminator), and 'I' must not be the end of instruction list (which would
256/// cause a degenerate basic block to be formed, having a terminator inside of
257/// the basic block).
258///
259BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
260  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
261  assert(I != InstList.end() &&
262         "Trying to get me to create degenerate basic block!");
263
264  BasicBlock *InsertBefore = next(Function::iterator(this))
265                               .getNodePtrUnchecked();
266  BasicBlock *New = BasicBlock::Create(BBName, getParent(), InsertBefore);
267
268  // Move all of the specified instructions from the original basic block into
269  // the new basic block.
270  New->getInstList().splice(New->end(), this->getInstList(), I, end());
271
272  // Add a branch instruction to the newly formed basic block.
273  BranchInst::Create(New, this);
274
275  // Now we must loop through all of the successors of the New block (which
276  // _were_ the successors of the 'this' block), and update any PHI nodes in
277  // successors.  If there were PHI nodes in the successors, then they need to
278  // know that incoming branches will be from New, not from Old.
279  //
280  for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
281    // Loop over any phi nodes in the basic block, updating the BB field of
282    // incoming values...
283    BasicBlock *Successor = *I;
284    PHINode *PN;
285    for (BasicBlock::iterator II = Successor->begin();
286         (PN = dyn_cast<PHINode>(II)); ++II) {
287      int IDX = PN->getBasicBlockIndex(this);
288      while (IDX != -1) {
289        PN->setIncomingBlock((unsigned)IDX, New);
290        IDX = PN->getBasicBlockIndex(this);
291      }
292    }
293  }
294  return New;
295}
296