Dominators.cpp revision 483e14ee0412a98db1fb0121528d8d621ae3dfdb
1//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
2//
3// This file provides a simple class to calculate the dominator set of a
4// function.
5//
6//===----------------------------------------------------------------------===//
7
8#include "llvm/Analysis/Dominators.h"
9#include "llvm/Transforms/UnifyFunctionExitNodes.h"
10#include "llvm/Function.h"
11#include "llvm/Support/CFG.h"
12#include "Support/DepthFirstIterator.h"
13#include "Support/STLExtras.h"
14#include "Support/SetOperations.h"
15#include <algorithm>
16using std::set;
17
18//===----------------------------------------------------------------------===//
19//  DominatorSet Implementation
20//===----------------------------------------------------------------------===//
21
22AnalysisID cfg::DominatorSet::ID(AnalysisID::create<cfg::DominatorSet>());
23AnalysisID cfg::DominatorSet::PostDomID(AnalysisID::create<cfg::DominatorSet>());
24
25bool cfg::DominatorSet::runOnFunction(Function *F) {
26  Doms.clear();   // Reset from the last time we were run...
27
28  if (isPostDominator())
29    calcPostDominatorSet(F);
30  else
31    calcForwardDominatorSet(F);
32  return false;
33}
34
35
36// calcForwardDominatorSet - This method calculates the forward dominator sets
37// for the specified function.
38//
39void cfg::DominatorSet::calcForwardDominatorSet(Function *M) {
40  Root = M->getEntryNode();
41  assert(pred_begin(Root) == pred_end(Root) &&
42	 "Root node has predecessors in function!");
43
44  bool Changed;
45  do {
46    Changed = false;
47
48    DomSetType WorkingSet;
49    df_iterator<Function*> It = df_begin(M), End = df_end(M);
50    for ( ; It != End; ++It) {
51      const BasicBlock *BB = *It;
52      pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
53      if (PI != PEnd) {                // Is there SOME predecessor?
54	// Loop until we get to a predecessor that has had it's dom set filled
55	// in at least once.  We are guaranteed to have this because we are
56	// traversing the graph in DFO and have handled start nodes specially.
57	//
58	while (Doms[*PI].size() == 0) ++PI;
59	WorkingSet = Doms[*PI];
60
61	for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
62	  DomSetType &PredSet = Doms[*PI];
63	  if (PredSet.size())
64	    set_intersect(WorkingSet, PredSet);
65	}
66      }
67
68      WorkingSet.insert(BB);           // A block always dominates itself
69      DomSetType &BBSet = Doms[BB];
70      if (BBSet != WorkingSet) {
71	BBSet.swap(WorkingSet);        // Constant time operation!
72	Changed = true;                // The sets changed.
73      }
74      WorkingSet.clear();              // Clear out the set for next iteration
75    }
76  } while (Changed);
77}
78
79// Postdominator set constructor.  This ctor converts the specified function to
80// only have a single exit node (return stmt), then calculates the post
81// dominance sets for the function.
82//
83void cfg::DominatorSet::calcPostDominatorSet(Function *M) {
84  // Since we require that the unify all exit nodes pass has been run, we know
85  // that there can be at most one return instruction in the function left.
86  // Get it.
87  //
88  Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
89
90  if (Root == 0) {  // No exit node for the function?  Postdomsets are all empty
91    for (Function::const_iterator MI = M->begin(), ME = M->end(); MI!=ME; ++MI)
92      Doms[*MI] = DomSetType();
93    return;
94  }
95
96  bool Changed;
97  do {
98    Changed = false;
99
100    set<const BasicBlock*> Visited;
101    DomSetType WorkingSet;
102    idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
103    for ( ; It != End; ++It) {
104      const BasicBlock *BB = *It;
105      succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
106      if (PI != PEnd) {                // Is there SOME predecessor?
107	// Loop until we get to a successor that has had it's dom set filled
108	// in at least once.  We are guaranteed to have this because we are
109	// traversing the graph in DFO and have handled start nodes specially.
110	//
111	while (Doms[*PI].size() == 0) ++PI;
112	WorkingSet = Doms[*PI];
113
114	for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
115	  DomSetType &PredSet = Doms[*PI];
116	  if (PredSet.size())
117	    set_intersect(WorkingSet, PredSet);
118	}
119      }
120
121      WorkingSet.insert(BB);           // A block always dominates itself
122      DomSetType &BBSet = Doms[BB];
123      if (BBSet != WorkingSet) {
124	BBSet.swap(WorkingSet);        // Constant time operation!
125	Changed = true;                // The sets changed.
126      }
127      WorkingSet.clear();              // Clear out the set for next iteration
128    }
129  } while (Changed);
130}
131
132// getAnalysisUsage - This obviously provides a dominator set, but it also
133// uses the UnifyFunctionExitNodes pass if building post-dominators
134//
135void cfg::DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
136  AU.setPreservesAll();
137  if (isPostDominator()) {
138    AU.addProvided(PostDomID);
139    AU.addRequired(UnifyFunctionExitNodes::ID);
140  } else {
141    AU.addProvided(ID);
142  }
143}
144
145
146//===----------------------------------------------------------------------===//
147//  ImmediateDominators Implementation
148//===----------------------------------------------------------------------===//
149
150AnalysisID cfg::ImmediateDominators::ID(AnalysisID::create<cfg::ImmediateDominators>());
151AnalysisID cfg::ImmediateDominators::PostDomID(AnalysisID::create<cfg::ImmediateDominators>());
152
153// calcIDoms - Calculate the immediate dominator mapping, given a set of
154// dominators for every basic block.
155void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
156  // Loop over all of the nodes that have dominators... figuring out the IDOM
157  // for each node...
158  //
159  for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
160       DI != DEnd; ++DI) {
161    const BasicBlock *BB = DI->first;
162    const DominatorSet::DomSetType &Dominators = DI->second;
163    unsigned DomSetSize = Dominators.size();
164    if (DomSetSize == 1) continue;  // Root node... IDom = null
165
166    // Loop over all dominators of this node.  This corresponds to looping over
167    // nodes in the dominator chain, looking for a node whose dominator set is
168    // equal to the current nodes, except that the current node does not exist
169    // in it.  This means that it is one level higher in the dom chain than the
170    // current node, and it is our idom!
171    //
172    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
173    DominatorSet::DomSetType::const_iterator End = Dominators.end();
174    for (; I != End; ++I) {   // Iterate over dominators...
175      // All of our dominators should form a chain, where the number of elements
176      // in the dominator set indicates what level the node is at in the chain.
177      // We want the node immediately above us, so it will have an identical
178      // dominator set, except that BB will not dominate it... therefore it's
179      // dominator set size will be one less than BB's...
180      //
181      if (DS.getDominators(*I).size() == DomSetSize - 1) {
182	IDoms[BB] = *I;
183	break;
184      }
185    }
186  }
187}
188
189
190//===----------------------------------------------------------------------===//
191//  DominatorTree Implementation
192//===----------------------------------------------------------------------===//
193
194AnalysisID cfg::DominatorTree::ID(AnalysisID::create<cfg::DominatorTree>());
195AnalysisID cfg::DominatorTree::PostDomID(AnalysisID::create<cfg::DominatorTree>());
196
197// DominatorTree::reset - Free all of the tree node memory.
198//
199void cfg::DominatorTree::reset() {
200  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
201    delete I->second;
202  Nodes.clear();
203}
204
205
206#if 0
207// Given immediate dominators, we can also calculate the dominator tree
208cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
209  : DominatorBase(IDoms.getRoot()) {
210  const Function *M = Root->getParent();
211
212  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
213
214  // Iterate over all nodes in depth first order...
215  for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) {
216    const BasicBlock *BB = *I, *IDom = IDoms[*I];
217
218    if (IDom != 0) {   // Ignore the root node and other nasty nodes
219      // We know that the immediate dominator should already have a node,
220      // because we are traversing the CFG in depth first order!
221      //
222      assert(Nodes[IDom] && "No node for IDOM?");
223      Node *IDomNode = Nodes[IDom];
224
225      // Add a new tree node for this BasicBlock, and link it as a child of
226      // IDomNode
227      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
228    }
229  }
230}
231#endif
232
233void cfg::DominatorTree::calculate(const DominatorSet &DS) {
234  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
235
236  if (!isPostDominator()) {
237    // Iterate over all nodes in depth first order...
238    for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
239         I != E; ++I) {
240      const BasicBlock *BB = *I;
241      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
242      unsigned DomSetSize = Dominators.size();
243      if (DomSetSize == 1) continue;  // Root node... IDom = null
244
245      // Loop over all dominators of this node. This corresponds to looping over
246      // nodes in the dominator chain, looking for a node whose dominator set is
247      // equal to the current nodes, except that the current node does not exist
248      // in it. This means that it is one level higher in the dom chain than the
249      // current node, and it is our idom!  We know that we have already added
250      // a DominatorTree node for our idom, because the idom must be a
251      // predecessor in the depth first order that we are iterating through the
252      // function.
253      //
254      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
255      DominatorSet::DomSetType::const_iterator End = Dominators.end();
256      for (; I != End; ++I) {   // Iterate over dominators...
257	// All of our dominators should form a chain, where the number of
258	// elements in the dominator set indicates what level the node is at in
259	// the chain.  We want the node immediately above us, so it will have
260	// an identical dominator set, except that BB will not dominate it...
261	// therefore it's dominator set size will be one less than BB's...
262	//
263	if (DS.getDominators(*I).size() == DomSetSize - 1) {
264	  // We know that the immediate dominator should already have a node,
265	  // because we are traversing the CFG in depth first order!
266	  //
267	  Node *IDomNode = Nodes[*I];
268	  assert(IDomNode && "No node for IDOM?");
269
270	  // Add a new tree node for this BasicBlock, and link it as a child of
271	  // IDomNode
272	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
273	  break;
274	}
275      }
276    }
277  } else if (Root) {
278    // Iterate over all nodes in depth first order...
279    for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
280         I != E; ++I) {
281      const BasicBlock *BB = *I;
282      const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
283      unsigned DomSetSize = Dominators.size();
284      if (DomSetSize == 1) continue;  // Root node... IDom = null
285
286      // Loop over all dominators of this node.  This corresponds to looping
287      // over nodes in the dominator chain, looking for a node whose dominator
288      // set is equal to the current nodes, except that the current node does
289      // not exist in it.  This means that it is one level higher in the dom
290      // chain than the current node, and it is our idom!  We know that we have
291      // already added a DominatorTree node for our idom, because the idom must
292      // be a predecessor in the depth first order that we are iterating through
293      // the function.
294      //
295      DominatorSet::DomSetType::const_iterator I = Dominators.begin();
296      DominatorSet::DomSetType::const_iterator End = Dominators.end();
297      for (; I != End; ++I) {   // Iterate over dominators...
298	// All of our dominators should form a chain, where the number
299	// of elements in the dominator set indicates what level the
300	// node is at in the chain.  We want the node immediately
301	// above us, so it will have an identical dominator set,
302	// except that BB will not dominate it... therefore it's
303	// dominator set size will be one less than BB's...
304	//
305	if (DS.getDominators(*I).size() == DomSetSize - 1) {
306	  // We know that the immediate dominator should already have a node,
307	  // because we are traversing the CFG in depth first order!
308	  //
309	  Node *IDomNode = Nodes[*I];
310	  assert(IDomNode && "No node for IDOM?");
311
312	  // Add a new tree node for this BasicBlock, and link it as a child of
313	  // IDomNode
314	  Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
315	  break;
316	}
317      }
318    }
319  }
320}
321
322
323
324//===----------------------------------------------------------------------===//
325//  DominanceFrontier Implementation
326//===----------------------------------------------------------------------===//
327
328AnalysisID cfg::DominanceFrontier::ID(AnalysisID::create<cfg::DominanceFrontier>());
329AnalysisID cfg::DominanceFrontier::PostDomID(AnalysisID::create<cfg::DominanceFrontier>());
330
331const cfg::DominanceFrontier::DomSetType &
332cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
333					const DominatorTree::Node *Node) {
334  // Loop over CFG successors to calculate DFlocal[Node]
335  const BasicBlock *BB = Node->getNode();
336  DomSetType &S = Frontiers[BB];       // The new set to fill in...
337
338  for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
339       SI != SE; ++SI) {
340    // Does Node immediately dominate this successor?
341    if (DT[*SI]->getIDom() != Node)
342      S.insert(*SI);
343  }
344
345  // At this point, S is DFlocal.  Now we union in DFup's of our children...
346  // Loop through and visit the nodes that Node immediately dominates (Node's
347  // children in the IDomTree)
348  //
349  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
350       NI != NE; ++NI) {
351    DominatorTree::Node *IDominee = *NI;
352    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
353
354    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
355    for (; CDFI != CDFE; ++CDFI) {
356      if (!Node->dominates(DT[*CDFI]))
357	S.insert(*CDFI);
358    }
359  }
360
361  return S;
362}
363
364const cfg::DominanceFrontier::DomSetType &
365cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
366					    const DominatorTree::Node *Node) {
367  // Loop over CFG successors to calculate DFlocal[Node]
368  const BasicBlock *BB = Node->getNode();
369  DomSetType &S = Frontiers[BB];       // The new set to fill in...
370  if (!Root) return S;
371
372  for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB);
373       SI != SE; ++SI) {
374    // Does Node immediately dominate this predeccessor?
375    if (DT[*SI]->getIDom() != Node)
376      S.insert(*SI);
377  }
378
379  // At this point, S is DFlocal.  Now we union in DFup's of our children...
380  // Loop through and visit the nodes that Node immediately dominates (Node's
381  // children in the IDomTree)
382  //
383  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
384       NI != NE; ++NI) {
385    DominatorTree::Node *IDominee = *NI;
386    const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
387
388    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
389    for (; CDFI != CDFE; ++CDFI) {
390      if (!Node->dominates(DT[*CDFI]))
391	S.insert(*CDFI);
392    }
393  }
394
395  return S;
396}
397