Miscompilation.cpp revision 5a1c58d0094ff16dcd103f3752046d426ad5dd2c
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Linker.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Verifier.h"
24#include "llvm/Support/Mangler.h"
25#include "llvm/Transforms/Utils/Cloning.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/FileUtilities.h"
28#include "llvm/Config/config.h"   // for HAVE_LINK_R
29using namespace llvm;
30
31namespace llvm {
32  extern cl::list<std::string> InputArgv;
33}
34
35namespace {
36  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
37    BugDriver &BD;
38  public:
39    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
40
41    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
42                              std::vector<const PassInfo*> &Suffix);
43  };
44}
45
46/// TestResult - After passes have been split into a test group and a control
47/// group, see if they still break the program.
48///
49ReduceMiscompilingPasses::TestResult
50ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
51                                 std::vector<const PassInfo*> &Suffix) {
52  // First, run the program with just the Suffix passes.  If it is still broken
53  // with JUST the kept passes, discard the prefix passes.
54  std::cout << "Checking to see if '" << getPassesString(Suffix)
55            << "' compile correctly: ";
56
57  std::string BytecodeResult;
58  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
59    std::cerr << " Error running this sequence of passes"
60              << " on the input program!\n";
61    BD.setPassesToRun(Suffix);
62    BD.EmitProgressBytecode("pass-error",  false);
63    exit(BD.debugOptimizerCrash());
64  }
65
66  // Check to see if the finished program matches the reference output...
67  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
68    std::cout << " nope.\n";
69    if (Suffix.empty()) {
70      std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
71                << "no passes are run, nondeterministic program?\n";
72      exit(1);
73    }
74    return KeepSuffix;         // Miscompilation detected!
75  }
76  std::cout << " yup.\n";      // No miscompilation!
77
78  if (Prefix.empty()) return NoFailure;
79
80  // Next, see if the program is broken if we run the "prefix" passes first,
81  // then separately run the "kept" passes.
82  std::cout << "Checking to see if '" << getPassesString(Prefix)
83            << "' compile correctly: ";
84
85  // If it is not broken with the kept passes, it's possible that the prefix
86  // passes must be run before the kept passes to break it.  If the program
87  // WORKS after the prefix passes, but then fails if running the prefix AND
88  // kept passes, we can update our bytecode file to include the result of the
89  // prefix passes, then discard the prefix passes.
90  //
91  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
92    std::cerr << " Error running this sequence of passes"
93              << " on the input program!\n";
94    BD.setPassesToRun(Prefix);
95    BD.EmitProgressBytecode("pass-error",  false);
96    exit(BD.debugOptimizerCrash());
97  }
98
99  // If the prefix maintains the predicate by itself, only keep the prefix!
100  if (BD.diffProgram(BytecodeResult)) {
101    std::cout << " nope.\n";
102    sys::Path(BytecodeResult).destroyFile();
103    return KeepPrefix;
104  }
105  std::cout << " yup.\n";      // No miscompilation!
106
107  // Ok, so now we know that the prefix passes work, try running the suffix
108  // passes on the result of the prefix passes.
109  //
110  Module *PrefixOutput = ParseInputFile(BytecodeResult);
111  if (PrefixOutput == 0) {
112    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
113              << BytecodeResult << "'!\n";
114    exit(1);
115  }
116  sys::Path(BytecodeResult).destroyFile();  // No longer need the file on disk
117
118  // Don't check if there are no passes in the suffix.
119  if (Suffix.empty())
120    return NoFailure;
121
122  std::cout << "Checking to see if '" << getPassesString(Suffix)
123            << "' passes compile correctly after the '"
124            << getPassesString(Prefix) << "' passes: ";
125
126  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
127  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
128    std::cerr << " Error running this sequence of passes"
129              << " on the input program!\n";
130    BD.setPassesToRun(Suffix);
131    BD.EmitProgressBytecode("pass-error",  false);
132    exit(BD.debugOptimizerCrash());
133  }
134
135  // Run the result...
136  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
137    std::cout << " nope.\n";
138    delete OriginalInput;     // We pruned down the original input...
139    return KeepSuffix;
140  }
141
142  // Otherwise, we must not be running the bad pass anymore.
143  std::cout << " yup.\n";      // No miscompilation!
144  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
145  return NoFailure;
146}
147
148namespace {
149  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
150    BugDriver &BD;
151    bool (*TestFn)(BugDriver &, Module *, Module *);
152  public:
153    ReduceMiscompilingFunctions(BugDriver &bd,
154                                bool (*F)(BugDriver &, Module *, Module *))
155      : BD(bd), TestFn(F) {}
156
157    virtual TestResult doTest(std::vector<Function*> &Prefix,
158                              std::vector<Function*> &Suffix) {
159      if (!Suffix.empty() && TestFuncs(Suffix))
160        return KeepSuffix;
161      if (!Prefix.empty() && TestFuncs(Prefix))
162        return KeepPrefix;
163      return NoFailure;
164    }
165
166    bool TestFuncs(const std::vector<Function*> &Prefix);
167  };
168}
169
170/// TestMergedProgram - Given two modules, link them together and run the
171/// program, checking to see if the program matches the diff.  If the diff
172/// matches, return false, otherwise return true.  If the DeleteInputs argument
173/// is set to true then this function deletes both input modules before it
174/// returns.
175///
176static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
177                              bool DeleteInputs) {
178  // Link the two portions of the program back to together.
179  std::string ErrorMsg;
180  if (!DeleteInputs) {
181    M1 = CloneModule(M1);
182    M2 = CloneModule(M2);
183  }
184  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
185    std::cerr << BD.getToolName() << ": Error linking modules together:"
186              << ErrorMsg << '\n';
187    exit(1);
188  }
189  delete M2;   // We are done with this module.
190
191  Module *OldProgram = BD.swapProgramIn(M1);
192
193  // Execute the program.  If it does not match the expected output, we must
194  // return true.
195  bool Broken = BD.diffProgram();
196
197  // Delete the linked module & restore the original
198  BD.swapProgramIn(OldProgram);
199  delete M1;
200  return Broken;
201}
202
203/// TestFuncs - split functions in a Module into two groups: those that are
204/// under consideration for miscompilation vs. those that are not, and test
205/// accordingly. Each group of functions becomes a separate Module.
206///
207bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
208  // Test to see if the function is misoptimized if we ONLY run it on the
209  // functions listed in Funcs.
210  std::cout << "Checking to see if the program is misoptimized when "
211            << (Funcs.size()==1 ? "this function is" : "these functions are")
212            << " run through the pass"
213            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
214  PrintFunctionList(Funcs);
215  std::cout << '\n';
216
217  // Split the module into the two halves of the program we want.
218  Module *ToNotOptimize = CloneModule(BD.getProgram());
219  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
220
221  // Run the predicate, not that the predicate will delete both input modules.
222  return TestFn(BD, ToOptimize, ToNotOptimize);
223}
224
225/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
226/// modifying predominantly internal symbols rather than external ones.
227///
228static void DisambiguateGlobalSymbols(Module *M) {
229  // Try not to cause collisions by minimizing chances of renaming an
230  // already-external symbol, so take in external globals and functions as-is.
231  // The code should work correctly without disambiguation (assuming the same
232  // mangler is used by the two code generators), but having symbols with the
233  // same name causes warnings to be emitted by the code generator.
234  Mangler Mang(*M);
235  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
236    I->setName(Mang.getValueName(I));
237  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
238    I->setName(Mang.getValueName(I));
239}
240
241/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
242/// check to see if we can extract the loops in the region without obscuring the
243/// bug.  If so, it reduces the amount of code identified.
244///
245static bool ExtractLoops(BugDriver &BD,
246                         bool (*TestFn)(BugDriver &, Module *, Module *),
247                         std::vector<Function*> &MiscompiledFunctions) {
248  bool MadeChange = false;
249  while (1) {
250    Module *ToNotOptimize = CloneModule(BD.getProgram());
251    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
252                                                   MiscompiledFunctions);
253    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
254    if (!ToOptimizeLoopExtracted) {
255      // If the loop extractor crashed or if there were no extractible loops,
256      // then this chapter of our odyssey is over with.
257      delete ToNotOptimize;
258      delete ToOptimize;
259      return MadeChange;
260    }
261
262    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
263    delete ToOptimize;
264
265    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
266    // particular, we're not going to assume that the loop extractor works, so
267    // we're going to test the newly loop extracted program to make sure nothing
268    // has broken.  If something broke, then we'll inform the user and stop
269    // extraction.
270    AbstractInterpreter *AI = BD.switchToCBE();
271    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
272      BD.switchToInterpreter(AI);
273
274      // Merged program doesn't work anymore!
275      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
276                << " Please report a bug!\n";
277      std::cerr << "      Continuing on with un-loop-extracted version.\n";
278      delete ToNotOptimize;
279      delete ToOptimizeLoopExtracted;
280      return MadeChange;
281    }
282    BD.switchToInterpreter(AI);
283
284    std::cout << "  Testing after loop extraction:\n";
285    // Clone modules, the tester function will free them.
286    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
287    Module *TNOBackup  = CloneModule(ToNotOptimize);
288    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
289      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
290      // If the program is not still broken, then loop extraction did something
291      // that masked the error.  Stop loop extraction now.
292      delete TOLEBackup;
293      delete TNOBackup;
294      return MadeChange;
295    }
296    ToOptimizeLoopExtracted = TOLEBackup;
297    ToNotOptimize = TNOBackup;
298
299    std::cout << "*** Loop extraction successful!\n";
300
301    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
302    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
303           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
304      if (!I->isExternal())
305        MisCompFunctions.push_back(std::make_pair(I->getName(),
306                                                  I->getFunctionType()));
307
308    // Okay, great!  Now we know that we extracted a loop and that loop
309    // extraction both didn't break the program, and didn't mask the problem.
310    // Replace the current program with the loop extracted version, and try to
311    // extract another loop.
312    std::string ErrorMsg;
313    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
314      std::cerr << BD.getToolName() << ": Error linking modules together:"
315                << ErrorMsg << '\n';
316      exit(1);
317    }
318    delete ToOptimizeLoopExtracted;
319
320    // All of the Function*'s in the MiscompiledFunctions list are in the old
321    // module.  Update this list to include all of the functions in the
322    // optimized and loop extracted module.
323    MiscompiledFunctions.clear();
324    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
325      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first,
326                                                  MisCompFunctions[i].second);
327      assert(NewF && "Function not found??");
328      MiscompiledFunctions.push_back(NewF);
329    }
330
331    BD.setNewProgram(ToNotOptimize);
332    MadeChange = true;
333  }
334}
335
336namespace {
337  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
338    BugDriver &BD;
339    bool (*TestFn)(BugDriver &, Module *, Module *);
340    std::vector<Function*> FunctionsBeingTested;
341  public:
342    ReduceMiscompiledBlocks(BugDriver &bd,
343                            bool (*F)(BugDriver &, Module *, Module *),
344                            const std::vector<Function*> &Fns)
345      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
346
347    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
348                              std::vector<BasicBlock*> &Suffix) {
349      if (!Suffix.empty() && TestFuncs(Suffix))
350        return KeepSuffix;
351      if (TestFuncs(Prefix))
352        return KeepPrefix;
353      return NoFailure;
354    }
355
356    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
357  };
358}
359
360/// TestFuncs - Extract all blocks for the miscompiled functions except for the
361/// specified blocks.  If the problem still exists, return true.
362///
363bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
364  // Test to see if the function is misoptimized if we ONLY run it on the
365  // functions listed in Funcs.
366  std::cout << "Checking to see if the program is misoptimized when all ";
367  if (!BBs.empty()) {
368    std::cout << "but these " << BBs.size() << " blocks are extracted: ";
369    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
370      std::cout << BBs[i]->getName() << " ";
371    if (BBs.size() > 10) std::cout << "...";
372  } else {
373    std::cout << "blocks are extracted.";
374  }
375  std::cout << '\n';
376
377  // Split the module into the two halves of the program we want.
378  Module *ToNotOptimize = CloneModule(BD.getProgram());
379  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
380                                                 FunctionsBeingTested);
381
382  // Try the extraction.  If it doesn't work, then the block extractor crashed
383  // or something, in which case bugpoint can't chase down this possibility.
384  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
385    delete ToOptimize;
386    // Run the predicate, not that the predicate will delete both input modules.
387    return TestFn(BD, New, ToNotOptimize);
388  }
389  delete ToOptimize;
390  delete ToNotOptimize;
391  return false;
392}
393
394
395/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
396/// extract as many basic blocks from the region as possible without obscuring
397/// the bug.
398///
399static bool ExtractBlocks(BugDriver &BD,
400                          bool (*TestFn)(BugDriver &, Module *, Module *),
401                          std::vector<Function*> &MiscompiledFunctions) {
402  std::vector<BasicBlock*> Blocks;
403  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
404    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
405           E = MiscompiledFunctions[i]->end(); I != E; ++I)
406      Blocks.push_back(I);
407
408  // Use the list reducer to identify blocks that can be extracted without
409  // obscuring the bug.  The Blocks list will end up containing blocks that must
410  // be retained from the original program.
411  unsigned OldSize = Blocks.size();
412
413  // Check to see if all blocks are extractible first.
414  if (ReduceMiscompiledBlocks(BD, TestFn,
415                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
416    Blocks.clear();
417  } else {
418    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
419    if (Blocks.size() == OldSize)
420      return false;
421  }
422
423  Module *ProgClone = CloneModule(BD.getProgram());
424  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
425                                                MiscompiledFunctions);
426  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
427  if (Extracted == 0) {
428    // Weird, extraction should have worked.
429    std::cerr << "Nondeterministic problem extracting blocks??\n";
430    delete ProgClone;
431    delete ToExtract;
432    return false;
433  }
434
435  // Otherwise, block extraction succeeded.  Link the two program fragments back
436  // together.
437  delete ToExtract;
438
439  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
440  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
441       I != E; ++I)
442    if (!I->isExternal())
443      MisCompFunctions.push_back(std::make_pair(I->getName(),
444                                                I->getFunctionType()));
445
446  std::string ErrorMsg;
447  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
448    std::cerr << BD.getToolName() << ": Error linking modules together:"
449              << ErrorMsg << '\n';
450    exit(1);
451  }
452  delete Extracted;
453
454  // Set the new program and delete the old one.
455  BD.setNewProgram(ProgClone);
456
457  // Update the list of miscompiled functions.
458  MiscompiledFunctions.clear();
459
460  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
461    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first,
462                                            MisCompFunctions[i].second);
463    assert(NewF && "Function not found??");
464    MiscompiledFunctions.push_back(NewF);
465  }
466
467  return true;
468}
469
470
471/// DebugAMiscompilation - This is a generic driver to narrow down
472/// miscompilations, either in an optimization or a code generator.
473///
474static std::vector<Function*>
475DebugAMiscompilation(BugDriver &BD,
476                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
477  // Okay, now that we have reduced the list of passes which are causing the
478  // failure, see if we can pin down which functions are being
479  // miscompiled... first build a list of all of the non-external functions in
480  // the program.
481  std::vector<Function*> MiscompiledFunctions;
482  Module *Prog = BD.getProgram();
483  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
484    if (!I->isExternal())
485      MiscompiledFunctions.push_back(I);
486
487  // Do the reduction...
488  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
489
490  std::cout << "\n*** The following function"
491            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
492            << " being miscompiled: ";
493  PrintFunctionList(MiscompiledFunctions);
494  std::cout << '\n';
495
496  // See if we can rip any loops out of the miscompiled functions and still
497  // trigger the problem.
498  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
499    // Okay, we extracted some loops and the problem still appears.  See if we
500    // can eliminate some of the created functions from being candidates.
501
502    // Loop extraction can introduce functions with the same name (foo_code).
503    // Make sure to disambiguate the symbols so that when the program is split
504    // apart that we can link it back together again.
505    DisambiguateGlobalSymbols(BD.getProgram());
506
507    // Do the reduction...
508    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
509
510    std::cout << "\n*** The following function"
511              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
512              << " being miscompiled: ";
513    PrintFunctionList(MiscompiledFunctions);
514    std::cout << '\n';
515  }
516
517  if (ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
518    // Okay, we extracted some blocks and the problem still appears.  See if we
519    // can eliminate some of the created functions from being candidates.
520
521    // Block extraction can introduce functions with the same name (foo_code).
522    // Make sure to disambiguate the symbols so that when the program is split
523    // apart that we can link it back together again.
524    DisambiguateGlobalSymbols(BD.getProgram());
525
526    // Do the reduction...
527    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
528
529    std::cout << "\n*** The following function"
530              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
531              << " being miscompiled: ";
532    PrintFunctionList(MiscompiledFunctions);
533    std::cout << '\n';
534  }
535
536  return MiscompiledFunctions;
537}
538
539/// TestOptimizer - This is the predicate function used to check to see if the
540/// "Test" portion of the program is misoptimized.  If so, return true.  In any
541/// case, both module arguments are deleted.
542///
543static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
544  // Run the optimization passes on ToOptimize, producing a transformed version
545  // of the functions being tested.
546  std::cout << "  Optimizing functions being tested: ";
547  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
548                                     /*AutoDebugCrashes*/true);
549  std::cout << "done.\n";
550  delete Test;
551
552  std::cout << "  Checking to see if the merged program executes correctly: ";
553  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
554  std::cout << (Broken ? " nope.\n" : " yup.\n");
555  return Broken;
556}
557
558
559/// debugMiscompilation - This method is used when the passes selected are not
560/// crashing, but the generated output is semantically different from the
561/// input.
562///
563bool BugDriver::debugMiscompilation() {
564  // Make sure something was miscompiled...
565  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
566    std::cerr << "*** Optimized program matches reference output!  No problem "
567	      << "detected...\nbugpoint can't help you with your problem!\n";
568    return false;
569  }
570
571  std::cout << "\n*** Found miscompiling pass"
572            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
573            << getPassesString(getPassesToRun()) << '\n';
574  EmitProgressBytecode("passinput");
575
576  std::vector<Function*> MiscompiledFunctions =
577    DebugAMiscompilation(*this, TestOptimizer);
578
579  // Output a bunch of bytecode files for the user...
580  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
581  Module *ToNotOptimize = CloneModule(getProgram());
582  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
583                                                 MiscompiledFunctions);
584
585  std::cout << "  Non-optimized portion: ";
586  ToNotOptimize = swapProgramIn(ToNotOptimize);
587  EmitProgressBytecode("tonotoptimize", true);
588  setNewProgram(ToNotOptimize);   // Delete hacked module.
589
590  std::cout << "  Portion that is input to optimizer: ";
591  ToOptimize = swapProgramIn(ToOptimize);
592  EmitProgressBytecode("tooptimize");
593  setNewProgram(ToOptimize);      // Delete hacked module.
594
595  return false;
596}
597
598/// CleanupAndPrepareModules - Get the specified modules ready for code
599/// generator testing.
600///
601static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
602                                     Module *Safe) {
603  // Clean up the modules, removing extra cruft that we don't need anymore...
604  Test = BD.performFinalCleanups(Test);
605
606  // If we are executing the JIT, we have several nasty issues to take care of.
607  if (!BD.isExecutingJIT()) return;
608
609  // First, if the main function is in the Safe module, we must add a stub to
610  // the Test module to call into it.  Thus, we create a new function `main'
611  // which just calls the old one.
612  if (Function *oldMain = Safe->getNamedFunction("main"))
613    if (!oldMain->isExternal()) {
614      // Rename it
615      oldMain->setName("llvm_bugpoint_old_main");
616      // Create a NEW `main' function with same type in the test module.
617      Function *newMain = new Function(oldMain->getFunctionType(),
618                                       GlobalValue::ExternalLinkage,
619                                       "main", Test);
620      // Create an `oldmain' prototype in the test module, which will
621      // corresponds to the real main function in the same module.
622      Function *oldMainProto = new Function(oldMain->getFunctionType(),
623                                            GlobalValue::ExternalLinkage,
624                                            oldMain->getName(), Test);
625      // Set up and remember the argument list for the main function.
626      std::vector<Value*> args;
627      for (Function::arg_iterator
628             I = newMain->arg_begin(), E = newMain->arg_end(),
629             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
630        I->setName(OI->getName());    // Copy argument names from oldMain
631        args.push_back(I);
632      }
633
634      // Call the old main function and return its result
635      BasicBlock *BB = new BasicBlock("entry", newMain);
636      CallInst *call = new CallInst(oldMainProto, args, "", BB);
637
638      // If the type of old function wasn't void, return value of call
639      new ReturnInst(call, BB);
640    }
641
642  // The second nasty issue we must deal with in the JIT is that the Safe
643  // module cannot directly reference any functions defined in the test
644  // module.  Instead, we use a JIT API call to dynamically resolve the
645  // symbol.
646
647  // Add the resolver to the Safe module.
648  // Prototype: void *getPointerToNamedFunction(const char* Name)
649  Function *resolverFunc =
650    Safe->getOrInsertFunction("getPointerToNamedFunction",
651                              PointerType::get(Type::SByteTy),
652                              PointerType::get(Type::SByteTy), 0);
653
654  // Use the function we just added to get addresses of functions we need.
655  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
656    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
657        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
658      Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType());
659
660      // Don't forward functions which are external in the test module too.
661      if (TestFn && !TestFn->isExternal()) {
662        // 1. Add a string constant with its name to the global file
663        Constant *InitArray = ConstantArray::get(F->getName());
664        GlobalVariable *funcName =
665          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
666                             GlobalValue::InternalLinkage, InitArray,
667                             F->getName() + "_name", Safe);
668
669        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
670        // sbyte* so it matches the signature of the resolver function.
671
672        // GetElementPtr *funcName, ulong 0, ulong 0
673        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
674        Value *GEP =
675          ConstantExpr::getGetElementPtr(funcName, GEPargs);
676        std::vector<Value*> ResolverArgs;
677        ResolverArgs.push_back(GEP);
678
679        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
680        // function that dynamically resolves the calls to F via our JIT API
681        if (F->use_begin() != F->use_end()) {
682          // Construct a new stub function that will re-route calls to F
683          const FunctionType *FuncTy = F->getFunctionType();
684          Function *FuncWrapper = new Function(FuncTy,
685                                               GlobalValue::InternalLinkage,
686                                               F->getName() + "_wrapper",
687                                               F->getParent());
688          BasicBlock *Header = new BasicBlock("header", FuncWrapper);
689
690          // Resolve the call to function F via the JIT API:
691          //
692          // call resolver(GetElementPtr...)
693          CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
694                                           "resolver");
695          Header->getInstList().push_back(resolve);
696          // cast the result from the resolver to correctly-typed function
697          CastInst *castResolver =
698            new CastInst(resolve, PointerType::get(F->getFunctionType()),
699                         "resolverCast");
700          Header->getInstList().push_back(castResolver);
701
702          // Save the argument list
703          std::vector<Value*> Args;
704          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
705                 e = FuncWrapper->arg_end(); i != e; ++i)
706            Args.push_back(i);
707
708          // Pass on the arguments to the real function, return its result
709          if (F->getReturnType() == Type::VoidTy) {
710            CallInst *Call = new CallInst(castResolver, Args);
711            Header->getInstList().push_back(Call);
712            ReturnInst *Ret = new ReturnInst();
713            Header->getInstList().push_back(Ret);
714          } else {
715            CallInst *Call = new CallInst(castResolver, Args, "redir");
716            Header->getInstList().push_back(Call);
717            ReturnInst *Ret = new ReturnInst(Call);
718            Header->getInstList().push_back(Ret);
719          }
720
721          // Use the wrapper function instead of the old function
722          F->replaceAllUsesWith(FuncWrapper);
723        }
724      }
725    }
726  }
727
728  if (verifyModule(*Test) || verifyModule(*Safe)) {
729    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
730    abort();
731  }
732}
733
734
735
736/// TestCodeGenerator - This is the predicate function used to check to see if
737/// the "Test" portion of the program is miscompiled by the code generator under
738/// test.  If so, return true.  In any case, both module arguments are deleted.
739///
740static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
741  CleanupAndPrepareModules(BD, Test, Safe);
742
743  sys::Path TestModuleBC("bugpoint.test.bc");
744  TestModuleBC.makeUnique();
745  if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
746    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
747    exit(1);
748  }
749  delete Test;
750
751  // Make the shared library
752  sys::Path SafeModuleBC("bugpoint.safe.bc");
753  SafeModuleBC.makeUnique();
754
755  if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
756    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
757    exit(1);
758  }
759  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
760  delete Safe;
761
762  // Run the code generator on the `Test' code, loading the shared library.
763  // The function returns whether or not the new output differs from reference.
764  int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
765
766  if (Result)
767    std::cerr << ": still failing!\n";
768  else
769    std::cerr << ": didn't fail.\n";
770  TestModuleBC.destroyFile();
771  SafeModuleBC.destroyFile();
772  sys::Path(SharedObject).destroyFile();
773
774  return Result;
775}
776
777
778/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
779///
780bool BugDriver::debugCodeGenerator() {
781  if ((void*)cbe == (void*)Interpreter) {
782    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
783    std::cout << "\n*** The C backend cannot match the reference diff, but it "
784              << "is used as the 'known good'\n    code generator, so I can't"
785              << " debug it.  Perhaps you have a front-end problem?\n    As a"
786              << " sanity check, I left the result of executing the program "
787              << "with the C backend\n    in this file for you: '"
788              << Result << "'.\n";
789    return true;
790  }
791
792  DisambiguateGlobalSymbols(Program);
793
794  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
795
796  // Split the module into the two halves of the program we want.
797  Module *ToNotCodeGen = CloneModule(getProgram());
798  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
799
800  // Condition the modules
801  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
802
803  sys::Path TestModuleBC("bugpoint.test.bc");
804  TestModuleBC.makeUnique();
805
806  if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
807    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
808    exit(1);
809  }
810  delete ToCodeGen;
811
812  // Make the shared library
813  sys::Path SafeModuleBC("bugpoint.safe.bc");
814  SafeModuleBC.makeUnique();
815
816  if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
817    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
818    exit(1);
819  }
820  std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
821  delete ToNotCodeGen;
822
823  std::cout << "You can reproduce the problem with the command line: \n";
824  if (isExecutingJIT()) {
825    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
826  } else {
827    std::cout << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
828    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
829              << ".s -o " << TestModuleBC << ".exe";
830#if defined (HAVE_LINK_R)
831    std::cout << "-Wl,-R.";
832#endif
833    std::cout << "\n";
834    std::cout << "  " << TestModuleBC << ".exe";
835  }
836  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
837    std::cout << " " << InputArgv[i];
838  std::cout << '\n';
839  std::cout << "The shared object was created with:\n  llc -march=c "
840            << SafeModuleBC << " -o temporary.c\n"
841            << "  gcc -xc temporary.c -O2 -o " << SharedObject
842#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
843            << " -G"            // Compile a shared library, `-G' for Sparc
844#else
845            << " -shared"       // `-shared' for Linux/X86, maybe others
846#endif
847            << " -fno-strict-aliasing\n";
848
849  return false;
850}
851