Dominators.cpp revision 7ae8c4c810935625bcdbdf832a33ef4032bad906
1//===- Dominators.cpp - Dominator Calculation -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements simple dominator construction algorithms for finding
11// forward dominators.  Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed.  Forward dominators are
13// needed to support the Verifier pass.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/Dominators.h"
18#include "llvm/Support/CFG.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/ADT/DepthFirstIterator.h"
21#include "llvm/ADT/SetOperations.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Instructions.h"
24#include "llvm/Support/Streams.h"
25#include <algorithm>
26using namespace llvm;
27
28namespace llvm {
29static std::ostream &operator<<(std::ostream &o,
30                                const std::set<BasicBlock*> &BBs) {
31  for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
32       I != E; ++I)
33    if (*I)
34      WriteAsOperand(o, *I, false);
35    else
36      o << " <<exit node>>";
37  return o;
38}
39}
40
41//===----------------------------------------------------------------------===//
42//  DominatorTree Implementation
43//===----------------------------------------------------------------------===//
44//
45// DominatorTree construction - This pass constructs immediate dominator
46// information for a flow-graph based on the algorithm described in this
47// document:
48//
49//   A Fast Algorithm for Finding Dominators in a Flowgraph
50//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
51//
52// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
53// LINK, but it turns out that the theoretically slower O(n*log(n))
54// implementation is actually faster than the "efficient" algorithm (even for
55// large CFGs) because the constant overheads are substantially smaller.  The
56// lower-complexity version can be enabled with the following #define:
57//
58#define BALANCE_IDOM_TREE 0
59//
60//===----------------------------------------------------------------------===//
61
62char DominatorTree::ID = 0;
63static RegisterPass<DominatorTree>
64E("domtree", "Dominator Tree Construction", true);
65
66// NewBB is split and now it has one successor. Update dominator tree to
67// reflect this change.
68void DominatorTree::splitBlock(BasicBlock *NewBB) {
69
70  assert(NewBB->getTerminator()->getNumSuccessors() == 1
71         && "NewBB should have a single successor!");
72  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
73
74  std::vector<BasicBlock*> PredBlocks;
75  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
76       PI != PE; ++PI)
77      PredBlocks.push_back(*PI);
78
79  assert(!PredBlocks.empty() && "No predblocks??");
80
81  // The newly inserted basic block will dominate existing basic blocks iff the
82  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
83  // the non-pred blocks, then they all must be the same block!
84  //
85  bool NewBBDominatesNewBBSucc = true;
86  {
87    BasicBlock *OnePred = PredBlocks[0];
88    unsigned i = 1, e = PredBlocks.size();
89    for (i = 1; !isReachableFromEntry(OnePred); ++i) {
90      assert(i != e && "Didn't find reachable pred?");
91      OnePred = PredBlocks[i];
92    }
93
94    for (; i != e; ++i)
95      if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)){
96        NewBBDominatesNewBBSucc = false;
97        break;
98      }
99
100    if (NewBBDominatesNewBBSucc)
101      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
102           PI != E; ++PI)
103        if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
104          NewBBDominatesNewBBSucc = false;
105          break;
106        }
107  }
108
109  // The other scenario where the new block can dominate its successors are when
110  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
111  // already.
112  if (!NewBBDominatesNewBBSucc) {
113    NewBBDominatesNewBBSucc = true;
114    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
115         PI != E; ++PI)
116      if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
117        NewBBDominatesNewBBSucc = false;
118        break;
119      }
120  }
121
122
123  // Find NewBB's immediate dominator and create new dominator tree node for NewBB.
124  BasicBlock *NewBBIDom = 0;
125  unsigned i = 0;
126  for (i = 0; i < PredBlocks.size(); ++i)
127    if (isReachableFromEntry(PredBlocks[i])) {
128      NewBBIDom = PredBlocks[i];
129      break;
130    }
131  assert(i != PredBlocks.size() && "No reachable preds?");
132  for (i = i + 1; i < PredBlocks.size(); ++i) {
133    if (isReachableFromEntry(PredBlocks[i]))
134      NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
135  }
136  assert(NewBBIDom && "No immediate dominator found??");
137
138  // Create the new dominator tree node... and set the idom of NewBB.
139  DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom);
140
141  // If NewBB strictly dominates other blocks, then it is now the immediate
142  // dominator of NewBBSucc.  Update the dominator tree as appropriate.
143  if (NewBBDominatesNewBBSucc) {
144    DomTreeNode *NewBBSuccNode = getNode(NewBBSucc);
145    changeImmediateDominator(NewBBSuccNode, NewBBNode);
146  }
147}
148
149unsigned DominatorTree::DFSPass(BasicBlock *V, unsigned N) {
150  // This is more understandable as a recursive algorithm, but we can't use the
151  // recursive algorithm due to stack depth issues.  Keep it here for
152  // documentation purposes.
153#if 0
154  InfoRec &VInfo = Info[Roots[i]];
155  VInfo.Semi = ++N;
156  VInfo.Label = V;
157
158  Vertex.push_back(V);        // Vertex[n] = V;
159  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
160  //Info[V].Child = 0;        // Child[v] = 0
161  VInfo.Size = 1;             // Size[v] = 1
162
163  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
164    InfoRec &SuccVInfo = Info[*SI];
165    if (SuccVInfo.Semi == 0) {
166      SuccVInfo.Parent = V;
167      N = DFSPass(*SI, N);
168    }
169  }
170#else
171  std::vector<std::pair<BasicBlock*, unsigned> > Worklist;
172  Worklist.push_back(std::make_pair(V, 0U));
173  while (!Worklist.empty()) {
174    BasicBlock *BB = Worklist.back().first;
175    unsigned NextSucc = Worklist.back().second;
176
177    // First time we visited this BB?
178    if (NextSucc == 0) {
179      InfoRec &BBInfo = Info[BB];
180      BBInfo.Semi = ++N;
181      BBInfo.Label = BB;
182
183      Vertex.push_back(BB);       // Vertex[n] = V;
184      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
185      //BBInfo[V].Child = 0;      // Child[v] = 0
186      BBInfo.Size = 1;            // Size[v] = 1
187    }
188
189    // If we are done with this block, remove it from the worklist.
190    if (NextSucc == BB->getTerminator()->getNumSuccessors()) {
191      Worklist.pop_back();
192      continue;
193    }
194
195    // Otherwise, increment the successor number for the next time we get to it.
196    ++Worklist.back().second;
197
198    // Visit the successor next, if it isn't already visited.
199    BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc);
200
201    InfoRec &SuccVInfo = Info[Succ];
202    if (SuccVInfo.Semi == 0) {
203      SuccVInfo.Parent = BB;
204      Worklist.push_back(std::make_pair(Succ, 0U));
205    }
206  }
207#endif
208  return N;
209}
210
211void DominatorTree::Compress(BasicBlock *VIn) {
212
213  std::vector<BasicBlock *> Work;
214  std::set<BasicBlock *> Visited;
215  BasicBlock *VInAncestor = Info[VIn].Ancestor;
216  InfoRec &VInVAInfo = Info[VInAncestor];
217
218  if (VInVAInfo.Ancestor != 0)
219    Work.push_back(VIn);
220
221  while (!Work.empty()) {
222    BasicBlock *V = Work.back();
223    InfoRec &VInfo = Info[V];
224    BasicBlock *VAncestor = VInfo.Ancestor;
225    InfoRec &VAInfo = Info[VAncestor];
226
227    // Process Ancestor first
228    if (Visited.count(VAncestor) == 0 && VAInfo.Ancestor != 0) {
229      Work.push_back(VAncestor);
230      Visited.insert(VAncestor);
231      continue;
232    }
233    Work.pop_back();
234
235    // Update VInfo based on Ancestor info
236    if (VAInfo.Ancestor == 0)
237      continue;
238    BasicBlock *VAncestorLabel = VAInfo.Label;
239    BasicBlock *VLabel = VInfo.Label;
240    if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
241      VInfo.Label = VAncestorLabel;
242    VInfo.Ancestor = VAInfo.Ancestor;
243  }
244}
245
246BasicBlock *DominatorTree::Eval(BasicBlock *V) {
247  InfoRec &VInfo = Info[V];
248#if !BALANCE_IDOM_TREE
249  // Higher-complexity but faster implementation
250  if (VInfo.Ancestor == 0)
251    return V;
252  Compress(V);
253  return VInfo.Label;
254#else
255  // Lower-complexity but slower implementation
256  if (VInfo.Ancestor == 0)
257    return VInfo.Label;
258  Compress(V);
259  BasicBlock *VLabel = VInfo.Label;
260
261  BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
262  if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
263    return VLabel;
264  else
265    return VAncestorLabel;
266#endif
267}
268
269void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
270#if !BALANCE_IDOM_TREE
271  // Higher-complexity but faster implementation
272  WInfo.Ancestor = V;
273#else
274  // Lower-complexity but slower implementation
275  BasicBlock *WLabel = WInfo.Label;
276  unsigned WLabelSemi = Info[WLabel].Semi;
277  BasicBlock *S = W;
278  InfoRec *SInfo = &Info[S];
279
280  BasicBlock *SChild = SInfo->Child;
281  InfoRec *SChildInfo = &Info[SChild];
282
283  while (WLabelSemi < Info[SChildInfo->Label].Semi) {
284    BasicBlock *SChildChild = SChildInfo->Child;
285    if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
286      SChildInfo->Ancestor = S;
287      SInfo->Child = SChild = SChildChild;
288      SChildInfo = &Info[SChild];
289    } else {
290      SChildInfo->Size = SInfo->Size;
291      S = SInfo->Ancestor = SChild;
292      SInfo = SChildInfo;
293      SChild = SChildChild;
294      SChildInfo = &Info[SChild];
295    }
296  }
297
298  InfoRec &VInfo = Info[V];
299  SInfo->Label = WLabel;
300
301  assert(V != W && "The optimization here will not work in this case!");
302  unsigned WSize = WInfo.Size;
303  unsigned VSize = (VInfo.Size += WSize);
304
305  if (VSize < 2*WSize)
306    std::swap(S, VInfo.Child);
307
308  while (S) {
309    SInfo = &Info[S];
310    SInfo->Ancestor = V;
311    S = SInfo->Child;
312  }
313#endif
314}
315
316void DominatorTree::calculate(Function &F) {
317  BasicBlock* Root = Roots[0];
318
319  // Add a node for the root...
320  DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
321
322  Vertex.push_back(0);
323
324  // Step #1: Number blocks in depth-first order and initialize variables used
325  // in later stages of the algorithm.
326  unsigned N = DFSPass(Root, 0);
327
328  for (unsigned i = N; i >= 2; --i) {
329    BasicBlock *W = Vertex[i];
330    InfoRec &WInfo = Info[W];
331
332    // Step #2: Calculate the semidominators of all vertices
333    for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
334      if (Info.count(*PI)) {  // Only if this predecessor is reachable!
335        unsigned SemiU = Info[Eval(*PI)].Semi;
336        if (SemiU < WInfo.Semi)
337          WInfo.Semi = SemiU;
338      }
339
340    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
341
342    BasicBlock *WParent = WInfo.Parent;
343    Link(WParent, W, WInfo);
344
345    // Step #3: Implicitly define the immediate dominator of vertices
346    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
347    while (!WParentBucket.empty()) {
348      BasicBlock *V = WParentBucket.back();
349      WParentBucket.pop_back();
350      BasicBlock *U = Eval(V);
351      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
352    }
353  }
354
355  // Step #4: Explicitly define the immediate dominator of each vertex
356  for (unsigned i = 2; i <= N; ++i) {
357    BasicBlock *W = Vertex[i];
358    BasicBlock *&WIDom = IDoms[W];
359    if (WIDom != Vertex[Info[W].Semi])
360      WIDom = IDoms[WIDom];
361  }
362
363  // Loop over all of the reachable blocks in the function...
364  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
365    if (BasicBlock *ImmDom = getIDom(I)) {  // Reachable block.
366      DomTreeNode *BBNode = DomTreeNodes[I];
367      if (BBNode) continue;  // Haven't calculated this node yet?
368
369      // Get or calculate the node for the immediate dominator
370      DomTreeNode *IDomNode = getNodeForBlock(ImmDom);
371
372      // Add a new tree node for this BasicBlock, and link it as a child of
373      // IDomNode
374      DomTreeNode *C = new DomTreeNode(I, IDomNode);
375      DomTreeNodes[I] = IDomNode->addChild(C);
376    }
377
378  // Free temporary memory used to construct idom's
379  Info.clear();
380  IDoms.clear();
381  std::vector<BasicBlock*>().swap(Vertex);
382
383  updateDFSNumbers();
384}
385
386void DominatorTreeBase::updateDFSNumbers() {
387  int dfsnum = 0;
388  // Iterate over all nodes in depth first order.
389  for (unsigned i = 0, e = Roots.size(); i != e; ++i)
390    for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
391           E = df_end(Roots[i]); I != E; ++I) {
392      BasicBlock *BB = *I;
393      DomTreeNode *BBNode = getNode(BB);
394      if (BBNode) {
395        if (!BBNode->getIDom())
396          BBNode->assignDFSNumber(dfsnum);
397      }
398  }
399  SlowQueries = 0;
400  DFSInfoValid = true;
401}
402
403/// isReachableFromEntry - Return true if A is dominated by the entry
404/// block of the function containing it.
405const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) {
406  assert (!isPostDominator()
407          && "This is not implemented for post dominators");
408  return dominates(&A->getParent()->getEntryBlock(), A);
409}
410
411// dominates - Return true if A dominates B. THis performs the
412// special checks necessary if A and B are in the same basic block.
413bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) {
414  BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
415  if (BBA != BBB) return dominates(BBA, BBB);
416
417  // It is not possible to determine dominance between two PHI nodes
418  // based on their ordering.
419  if (isa<PHINode>(A) && isa<PHINode>(B))
420    return false;
421
422  // Loop through the basic block until we find A or B.
423  BasicBlock::iterator I = BBA->begin();
424  for (; &*I != A && &*I != B; ++I) /*empty*/;
425
426  if(!IsPostDominators) {
427    // A dominates B if it is found first in the basic block.
428    return &*I == A;
429  } else {
430    // A post-dominates B if B is found first in the basic block.
431    return &*I == B;
432  }
433}
434
435// DominatorTreeBase::reset - Free all of the tree node memory.
436//
437void DominatorTreeBase::reset() {
438  for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(),
439         E = DomTreeNodes.end(); I != E; ++I)
440    delete I->second;
441  DomTreeNodes.clear();
442  IDoms.clear();
443  Roots.clear();
444  Vertex.clear();
445  RootNode = 0;
446}
447
448/// findNearestCommonDominator - Find nearest common dominator basic block
449/// for basic block A and B. If there is no such block then return NULL.
450BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A,
451                                                          BasicBlock *B) {
452
453  assert (!isPostDominator()
454          && "This is not implemented for post dominators");
455  assert (A->getParent() == B->getParent()
456          && "Two blocks are not in same function");
457
458  // If either A or B is a entry block then it is nearest common dominator.
459  BasicBlock &Entry  = A->getParent()->getEntryBlock();
460  if (A == &Entry || B == &Entry)
461    return &Entry;
462
463  // If B dominates A then B is nearest common dominator.
464  if (dominates(B,A))
465    return B;
466
467  // If A dominates B then A is nearest common dominator.
468  if (dominates(A,B))
469    return A;
470
471  DomTreeNode *NodeA = getNode(A);
472  DomTreeNode *NodeB = getNode(B);
473
474  // Collect NodeA dominators set.
475  SmallPtrSet<DomTreeNode*, 16> NodeADoms;
476  NodeADoms.insert(NodeA);
477  DomTreeNode *IDomA = NodeA->getIDom();
478  while(IDomA) {
479    NodeADoms.insert(IDomA);
480    IDomA = IDomA->getIDom();
481  }
482
483  // Walk NodeB immediate dominators chain and find common dominator node.
484  DomTreeNode *IDomB = NodeB->getIDom();
485  while(IDomB) {
486    if (NodeADoms.count(IDomB) != 0)
487      return IDomB->getBlock();
488
489    IDomB = IDomB->getIDom();
490  }
491
492  return NULL;
493}
494
495/// assignDFSNumber - Assign In and Out numbers while walking dominator tree
496/// in dfs order.
497void DomTreeNode::assignDFSNumber(int num) {
498  std::vector<DomTreeNode *>  workStack;
499  SmallPtrSet<DomTreeNode *, 32> Visited;
500
501  workStack.push_back(this);
502  Visited.insert(this);
503  this->DFSNumIn = num++;
504
505  while (!workStack.empty()) {
506    DomTreeNode  *Node = workStack.back();
507
508    bool visitChild = false;
509    for (std::vector<DomTreeNode*>::iterator DI = Node->begin(),
510           E = Node->end(); DI != E && !visitChild; ++DI) {
511      DomTreeNode *Child = *DI;
512      if (!Visited.insert(Child))
513        continue;
514
515      visitChild = true;
516      Child->DFSNumIn = num++;
517      workStack.push_back(Child);
518    }
519    if (!visitChild) {
520      // If we reach here means all children are visited
521      Node->DFSNumOut = num++;
522      workStack.pop_back();
523    }
524  }
525}
526
527void DomTreeNode::setIDom(DomTreeNode *NewIDom) {
528  assert(IDom && "No immediate dominator?");
529  if (IDom != NewIDom) {
530    std::vector<DomTreeNode*>::iterator I =
531      std::find(IDom->Children.begin(), IDom->Children.end(), this);
532    assert(I != IDom->Children.end() &&
533           "Not in immediate dominator children set!");
534    // I am no longer your child...
535    IDom->Children.erase(I);
536
537    // Switch to new dominator
538    IDom = NewIDom;
539    IDom->Children.push_back(this);
540  }
541}
542
543DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) {
544  DomTreeNode *&BBNode = DomTreeNodes[BB];
545  if (BBNode) return BBNode;
546
547  // Haven't calculated this node yet?  Get or calculate the node for the
548  // immediate dominator.
549  BasicBlock *IDom = getIDom(BB);
550  DomTreeNode *IDomNode = getNodeForBlock(IDom);
551
552  // Add a new tree node for this BasicBlock, and link it as a child of
553  // IDomNode
554  DomTreeNode *C = new DomTreeNode(BB, IDomNode);
555  DomTreeNodes[BB] = C;
556  return BBNode = IDomNode->addChild(C);
557}
558
559static std::ostream &operator<<(std::ostream &o,
560                                const DomTreeNode *Node) {
561  if (Node->getBlock())
562    WriteAsOperand(o, Node->getBlock(), false);
563  else
564    o << " <<exit node>>";
565  return o << "\n";
566}
567
568static void PrintDomTree(const DomTreeNode *N, std::ostream &o,
569                         unsigned Lev) {
570  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
571  for (DomTreeNode::const_iterator I = N->begin(), E = N->end();
572       I != E; ++I)
573    PrintDomTree(*I, o, Lev+1);
574}
575
576void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
577  o << "=============================--------------------------------\n"
578    << "Inorder Dominator Tree:\n";
579  PrintDomTree(getRootNode(), o, 1);
580}
581
582void DominatorTreeBase::dump() {
583  print (llvm::cerr);
584}
585
586bool DominatorTree::runOnFunction(Function &F) {
587  reset();     // Reset from the last time we were run...
588  Roots.push_back(&F.getEntryBlock());
589  calculate(F);
590  return false;
591}
592
593//===----------------------------------------------------------------------===//
594//  DominanceFrontier Implementation
595//===----------------------------------------------------------------------===//
596
597char DominanceFrontier::ID = 0;
598static RegisterPass<DominanceFrontier>
599G("domfrontier", "Dominance Frontier Construction", true);
600
601// NewBB is split and now it has one successor. Update dominace frontier to
602// reflect this change.
603void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
604
605  assert(NewBB->getTerminator()->getNumSuccessors() == 1
606         && "NewBB should have a single successor!");
607  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
608
609  std::vector<BasicBlock*> PredBlocks;
610  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
611       PI != PE; ++PI)
612      PredBlocks.push_back(*PI);
613
614  if (PredBlocks.empty())
615    // If NewBB does not have any predecessors then it is a entry block.
616    // In this case, NewBB and its successor NewBBSucc dominates all
617    // other blocks.
618    return;
619
620  DominatorTree &DT = getAnalysis<DominatorTree>();
621  bool NewBBDominatesNewBBSucc = true;
622  if (!DT.dominates(NewBB, NewBBSucc))
623    NewBBDominatesNewBBSucc = false;
624
625  // NewBBSucc inherites original NewBB frontier.
626  DominanceFrontier::iterator NewBBI = find(NewBB);
627  if (NewBBI != end()) {
628    DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
629    DominanceFrontier::DomSetType NewBBSuccSet;
630    NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
631    addBasicBlock(NewBBSucc, NewBBSuccSet);
632  }
633
634  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
635  // DF(PredBlocks[0]) without the stuff that the new block does not dominate
636  // a predecessor of.
637  if (NewBBDominatesNewBBSucc) {
638    DominanceFrontier::iterator DFI = find(PredBlocks[0]);
639    if (DFI != end()) {
640      DominanceFrontier::DomSetType Set = DFI->second;
641      // Filter out stuff in Set that we do not dominate a predecessor of.
642      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
643             E = Set.end(); SetI != E;) {
644        bool DominatesPred = false;
645        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
646             PI != E; ++PI)
647          if (DT.dominates(NewBB, *PI))
648            DominatesPred = true;
649        if (!DominatesPred)
650          Set.erase(SetI++);
651        else
652          ++SetI;
653      }
654
655      if (NewBBI != end()) {
656        DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
657        NewBBSet.insert(Set.begin(), Set.end());
658      } else
659        addBasicBlock(NewBB, Set);
660    }
661
662  } else {
663    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
664    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
665    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
666    DominanceFrontier::DomSetType NewDFSet;
667    NewDFSet.insert(NewBBSucc);
668    addBasicBlock(NewBB, NewDFSet);
669  }
670
671  // Now we must loop over all of the dominance frontiers in the function,
672  // replacing occurrences of NewBBSucc with NewBB in some cases.  All
673  // blocks that dominate a block in PredBlocks and contained NewBBSucc in
674  // their dominance frontier must be updated to contain NewBB instead.
675  //
676  for (Function::iterator FI = NewBB->getParent()->begin(),
677         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
678    DominanceFrontier::iterator DFI = find(FI);
679    if (DFI == end()) continue;  // unreachable block.
680
681    // Only consider dominators of NewBBSucc
682    if (!DFI->second.count(NewBBSucc)) continue;
683
684    bool BlockDominatesAny = false;
685    for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
686           BE = PredBlocks.end(); BI != BE; ++BI) {
687      if (DT.dominates(FI, *BI)) {
688        BlockDominatesAny = true;
689        break;
690      }
691    }
692
693    if (BlockDominatesAny) {
694      // If NewBBSucc should not stay in our dominator frontier, remove it.
695      // We remove it unless there is a predecessor of NewBBSucc that we
696      // dominate, but we don't strictly dominate NewBBSucc.
697      bool ShouldRemove = true;
698      if ((BasicBlock*)FI == NewBBSucc
699          || !DT.dominates(FI, NewBBSucc)) {
700        // Okay, we know that PredDom does not strictly dominate NewBBSucc.
701        // Check to see if it dominates any predecessors of NewBBSucc.
702        for (pred_iterator PI = pred_begin(NewBBSucc),
703               E = pred_end(NewBBSucc); PI != E; ++PI)
704          if (DT.dominates(FI, *PI)) {
705            ShouldRemove = false;
706            break;
707          }
708
709        if (ShouldRemove)
710          removeFromFrontier(DFI, NewBBSucc);
711        addToFrontier(DFI, NewBB);
712
713        break;
714      }
715    }
716  }
717}
718
719namespace {
720  class DFCalculateWorkObject {
721  public:
722    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
723                          const DomTreeNode *N,
724                          const DomTreeNode *PN)
725    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
726    BasicBlock *currentBB;
727    BasicBlock *parentBB;
728    const DomTreeNode *Node;
729    const DomTreeNode *parentNode;
730  };
731}
732
733const DominanceFrontier::DomSetType &
734DominanceFrontier::calculate(const DominatorTree &DT,
735                             const DomTreeNode *Node) {
736  BasicBlock *BB = Node->getBlock();
737  DomSetType *Result = NULL;
738
739  std::vector<DFCalculateWorkObject> workList;
740  SmallPtrSet<BasicBlock *, 32> visited;
741
742  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
743  do {
744    DFCalculateWorkObject *currentW = &workList.back();
745    assert (currentW && "Missing work object.");
746
747    BasicBlock *currentBB = currentW->currentBB;
748    BasicBlock *parentBB = currentW->parentBB;
749    const DomTreeNode *currentNode = currentW->Node;
750    const DomTreeNode *parentNode = currentW->parentNode;
751    assert (currentBB && "Invalid work object. Missing current Basic Block");
752    assert (currentNode && "Invalid work object. Missing current Node");
753    DomSetType &S = Frontiers[currentBB];
754
755    // Visit each block only once.
756    if (visited.count(currentBB) == 0) {
757      visited.insert(currentBB);
758
759      // Loop over CFG successors to calculate DFlocal[currentNode]
760      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
761           SI != SE; ++SI) {
762        // Does Node immediately dominate this successor?
763        if (DT[*SI]->getIDom() != currentNode)
764          S.insert(*SI);
765      }
766    }
767
768    // At this point, S is DFlocal.  Now we union in DFup's of our children...
769    // Loop through and visit the nodes that Node immediately dominates (Node's
770    // children in the IDomTree)
771    bool visitChild = false;
772    for (DomTreeNode::const_iterator NI = currentNode->begin(),
773           NE = currentNode->end(); NI != NE; ++NI) {
774      DomTreeNode *IDominee = *NI;
775      BasicBlock *childBB = IDominee->getBlock();
776      if (visited.count(childBB) == 0) {
777        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
778                                                 IDominee, currentNode));
779        visitChild = true;
780      }
781    }
782
783    // If all children are visited or there is any child then pop this block
784    // from the workList.
785    if (!visitChild) {
786
787      if (!parentBB) {
788        Result = &S;
789        break;
790      }
791
792      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
793      DomSetType &parentSet = Frontiers[parentBB];
794      for (; CDFI != CDFE; ++CDFI) {
795        if (!DT.properlyDominates(parentNode, DT[*CDFI]))
796          parentSet.insert(*CDFI);
797      }
798      workList.pop_back();
799    }
800
801  } while (!workList.empty());
802
803  return *Result;
804}
805
806void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
807  for (const_iterator I = begin(), E = end(); I != E; ++I) {
808    o << "  DomFrontier for BB";
809    if (I->first)
810      WriteAsOperand(o, I->first, false);
811    else
812      o << " <<exit node>>";
813    o << " is:\t" << I->second << "\n";
814  }
815}
816
817void DominanceFrontierBase::dump() {
818  print (llvm::cerr);
819}
820