Miscompilation.cpp revision 8c194eaa0577a207bb1ea91bf2c2a5e664fce9ee
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Analysis/Verifier.h"
23#include "llvm/Support/Mangler.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include "llvm/Transforms/Utils/Linker.h"
26#include "Support/CommandLine.h"
27#include "Support/FileUtilities.h"
28using namespace llvm;
29
30namespace llvm {
31  extern cl::list<std::string> InputArgv;
32}
33
34namespace {
35  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
36    BugDriver &BD;
37  public:
38    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
39
40    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
41                              std::vector<const PassInfo*> &Suffix);
42  };
43}
44
45/// TestResult - After passes have been split into a test group and a control
46/// group, see if they still break the program.
47///
48ReduceMiscompilingPasses::TestResult
49ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
50                                 std::vector<const PassInfo*> &Suffix) {
51  // First, run the program with just the Suffix passes.  If it is still broken
52  // with JUST the kept passes, discard the prefix passes.
53  std::cout << "Checking to see if '" << getPassesString(Suffix)
54            << "' compile correctly: ";
55
56  std::string BytecodeResult;
57  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
58    std::cerr << " Error running this sequence of passes"
59              << " on the input program!\n";
60    BD.setPassesToRun(Suffix);
61    BD.EmitProgressBytecode("pass-error",  false);
62    exit(BD.debugOptimizerCrash());
63  }
64
65  // Check to see if the finished program matches the reference output...
66  if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
67    std::cout << "nope.\n";
68    return KeepSuffix;        // Miscompilation detected!
69  }
70  std::cout << "yup.\n";      // No miscompilation!
71
72  if (Prefix.empty()) return NoFailure;
73
74  // Next, see if the program is broken if we run the "prefix" passes first,
75  // then separately run the "kept" passes.
76  std::cout << "Checking to see if '" << getPassesString(Prefix)
77            << "' compile correctly: ";
78
79  // If it is not broken with the kept passes, it's possible that the prefix
80  // passes must be run before the kept passes to break it.  If the program
81  // WORKS after the prefix passes, but then fails if running the prefix AND
82  // kept passes, we can update our bytecode file to include the result of the
83  // prefix passes, then discard the prefix passes.
84  //
85  if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
86    std::cerr << " Error running this sequence of passes"
87              << " on the input program!\n";
88    BD.setPassesToRun(Prefix);
89    BD.EmitProgressBytecode("pass-error",  false);
90    exit(BD.debugOptimizerCrash());
91  }
92
93  // If the prefix maintains the predicate by itself, only keep the prefix!
94  if (BD.diffProgram(BytecodeResult)) {
95    std::cout << "nope.\n";
96    removeFile(BytecodeResult);
97    return KeepPrefix;
98  }
99  std::cout << "yup.\n";      // No miscompilation!
100
101  // Ok, so now we know that the prefix passes work, try running the suffix
102  // passes on the result of the prefix passes.
103  //
104  Module *PrefixOutput = ParseInputFile(BytecodeResult);
105  if (PrefixOutput == 0) {
106    std::cerr << BD.getToolName() << ": Error reading bytecode file '"
107              << BytecodeResult << "'!\n";
108    exit(1);
109  }
110  removeFile(BytecodeResult);  // No longer need the file on disk
111
112  std::cout << "Checking to see if '" << getPassesString(Suffix)
113            << "' passes compile correctly after the '"
114            << getPassesString(Prefix) << "' passes: ";
115
116  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
117  if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
118    std::cerr << " Error running this sequence of passes"
119              << " on the input program!\n";
120    BD.setPassesToRun(Suffix);
121    BD.EmitProgressBytecode("pass-error",  false);
122    exit(BD.debugOptimizerCrash());
123  }
124
125  // Run the result...
126  if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
127    std::cout << "nope.\n";
128    delete OriginalInput;     // We pruned down the original input...
129    return KeepSuffix;
130  }
131
132  // Otherwise, we must not be running the bad pass anymore.
133  std::cout << "yup.\n";      // No miscompilation!
134  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
135  return NoFailure;
136}
137
138namespace {
139  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
140    BugDriver &BD;
141    bool (*TestFn)(BugDriver &, Module *, Module *);
142  public:
143    ReduceMiscompilingFunctions(BugDriver &bd,
144                                bool (*F)(BugDriver &, Module *, Module *))
145      : BD(bd), TestFn(F) {}
146
147    virtual TestResult doTest(std::vector<Function*> &Prefix,
148                              std::vector<Function*> &Suffix) {
149      if (!Suffix.empty() && TestFuncs(Suffix))
150        return KeepSuffix;
151      if (!Prefix.empty() && TestFuncs(Prefix))
152        return KeepPrefix;
153      return NoFailure;
154    }
155
156    bool TestFuncs(const std::vector<Function*> &Prefix);
157  };
158}
159
160/// TestMergedProgram - Given two modules, link them together and run the
161/// program, checking to see if the program matches the diff.  If the diff
162/// matches, return false, otherwise return true.  If the DeleteInputs argument
163/// is set to true then this function deletes both input modules before it
164/// returns.
165///
166static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
167                              bool DeleteInputs) {
168  // Link the two portions of the program back to together.
169  std::string ErrorMsg;
170  if (!DeleteInputs) M1 = CloneModule(M1);
171  if (LinkModules(M1, M2, &ErrorMsg)) {
172    std::cerr << BD.getToolName() << ": Error linking modules together:"
173              << ErrorMsg << "\n";
174    exit(1);
175  }
176  if (DeleteInputs) delete M2;  // We are done with this module...
177
178  Module *OldProgram = BD.swapProgramIn(M1);
179
180  // Execute the program.  If it does not match the expected output, we must
181  // return true.
182  bool Broken = BD.diffProgram();
183
184  // Delete the linked module & restore the original
185  BD.swapProgramIn(OldProgram);
186  delete M1;
187  return Broken;
188}
189
190/// TestFuncs - split functions in a Module into two groups: those that are
191/// under consideration for miscompilation vs. those that are not, and test
192/// accordingly. Each group of functions becomes a separate Module.
193///
194bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
195  // Test to see if the function is misoptimized if we ONLY run it on the
196  // functions listed in Funcs.
197  std::cout << "Checking to see if the program is misoptimized when "
198            << (Funcs.size()==1 ? "this function is" : "these functions are")
199            << " run through the pass"
200            << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
201  PrintFunctionList(Funcs);
202  std::cout << "\n";
203
204  // Split the module into the two halves of the program we want.
205  Module *ToNotOptimize = CloneModule(BD.getProgram());
206  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
207
208  // Run the predicate, not that the predicate will delete both input modules.
209  return TestFn(BD, ToOptimize, ToNotOptimize);
210}
211
212/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
213/// modifying predominantly internal symbols rather than external ones.
214///
215static void DisambiguateGlobalSymbols(Module *M) {
216  // Try not to cause collisions by minimizing chances of renaming an
217  // already-external symbol, so take in external globals and functions as-is.
218  // The code should work correctly without disambiguation (assuming the same
219  // mangler is used by the two code generators), but having symbols with the
220  // same name causes warnings to be emitted by the code generator.
221  Mangler Mang(*M);
222  for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
223    I->setName(Mang.getValueName(I));
224  for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
225    I->setName(Mang.getValueName(I));
226}
227
228/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
229/// check to see if we can extract the loops in the region without obscuring the
230/// bug.  If so, it reduces the amount of code identified.
231///
232static bool ExtractLoops(BugDriver &BD,
233                         bool (*TestFn)(BugDriver &, Module *, Module *),
234                         std::vector<Function*> &MiscompiledFunctions) {
235  bool MadeChange = false;
236  while (1) {
237    Module *ToNotOptimize = CloneModule(BD.getProgram());
238    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
239                                                   MiscompiledFunctions);
240    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
241    if (!ToOptimizeLoopExtracted) {
242      // If the loop extractor crashed or if there were no extractible loops,
243      // then this chapter of our odyssey is over with.
244      delete ToNotOptimize;
245      delete ToOptimize;
246      return MadeChange;
247    }
248
249    std::cerr << "Extracted a loop from the breaking portion of the program.\n";
250    delete ToOptimize;
251
252    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
253    // particular, we're not going to assume that the loop extractor works, so
254    // we're going to test the newly loop extracted program to make sure nothing
255    // has broken.  If something broke, then we'll inform the user and stop
256    // extraction.
257    AbstractInterpreter *AI = BD.switchToCBE();
258    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
259      BD.switchToInterpreter(AI);
260
261      // Merged program doesn't work anymore!
262      std::cerr << "  *** ERROR: Loop extraction broke the program. :("
263                << " Please report a bug!\n";
264      std::cerr << "      Continuing on with un-loop-extracted version.\n";
265      delete ToNotOptimize;
266      delete ToOptimizeLoopExtracted;
267      return MadeChange;
268    }
269    BD.switchToInterpreter(AI);
270
271    std::cout << "  Testing after loop extraction:\n";
272    // Clone modules, the tester function will free them.
273    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
274    Module *TNOBackup  = CloneModule(ToNotOptimize);
275    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
276      std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
277      // If the program is not still broken, then loop extraction did something
278      // that masked the error.  Stop loop extraction now.
279      delete TOLEBackup;
280      delete TNOBackup;
281      return MadeChange;
282    }
283    ToOptimizeLoopExtracted = TOLEBackup;
284    ToNotOptimize = TNOBackup;
285
286    std::cout << "*** Loop extraction successful!\n";
287
288    // Okay, great!  Now we know that we extracted a loop and that loop
289    // extraction both didn't break the program, and didn't mask the problem.
290    // Replace the current program with the loop extracted version, and try to
291    // extract another loop.
292    std::string ErrorMsg;
293    if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
294      std::cerr << BD.getToolName() << ": Error linking modules together:"
295                << ErrorMsg << "\n";
296      exit(1);
297    }
298
299    // All of the Function*'s in the MiscompiledFunctions list are in the old
300    // module.  Update this list to include all of the functions in the
301    // optimized and loop extracted module.
302    MiscompiledFunctions.clear();
303    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
304           E = ToOptimizeLoopExtracted->end(); I != E; ++I) {
305      if (!I->isExternal()) {
306        Function *NewF = ToNotOptimize->getFunction(I->getName(),
307                                                    I->getFunctionType());
308        assert(NewF && "Function not found??");
309        MiscompiledFunctions.push_back(NewF);
310      }
311    }
312    delete ToOptimizeLoopExtracted;
313
314    BD.setNewProgram(ToNotOptimize);
315    MadeChange = true;
316  }
317}
318
319/// DebugAMiscompilation - This is a generic driver to narrow down
320/// miscompilations, either in an optimization or a code generator.
321///
322static std::vector<Function*>
323DebugAMiscompilation(BugDriver &BD,
324                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
325  // Okay, now that we have reduced the list of passes which are causing the
326  // failure, see if we can pin down which functions are being
327  // miscompiled... first build a list of all of the non-external functions in
328  // the program.
329  std::vector<Function*> MiscompiledFunctions;
330  Module *Prog = BD.getProgram();
331  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
332    if (!I->isExternal())
333      MiscompiledFunctions.push_back(I);
334
335  // Do the reduction...
336  ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
337
338  std::cout << "\n*** The following function"
339            << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
340            << " being miscompiled: ";
341  PrintFunctionList(MiscompiledFunctions);
342  std::cout << "\n";
343
344  // See if we can rip any loops out of the miscompiled functions and still
345  // trigger the problem.
346  if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
347    // Okay, we extracted some loops and the problem still appears.  See if we
348    // can eliminate some of the created functions from being candidates.
349
350    // Loop extraction can introduce functions with the same name (foo_code).
351    // Make sure to disambiguate the symbols so that when the program is split
352    // apart that we can link it back together again.
353    DisambiguateGlobalSymbols(BD.getProgram());
354
355    // Do the reduction...
356    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
357
358    std::cout << "\n*** The following function"
359              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
360              << " being miscompiled: ";
361    PrintFunctionList(MiscompiledFunctions);
362    std::cout << "\n";
363  }
364
365  return MiscompiledFunctions;
366}
367
368/// TestOptimizer - This is the predicate function used to check to see if the
369/// "Test" portion of the program is misoptimized.  If so, return true.  In any
370/// case, both module arguments are deleted.
371///
372static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
373  // Run the optimization passes on ToOptimize, producing a transformed version
374  // of the functions being tested.
375  std::cout << "  Optimizing functions being tested: ";
376  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
377                                     /*AutoDebugCrashes*/true);
378  std::cout << "done.\n";
379  delete Test;
380
381  std::cout << "  Checking to see if the merged program executes correctly: ";
382  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
383  std::cout << (Broken ? " nope.\n" : " yup.\n");
384  return Broken;
385}
386
387
388/// debugMiscompilation - This method is used when the passes selected are not
389/// crashing, but the generated output is semantically different from the
390/// input.
391///
392bool BugDriver::debugMiscompilation() {
393  // Make sure something was miscompiled...
394  if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
395    std::cerr << "*** Optimized program matches reference output!  No problem "
396	      << "detected...\nbugpoint can't help you with your problem!\n";
397    return false;
398  }
399
400  std::cout << "\n*** Found miscompiling pass"
401            << (getPassesToRun().size() == 1 ? "" : "es") << ": "
402            << getPassesString(getPassesToRun()) << "\n";
403  EmitProgressBytecode("passinput");
404
405  std::vector<Function*> MiscompiledFunctions =
406    DebugAMiscompilation(*this, TestOptimizer);
407
408  // Output a bunch of bytecode files for the user...
409  std::cout << "Outputting reduced bytecode files which expose the problem:\n";
410  Module *ToNotOptimize = CloneModule(getProgram());
411  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
412                                                 MiscompiledFunctions);
413
414  std::cout << "  Non-optimized portion: ";
415  ToNotOptimize = swapProgramIn(ToNotOptimize);
416  EmitProgressBytecode("tonotoptimize", true);
417  setNewProgram(ToNotOptimize);   // Delete hacked module.
418
419  std::cout << "  Portion that is input to optimizer: ";
420  ToOptimize = swapProgramIn(ToOptimize);
421  EmitProgressBytecode("tooptimize");
422  setNewProgram(ToOptimize);      // Delete hacked module.
423
424  return false;
425}
426
427/// CleanupAndPrepareModules - Get the specified modules ready for code
428/// generator testing.
429///
430static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
431                                     Module *Safe) {
432  // Clean up the modules, removing extra cruft that we don't need anymore...
433  Test = BD.performFinalCleanups(Test);
434
435  // If we are executing the JIT, we have several nasty issues to take care of.
436  if (!BD.isExecutingJIT()) return;
437
438  // First, if the main function is in the Safe module, we must add a stub to
439  // the Test module to call into it.  Thus, we create a new function `main'
440  // which just calls the old one.
441  if (Function *oldMain = Safe->getNamedFunction("main"))
442    if (!oldMain->isExternal()) {
443      // Rename it
444      oldMain->setName("llvm_bugpoint_old_main");
445      // Create a NEW `main' function with same type in the test module.
446      Function *newMain = new Function(oldMain->getFunctionType(),
447                                       GlobalValue::ExternalLinkage,
448                                       "main", Test);
449      // Create an `oldmain' prototype in the test module, which will
450      // corresponds to the real main function in the same module.
451      Function *oldMainProto = new Function(oldMain->getFunctionType(),
452                                            GlobalValue::ExternalLinkage,
453                                            oldMain->getName(), Test);
454      // Set up and remember the argument list for the main function.
455      std::vector<Value*> args;
456      for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
457             OI = oldMain->abegin(); I != E; ++I, ++OI) {
458        I->setName(OI->getName());    // Copy argument names from oldMain
459        args.push_back(I);
460      }
461
462      // Call the old main function and return its result
463      BasicBlock *BB = new BasicBlock("entry", newMain);
464      CallInst *call = new CallInst(oldMainProto, args);
465      BB->getInstList().push_back(call);
466
467      // If the type of old function wasn't void, return value of call
468      new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
469    }
470
471  // The second nasty issue we must deal with in the JIT is that the Safe
472  // module cannot directly reference any functions defined in the test
473  // module.  Instead, we use a JIT API call to dynamically resolve the
474  // symbol.
475
476  // Add the resolver to the Safe module.
477  // Prototype: void *getPointerToNamedFunction(const char* Name)
478  Function *resolverFunc =
479    Safe->getOrInsertFunction("getPointerToNamedFunction",
480                              PointerType::get(Type::SByteTy),
481                              PointerType::get(Type::SByteTy), 0);
482
483  // Use the function we just added to get addresses of functions we need.
484  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
485    if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
486        F->getIntrinsicID() == 0 /* ignore intrinsics */) {
487      Function *TestFn = Test->getFunction(F->getName(), F->getFunctionType());
488
489      // Don't forward functions which are external in the test module too.
490      if (TestFn && !TestFn->isExternal()) {
491        // 1. Add a string constant with its name to the global file
492        Constant *InitArray = ConstantArray::get(F->getName());
493        GlobalVariable *funcName =
494          new GlobalVariable(InitArray->getType(), true /*isConstant*/,
495                             GlobalValue::InternalLinkage, InitArray,
496                             F->getName() + "_name", Safe);
497
498        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
499        // sbyte* so it matches the signature of the resolver function.
500
501        // GetElementPtr *funcName, ulong 0, ulong 0
502        std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
503        Value *GEP =
504          ConstantExpr::getGetElementPtr(ConstantPointerRef::get(funcName),
505                                         GEPargs);
506        std::vector<Value*> ResolverArgs;
507        ResolverArgs.push_back(GEP);
508
509        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
510        // function that dynamically resolves the calls to F via our JIT API
511        if (F->use_begin() != F->use_end()) {
512          // Construct a new stub function that will re-route calls to F
513          const FunctionType *FuncTy = F->getFunctionType();
514          Function *FuncWrapper = new Function(FuncTy,
515                                               GlobalValue::InternalLinkage,
516                                               F->getName() + "_wrapper",
517                                               F->getParent());
518          BasicBlock *Header = new BasicBlock("header", FuncWrapper);
519
520          // Resolve the call to function F via the JIT API:
521          //
522          // call resolver(GetElementPtr...)
523          CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
524                                           "resolver");
525          Header->getInstList().push_back(resolve);
526          // cast the result from the resolver to correctly-typed function
527          CastInst *castResolver =
528            new CastInst(resolve, PointerType::get(F->getFunctionType()),
529                         "resolverCast");
530          Header->getInstList().push_back(castResolver);
531
532          // Save the argument list
533          std::vector<Value*> Args;
534          for (Function::aiterator i = FuncWrapper->abegin(),
535                 e = FuncWrapper->aend(); i != e; ++i)
536            Args.push_back(i);
537
538          // Pass on the arguments to the real function, return its result
539          if (F->getReturnType() == Type::VoidTy) {
540            CallInst *Call = new CallInst(castResolver, Args);
541            Header->getInstList().push_back(Call);
542            ReturnInst *Ret = new ReturnInst();
543            Header->getInstList().push_back(Ret);
544          } else {
545            CallInst *Call = new CallInst(castResolver, Args, "redir");
546            Header->getInstList().push_back(Call);
547            ReturnInst *Ret = new ReturnInst(Call);
548            Header->getInstList().push_back(Ret);
549          }
550
551          // Use the wrapper function instead of the old function
552          F->replaceAllUsesWith(FuncWrapper);
553        }
554      }
555    }
556  }
557
558  if (verifyModule(*Test) || verifyModule(*Safe)) {
559    std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
560    abort();
561  }
562}
563
564
565
566/// TestCodeGenerator - This is the predicate function used to check to see if
567/// the "Test" portion of the program is miscompiled by the code generator under
568/// test.  If so, return true.  In any case, both module arguments are deleted.
569///
570static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
571  CleanupAndPrepareModules(BD, Test, Safe);
572
573  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
574  if (BD.writeProgramToFile(TestModuleBC, Test)) {
575    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
576    exit(1);
577  }
578  delete Test;
579
580  // Make the shared library
581  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
582
583  if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
584    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
585    exit(1);
586  }
587  std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
588  delete Safe;
589
590  // Run the code generator on the `Test' code, loading the shared library.
591  // The function returns whether or not the new output differs from reference.
592  int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
593
594  if (Result)
595    std::cerr << ": still failing!\n";
596  else
597    std::cerr << ": didn't fail.\n";
598  removeFile(TestModuleBC);
599  removeFile(SafeModuleBC);
600  removeFile(SharedObject);
601
602  return Result;
603}
604
605
606/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
607///
608bool BugDriver::debugCodeGenerator() {
609  if ((void*)cbe == (void*)Interpreter) {
610    std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
611    std::cout << "\n*** The C backend cannot match the reference diff, but it "
612              << "is used as the 'known good'\n    code generator, so I can't"
613              << " debug it.  Perhaps you have a front-end problem?\n    As a"
614              << " sanity check, I left the result of executing the program "
615              << "with the C backend\n    in this file for you: '"
616              << Result << "'.\n";
617    return true;
618  }
619
620  DisambiguateGlobalSymbols(Program);
621
622  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
623
624  // Split the module into the two halves of the program we want.
625  Module *ToNotCodeGen = CloneModule(getProgram());
626  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
627
628  // Condition the modules
629  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
630
631  std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
632  if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
633    std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
634    exit(1);
635  }
636  delete ToCodeGen;
637
638  // Make the shared library
639  std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
640  if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
641    std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
642    exit(1);
643  }
644  std::string SharedObject = compileSharedObject(SafeModuleBC);
645  delete ToNotCodeGen;
646
647  std::cout << "You can reproduce the problem with the command line: \n";
648  if (isExecutingJIT()) {
649    std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
650  } else {
651    std::cout << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
652    std::cout << "  gcc " << SharedObject << " " << TestModuleBC
653              << ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
654    std::cout << "  " << TestModuleBC << ".exe";
655  }
656  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
657    std::cout << " " << InputArgv[i];
658  std::cout << "\n";
659  std::cout << "The shared object was created with:\n  llc -march=c "
660            << SafeModuleBC << " -o temporary.c\n"
661            << "  gcc -xc temporary.c -O2 -o " << SharedObject
662#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
663            << " -G"            // Compile a shared library, `-G' for Sparc
664#else
665            << " -shared"       // `-shared' for Linux/X86, maybe others
666#endif
667            << " -fno-strict-aliasing\n";
668
669  return false;
670}
671