Miscompilation.cpp revision ca7409664273fed4b473127295af3af0836b3077
1//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements optimizer and code generation miscompilation debugging
11// support.
12//
13//===----------------------------------------------------------------------===//
14
15#include "BugDriver.h"
16#include "ListReducer.h"
17#include "ToolRunner.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Linker.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/Analysis/Verifier.h"
25#include "llvm/Support/Mangler.h"
26#include "llvm/Transforms/Utils/Cloning.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/FileUtilities.h"
29#include "llvm/Config/config.h"   // for HAVE_LINK_R
30using namespace llvm;
31
32namespace llvm {
33  extern cl::list<std::string> InputArgv;
34}
35
36namespace {
37  static llvm::cl::opt<bool>
38    DisableLoopExtraction("disable-loop-extraction",
39        cl::desc("Don't extract loops when searching for miscompilations"),
40        cl::init(false));
41  static llvm::cl::opt<bool>
42    DisableBlockExtraction("disable-block-extraction",
43        cl::desc("Don't extract blocks when searching for miscompilations"),
44        cl::init(false));
45
46  class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
47    BugDriver &BD;
48  public:
49    ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
50
51    virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
52                              std::vector<const PassInfo*> &Suffix);
53  };
54}
55
56/// TestResult - After passes have been split into a test group and a control
57/// group, see if they still break the program.
58///
59ReduceMiscompilingPasses::TestResult
60ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
61                                 std::vector<const PassInfo*> &Suffix) {
62  // First, run the program with just the Suffix passes.  If it is still broken
63  // with JUST the kept passes, discard the prefix passes.
64  outs() << "Checking to see if '" << getPassesString(Suffix)
65         << "' compiles correctly: ";
66
67  std::string BitcodeResult;
68  if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
69    errs() << " Error running this sequence of passes"
70           << " on the input program!\n";
71    BD.setPassesToRun(Suffix);
72    BD.EmitProgressBitcode("pass-error",  false);
73    exit(BD.debugOptimizerCrash());
74  }
75
76  // Check to see if the finished program matches the reference output...
77  if (BD.diffProgram(BitcodeResult, "", true /*delete bitcode*/)) {
78    outs() << " nope.\n";
79    if (Suffix.empty()) {
80      errs() << BD.getToolName() << ": I'm confused: the test fails when "
81             << "no passes are run, nondeterministic program?\n";
82      exit(1);
83    }
84    return KeepSuffix;         // Miscompilation detected!
85  }
86  outs() << " yup.\n";      // No miscompilation!
87
88  if (Prefix.empty()) return NoFailure;
89
90  // Next, see if the program is broken if we run the "prefix" passes first,
91  // then separately run the "kept" passes.
92  outs() << "Checking to see if '" << getPassesString(Prefix)
93         << "' compiles correctly: ";
94
95  // If it is not broken with the kept passes, it's possible that the prefix
96  // passes must be run before the kept passes to break it.  If the program
97  // WORKS after the prefix passes, but then fails if running the prefix AND
98  // kept passes, we can update our bitcode file to include the result of the
99  // prefix passes, then discard the prefix passes.
100  //
101  if (BD.runPasses(Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
102    errs() << " Error running this sequence of passes"
103           << " on the input program!\n";
104    BD.setPassesToRun(Prefix);
105    BD.EmitProgressBitcode("pass-error",  false);
106    exit(BD.debugOptimizerCrash());
107  }
108
109  // If the prefix maintains the predicate by itself, only keep the prefix!
110  if (BD.diffProgram(BitcodeResult)) {
111    outs() << " nope.\n";
112    sys::Path(BitcodeResult).eraseFromDisk();
113    return KeepPrefix;
114  }
115  outs() << " yup.\n";      // No miscompilation!
116
117  // Ok, so now we know that the prefix passes work, try running the suffix
118  // passes on the result of the prefix passes.
119  //
120  Module *PrefixOutput = ParseInputFile(BitcodeResult, BD.getContext());
121  if (PrefixOutput == 0) {
122    errs() << BD.getToolName() << ": Error reading bitcode file '"
123           << BitcodeResult << "'!\n";
124    exit(1);
125  }
126  sys::Path(BitcodeResult).eraseFromDisk();  // No longer need the file on disk
127
128  // Don't check if there are no passes in the suffix.
129  if (Suffix.empty())
130    return NoFailure;
131
132  outs() << "Checking to see if '" << getPassesString(Suffix)
133            << "' passes compile correctly after the '"
134            << getPassesString(Prefix) << "' passes: ";
135
136  Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
137  if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
138    errs() << " Error running this sequence of passes"
139           << " on the input program!\n";
140    BD.setPassesToRun(Suffix);
141    BD.EmitProgressBitcode("pass-error",  false);
142    exit(BD.debugOptimizerCrash());
143  }
144
145  // Run the result...
146  if (BD.diffProgram(BitcodeResult, "", true/*delete bitcode*/)) {
147    outs() << " nope.\n";
148    delete OriginalInput;     // We pruned down the original input...
149    return KeepSuffix;
150  }
151
152  // Otherwise, we must not be running the bad pass anymore.
153  outs() << " yup.\n";      // No miscompilation!
154  delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
155  return NoFailure;
156}
157
158namespace {
159  class ReduceMiscompilingFunctions : public ListReducer<Function*> {
160    BugDriver &BD;
161    bool (*TestFn)(BugDriver &, Module *, Module *);
162  public:
163    ReduceMiscompilingFunctions(BugDriver &bd,
164                                bool (*F)(BugDriver &, Module *, Module *))
165      : BD(bd), TestFn(F) {}
166
167    virtual TestResult doTest(std::vector<Function*> &Prefix,
168                              std::vector<Function*> &Suffix) {
169      if (!Suffix.empty() && TestFuncs(Suffix))
170        return KeepSuffix;
171      if (!Prefix.empty() && TestFuncs(Prefix))
172        return KeepPrefix;
173      return NoFailure;
174    }
175
176    bool TestFuncs(const std::vector<Function*> &Prefix);
177  };
178}
179
180/// TestMergedProgram - Given two modules, link them together and run the
181/// program, checking to see if the program matches the diff.  If the diff
182/// matches, return false, otherwise return true.  If the DeleteInputs argument
183/// is set to true then this function deletes both input modules before it
184/// returns.
185///
186static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
187                              bool DeleteInputs) {
188  // Link the two portions of the program back to together.
189  std::string ErrorMsg;
190  if (!DeleteInputs) {
191    M1 = CloneModule(M1);
192    M2 = CloneModule(M2);
193  }
194  if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
195    errs() << BD.getToolName() << ": Error linking modules together:"
196           << ErrorMsg << '\n';
197    exit(1);
198  }
199  delete M2;   // We are done with this module.
200
201  Module *OldProgram = BD.swapProgramIn(M1);
202
203  // Execute the program.  If it does not match the expected output, we must
204  // return true.
205  bool Broken = BD.diffProgram();
206
207  // Delete the linked module & restore the original
208  BD.swapProgramIn(OldProgram);
209  delete M1;
210  return Broken;
211}
212
213/// TestFuncs - split functions in a Module into two groups: those that are
214/// under consideration for miscompilation vs. those that are not, and test
215/// accordingly. Each group of functions becomes a separate Module.
216///
217bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
218  // Test to see if the function is misoptimized if we ONLY run it on the
219  // functions listed in Funcs.
220  outs() << "Checking to see if the program is misoptimized when "
221         << (Funcs.size()==1 ? "this function is" : "these functions are")
222         << " run through the pass"
223         << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
224  PrintFunctionList(Funcs);
225  outs() << '\n';
226
227  // Split the module into the two halves of the program we want.
228  DenseMap<const Value*, Value*> ValueMap;
229  Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
230  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs,
231                                                 ValueMap);
232
233  // Run the predicate, note that the predicate will delete both input modules.
234  return TestFn(BD, ToOptimize, ToNotOptimize);
235}
236
237/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
238/// modifying predominantly internal symbols rather than external ones.
239///
240static void DisambiguateGlobalSymbols(Module *M) {
241  // Try not to cause collisions by minimizing chances of renaming an
242  // already-external symbol, so take in external globals and functions as-is.
243  // The code should work correctly without disambiguation (assuming the same
244  // mangler is used by the two code generators), but having symbols with the
245  // same name causes warnings to be emitted by the code generator.
246  Mangler Mang(*M);
247  // Agree with the CBE on symbol naming
248  Mang.markCharUnacceptable('.');
249  for (Module::global_iterator I = M->global_begin(), E = M->global_end();
250       I != E; ++I) {
251    // Don't mangle asm names.
252    if (!I->hasName() || I->getName()[0] != 1)
253      I->setName(Mang.getMangledName(I));
254  }
255  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
256    // Don't mangle asm names or intrinsics.
257    if ((!I->hasName() || I->getName()[0] != 1) &&
258        I->getIntrinsicID() == 0)
259      I->setName(Mang.getMangledName(I));
260  }
261}
262
263/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
264/// check to see if we can extract the loops in the region without obscuring the
265/// bug.  If so, it reduces the amount of code identified.
266///
267static bool ExtractLoops(BugDriver &BD,
268                         bool (*TestFn)(BugDriver &, Module *, Module *),
269                         std::vector<Function*> &MiscompiledFunctions) {
270  bool MadeChange = false;
271  while (1) {
272    if (BugpointIsInterrupted) return MadeChange;
273
274    DenseMap<const Value*, Value*> ValueMap;
275    Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
276    Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
277                                                   MiscompiledFunctions,
278                                                   ValueMap);
279    Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
280    if (!ToOptimizeLoopExtracted) {
281      // If the loop extractor crashed or if there were no extractible loops,
282      // then this chapter of our odyssey is over with.
283      delete ToNotOptimize;
284      delete ToOptimize;
285      return MadeChange;
286    }
287
288    errs() << "Extracted a loop from the breaking portion of the program.\n";
289
290    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
291    // particular, we're not going to assume that the loop extractor works, so
292    // we're going to test the newly loop extracted program to make sure nothing
293    // has broken.  If something broke, then we'll inform the user and stop
294    // extraction.
295    AbstractInterpreter *AI = BD.switchToSafeInterpreter();
296    if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
297      BD.switchToInterpreter(AI);
298
299      // Merged program doesn't work anymore!
300      errs() << "  *** ERROR: Loop extraction broke the program. :("
301             << " Please report a bug!\n";
302      errs() << "      Continuing on with un-loop-extracted version.\n";
303
304      BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
305      BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
306      BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
307                            ToOptimizeLoopExtracted);
308
309      errs() << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
310      delete ToOptimize;
311      delete ToNotOptimize;
312      delete ToOptimizeLoopExtracted;
313      return MadeChange;
314    }
315    delete ToOptimize;
316    BD.switchToInterpreter(AI);
317
318    outs() << "  Testing after loop extraction:\n";
319    // Clone modules, the tester function will free them.
320    Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
321    Module *TNOBackup  = CloneModule(ToNotOptimize);
322    if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
323      outs() << "*** Loop extraction masked the problem.  Undoing.\n";
324      // If the program is not still broken, then loop extraction did something
325      // that masked the error.  Stop loop extraction now.
326      delete TOLEBackup;
327      delete TNOBackup;
328      return MadeChange;
329    }
330    ToOptimizeLoopExtracted = TOLEBackup;
331    ToNotOptimize = TNOBackup;
332
333    outs() << "*** Loop extraction successful!\n";
334
335    std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
336    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
337           E = ToOptimizeLoopExtracted->end(); I != E; ++I)
338      if (!I->isDeclaration())
339        MisCompFunctions.push_back(std::make_pair(I->getName(),
340                                                  I->getFunctionType()));
341
342    // Okay, great!  Now we know that we extracted a loop and that loop
343    // extraction both didn't break the program, and didn't mask the problem.
344    // Replace the current program with the loop extracted version, and try to
345    // extract another loop.
346    std::string ErrorMsg;
347    if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
348      errs() << BD.getToolName() << ": Error linking modules together:"
349             << ErrorMsg << '\n';
350      exit(1);
351    }
352    delete ToOptimizeLoopExtracted;
353
354    // All of the Function*'s in the MiscompiledFunctions list are in the old
355    // module.  Update this list to include all of the functions in the
356    // optimized and loop extracted module.
357    MiscompiledFunctions.clear();
358    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
359      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
360
361      assert(NewF && "Function not found??");
362      assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
363             "found wrong function type?");
364      MiscompiledFunctions.push_back(NewF);
365    }
366
367    BD.setNewProgram(ToNotOptimize);
368    MadeChange = true;
369  }
370}
371
372namespace {
373  class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
374    BugDriver &BD;
375    bool (*TestFn)(BugDriver &, Module *, Module *);
376    std::vector<Function*> FunctionsBeingTested;
377  public:
378    ReduceMiscompiledBlocks(BugDriver &bd,
379                            bool (*F)(BugDriver &, Module *, Module *),
380                            const std::vector<Function*> &Fns)
381      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
382
383    virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
384                              std::vector<BasicBlock*> &Suffix) {
385      if (!Suffix.empty() && TestFuncs(Suffix))
386        return KeepSuffix;
387      if (TestFuncs(Prefix))
388        return KeepPrefix;
389      return NoFailure;
390    }
391
392    bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
393  };
394}
395
396/// TestFuncs - Extract all blocks for the miscompiled functions except for the
397/// specified blocks.  If the problem still exists, return true.
398///
399bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
400  // Test to see if the function is misoptimized if we ONLY run it on the
401  // functions listed in Funcs.
402  outs() << "Checking to see if the program is misoptimized when all ";
403  if (!BBs.empty()) {
404    outs() << "but these " << BBs.size() << " blocks are extracted: ";
405    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
406      outs() << BBs[i]->getName() << " ";
407    if (BBs.size() > 10) outs() << "...";
408  } else {
409    outs() << "blocks are extracted.";
410  }
411  outs() << '\n';
412
413  // Split the module into the two halves of the program we want.
414  DenseMap<const Value*, Value*> ValueMap;
415  Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
416  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
417                                                 FunctionsBeingTested,
418                                                 ValueMap);
419
420  // Try the extraction.  If it doesn't work, then the block extractor crashed
421  // or something, in which case bugpoint can't chase down this possibility.
422  if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
423    delete ToOptimize;
424    // Run the predicate, not that the predicate will delete both input modules.
425    return TestFn(BD, New, ToNotOptimize);
426  }
427  delete ToOptimize;
428  delete ToNotOptimize;
429  return false;
430}
431
432
433/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
434/// extract as many basic blocks from the region as possible without obscuring
435/// the bug.
436///
437static bool ExtractBlocks(BugDriver &BD,
438                          bool (*TestFn)(BugDriver &, Module *, Module *),
439                          std::vector<Function*> &MiscompiledFunctions) {
440  if (BugpointIsInterrupted) return false;
441
442  std::vector<BasicBlock*> Blocks;
443  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
444    for (Function::iterator I = MiscompiledFunctions[i]->begin(),
445           E = MiscompiledFunctions[i]->end(); I != E; ++I)
446      Blocks.push_back(I);
447
448  // Use the list reducer to identify blocks that can be extracted without
449  // obscuring the bug.  The Blocks list will end up containing blocks that must
450  // be retained from the original program.
451  unsigned OldSize = Blocks.size();
452
453  // Check to see if all blocks are extractible first.
454  if (ReduceMiscompiledBlocks(BD, TestFn,
455                  MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
456    Blocks.clear();
457  } else {
458    ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
459    if (Blocks.size() == OldSize)
460      return false;
461  }
462
463  DenseMap<const Value*, Value*> ValueMap;
464  Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
465  Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
466                                                MiscompiledFunctions,
467                                                ValueMap);
468  Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
469  if (Extracted == 0) {
470    // Weird, extraction should have worked.
471    errs() << "Nondeterministic problem extracting blocks??\n";
472    delete ProgClone;
473    delete ToExtract;
474    return false;
475  }
476
477  // Otherwise, block extraction succeeded.  Link the two program fragments back
478  // together.
479  delete ToExtract;
480
481  std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
482  for (Module::iterator I = Extracted->begin(), E = Extracted->end();
483       I != E; ++I)
484    if (!I->isDeclaration())
485      MisCompFunctions.push_back(std::make_pair(I->getName(),
486                                                I->getFunctionType()));
487
488  std::string ErrorMsg;
489  if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
490    errs() << BD.getToolName() << ": Error linking modules together:"
491           << ErrorMsg << '\n';
492    exit(1);
493  }
494  delete Extracted;
495
496  // Set the new program and delete the old one.
497  BD.setNewProgram(ProgClone);
498
499  // Update the list of miscompiled functions.
500  MiscompiledFunctions.clear();
501
502  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
503    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
504    assert(NewF && "Function not found??");
505    assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
506           "Function has wrong type??");
507    MiscompiledFunctions.push_back(NewF);
508  }
509
510  return true;
511}
512
513
514/// DebugAMiscompilation - This is a generic driver to narrow down
515/// miscompilations, either in an optimization or a code generator.
516///
517static std::vector<Function*>
518DebugAMiscompilation(BugDriver &BD,
519                     bool (*TestFn)(BugDriver &, Module *, Module *)) {
520  // Okay, now that we have reduced the list of passes which are causing the
521  // failure, see if we can pin down which functions are being
522  // miscompiled... first build a list of all of the non-external functions in
523  // the program.
524  std::vector<Function*> MiscompiledFunctions;
525  Module *Prog = BD.getProgram();
526  for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
527    if (!I->isDeclaration())
528      MiscompiledFunctions.push_back(I);
529
530  // Do the reduction...
531  if (!BugpointIsInterrupted)
532    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
533
534  outs() << "\n*** The following function"
535         << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
536         << " being miscompiled: ";
537  PrintFunctionList(MiscompiledFunctions);
538  outs() << '\n';
539
540  // See if we can rip any loops out of the miscompiled functions and still
541  // trigger the problem.
542
543  if (!BugpointIsInterrupted && !DisableLoopExtraction &&
544      ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
545    // Okay, we extracted some loops and the problem still appears.  See if we
546    // can eliminate some of the created functions from being candidates.
547
548    // Loop extraction can introduce functions with the same name (foo_code).
549    // Make sure to disambiguate the symbols so that when the program is split
550    // apart that we can link it back together again.
551    DisambiguateGlobalSymbols(BD.getProgram());
552
553    // Do the reduction...
554    if (!BugpointIsInterrupted)
555      ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
556
557    outs() << "\n*** The following function"
558           << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
559           << " being miscompiled: ";
560    PrintFunctionList(MiscompiledFunctions);
561    outs() << '\n';
562  }
563
564  if (!BugpointIsInterrupted && !DisableBlockExtraction &&
565      ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
566    // Okay, we extracted some blocks and the problem still appears.  See if we
567    // can eliminate some of the created functions from being candidates.
568
569    // Block extraction can introduce functions with the same name (foo_code).
570    // Make sure to disambiguate the symbols so that when the program is split
571    // apart that we can link it back together again.
572    DisambiguateGlobalSymbols(BD.getProgram());
573
574    // Do the reduction...
575    ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
576
577    outs() << "\n*** The following function"
578           << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
579           << " being miscompiled: ";
580    PrintFunctionList(MiscompiledFunctions);
581    outs() << '\n';
582  }
583
584  return MiscompiledFunctions;
585}
586
587/// TestOptimizer - This is the predicate function used to check to see if the
588/// "Test" portion of the program is misoptimized.  If so, return true.  In any
589/// case, both module arguments are deleted.
590///
591static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
592  // Run the optimization passes on ToOptimize, producing a transformed version
593  // of the functions being tested.
594  outs() << "  Optimizing functions being tested: ";
595  Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
596                                     /*AutoDebugCrashes*/true);
597  outs() << "done.\n";
598  delete Test;
599
600  outs() << "  Checking to see if the merged program executes correctly: ";
601  bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
602  outs() << (Broken ? " nope.\n" : " yup.\n");
603  return Broken;
604}
605
606
607/// debugMiscompilation - This method is used when the passes selected are not
608/// crashing, but the generated output is semantically different from the
609/// input.
610///
611bool BugDriver::debugMiscompilation() {
612  // Make sure something was miscompiled...
613  if (!BugpointIsInterrupted)
614    if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
615      errs() << "*** Optimized program matches reference output!  No problem"
616             << " detected...\nbugpoint can't help you with your problem!\n";
617      return false;
618    }
619
620  outs() << "\n*** Found miscompiling pass"
621         << (getPassesToRun().size() == 1 ? "" : "es") << ": "
622         << getPassesString(getPassesToRun()) << '\n';
623  EmitProgressBitcode("passinput");
624
625  std::vector<Function*> MiscompiledFunctions =
626    DebugAMiscompilation(*this, TestOptimizer);
627
628  // Output a bunch of bitcode files for the user...
629  outs() << "Outputting reduced bitcode files which expose the problem:\n";
630  DenseMap<const Value*, Value*> ValueMap;
631  Module *ToNotOptimize = CloneModule(getProgram(), ValueMap);
632  Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
633                                                 MiscompiledFunctions,
634                                                 ValueMap);
635
636  outs() << "  Non-optimized portion: ";
637  ToNotOptimize = swapProgramIn(ToNotOptimize);
638  EmitProgressBitcode("tonotoptimize", true);
639  setNewProgram(ToNotOptimize);   // Delete hacked module.
640
641  outs() << "  Portion that is input to optimizer: ";
642  ToOptimize = swapProgramIn(ToOptimize);
643  EmitProgressBitcode("tooptimize");
644  setNewProgram(ToOptimize);      // Delete hacked module.
645
646  return false;
647}
648
649/// CleanupAndPrepareModules - Get the specified modules ready for code
650/// generator testing.
651///
652static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
653                                     Module *Safe) {
654  // Clean up the modules, removing extra cruft that we don't need anymore...
655  Test = BD.performFinalCleanups(Test);
656
657  // If we are executing the JIT, we have several nasty issues to take care of.
658  if (!BD.isExecutingJIT()) return;
659
660  // First, if the main function is in the Safe module, we must add a stub to
661  // the Test module to call into it.  Thus, we create a new function `main'
662  // which just calls the old one.
663  if (Function *oldMain = Safe->getFunction("main"))
664    if (!oldMain->isDeclaration()) {
665      // Rename it
666      oldMain->setName("llvm_bugpoint_old_main");
667      // Create a NEW `main' function with same type in the test module.
668      Function *newMain = Function::Create(oldMain->getFunctionType(),
669                                           GlobalValue::ExternalLinkage,
670                                           "main", Test);
671      // Create an `oldmain' prototype in the test module, which will
672      // corresponds to the real main function in the same module.
673      Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
674                                                GlobalValue::ExternalLinkage,
675                                                oldMain->getName(), Test);
676      // Set up and remember the argument list for the main function.
677      std::vector<Value*> args;
678      for (Function::arg_iterator
679             I = newMain->arg_begin(), E = newMain->arg_end(),
680             OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
681        I->setName(OI->getName());    // Copy argument names from oldMain
682        args.push_back(I);
683      }
684
685      // Call the old main function and return its result
686      BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
687      CallInst *call = CallInst::Create(oldMainProto, args.begin(), args.end(),
688                                        "", BB);
689
690      // If the type of old function wasn't void, return value of call
691      ReturnInst::Create(Safe->getContext(), call, BB);
692    }
693
694  // The second nasty issue we must deal with in the JIT is that the Safe
695  // module cannot directly reference any functions defined in the test
696  // module.  Instead, we use a JIT API call to dynamically resolve the
697  // symbol.
698
699  // Add the resolver to the Safe module.
700  // Prototype: void *getPointerToNamedFunction(const char* Name)
701  Constant *resolverFunc =
702    Safe->getOrInsertFunction("getPointerToNamedFunction",
703                    PointerType::getUnqual(Type::getInt8Ty(Safe->getContext())),
704                    PointerType::getUnqual(Type::getInt8Ty(Safe->getContext())),
705                       (Type *)0);
706
707  // Use the function we just added to get addresses of functions we need.
708  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
709    if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
710        !F->isIntrinsic() /* ignore intrinsics */) {
711      Function *TestFn = Test->getFunction(F->getName());
712
713      // Don't forward functions which are external in the test module too.
714      if (TestFn && !TestFn->isDeclaration()) {
715        // 1. Add a string constant with its name to the global file
716        Constant *InitArray = ConstantArray::get(F->getContext(), F->getName());
717        GlobalVariable *funcName =
718          new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/,
719                             GlobalValue::InternalLinkage, InitArray,
720                             F->getName() + "_name");
721
722        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
723        // sbyte* so it matches the signature of the resolver function.
724
725        // GetElementPtr *funcName, ulong 0, ulong 0
726        std::vector<Constant*> GEPargs(2,
727                     Constant::getNullValue(Type::getInt32Ty(F->getContext())));
728        Value *GEP =
729                ConstantExpr::getGetElementPtr(funcName, &GEPargs[0], 2);
730        std::vector<Value*> ResolverArgs;
731        ResolverArgs.push_back(GEP);
732
733        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
734        // function that dynamically resolves the calls to F via our JIT API
735        if (!F->use_empty()) {
736          // Create a new global to hold the cached function pointer.
737          Constant *NullPtr = ConstantPointerNull::get(F->getType());
738          GlobalVariable *Cache =
739            new GlobalVariable(*F->getParent(), F->getType(),
740                               false, GlobalValue::InternalLinkage,
741                               NullPtr,F->getName()+".fpcache");
742
743          // Construct a new stub function that will re-route calls to F
744          const FunctionType *FuncTy = F->getFunctionType();
745          Function *FuncWrapper = Function::Create(FuncTy,
746                                                   GlobalValue::InternalLinkage,
747                                                   F->getName() + "_wrapper",
748                                                   F->getParent());
749          BasicBlock *EntryBB  = BasicBlock::Create(F->getContext(),
750                                                    "entry", FuncWrapper);
751          BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(),
752                                                    "usecache", FuncWrapper);
753          BasicBlock *LookupBB = BasicBlock::Create(F->getContext(),
754                                                    "lookupfp", FuncWrapper);
755
756          // Check to see if we already looked up the value.
757          Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
758          Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
759                                       NullPtr, "isNull");
760          BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
761
762          // Resolve the call to function F via the JIT API:
763          //
764          // call resolver(GetElementPtr...)
765          CallInst *Resolver =
766            CallInst::Create(resolverFunc, ResolverArgs.begin(),
767                             ResolverArgs.end(), "resolver", LookupBB);
768
769          // Cast the result from the resolver to correctly-typed function.
770          CastInst *CastedResolver =
771            new BitCastInst(Resolver,
772                            PointerType::getUnqual(F->getFunctionType()),
773                            "resolverCast", LookupBB);
774
775          // Save the value in our cache.
776          new StoreInst(CastedResolver, Cache, LookupBB);
777          BranchInst::Create(DoCallBB, LookupBB);
778
779          PHINode *FuncPtr = PHINode::Create(NullPtr->getType(),
780                                             "fp", DoCallBB);
781          FuncPtr->addIncoming(CastedResolver, LookupBB);
782          FuncPtr->addIncoming(CachedVal, EntryBB);
783
784          // Save the argument list.
785          std::vector<Value*> Args;
786          for (Function::arg_iterator i = FuncWrapper->arg_begin(),
787                 e = FuncWrapper->arg_end(); i != e; ++i)
788            Args.push_back(i);
789
790          // Pass on the arguments to the real function, return its result
791          if (F->getReturnType() == Type::getVoidTy(F->getContext())) {
792            CallInst::Create(FuncPtr, Args.begin(), Args.end(), "", DoCallBB);
793            ReturnInst::Create(F->getContext(), DoCallBB);
794          } else {
795            CallInst *Call = CallInst::Create(FuncPtr, Args.begin(), Args.end(),
796                                              "retval", DoCallBB);
797            ReturnInst::Create(F->getContext(),Call, DoCallBB);
798          }
799
800          // Use the wrapper function instead of the old function
801          F->replaceAllUsesWith(FuncWrapper);
802        }
803      }
804    }
805  }
806
807  if (verifyModule(*Test) || verifyModule(*Safe)) {
808    errs() << "Bugpoint has a bug, which corrupted a module!!\n";
809    abort();
810  }
811}
812
813
814
815/// TestCodeGenerator - This is the predicate function used to check to see if
816/// the "Test" portion of the program is miscompiled by the code generator under
817/// test.  If so, return true.  In any case, both module arguments are deleted.
818///
819static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
820  CleanupAndPrepareModules(BD, Test, Safe);
821
822  sys::Path TestModuleBC("bugpoint.test.bc");
823  std::string ErrMsg;
824  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
825    errs() << BD.getToolName() << "Error making unique filename: "
826           << ErrMsg << "\n";
827    exit(1);
828  }
829  if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
830    errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
831    exit(1);
832  }
833  delete Test;
834
835  // Make the shared library
836  sys::Path SafeModuleBC("bugpoint.safe.bc");
837  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
838    errs() << BD.getToolName() << "Error making unique filename: "
839           << ErrMsg << "\n";
840    exit(1);
841  }
842
843  if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
844    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
845    exit(1);
846  }
847  std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
848  delete Safe;
849
850  // Run the code generator on the `Test' code, loading the shared library.
851  // The function returns whether or not the new output differs from reference.
852  int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
853
854  if (Result)
855    errs() << ": still failing!\n";
856  else
857    errs() << ": didn't fail.\n";
858  TestModuleBC.eraseFromDisk();
859  SafeModuleBC.eraseFromDisk();
860  sys::Path(SharedObject).eraseFromDisk();
861
862  return Result;
863}
864
865
866/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
867///
868bool BugDriver::debugCodeGenerator() {
869  if ((void*)SafeInterpreter == (void*)Interpreter) {
870    std::string Result = executeProgramSafely("bugpoint.safe.out");
871    outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
872           << "the reference diff.  This may be due to a\n    front-end "
873           << "bug or a bug in the original program, but this can also "
874           << "happen if bugpoint isn't running the program with the "
875           << "right flags or input.\n    I left the result of executing "
876           << "the program with the \"safe\" backend in this file for "
877           << "you: '"
878           << Result << "'.\n";
879    return true;
880  }
881
882  DisambiguateGlobalSymbols(Program);
883
884  std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
885
886  // Split the module into the two halves of the program we want.
887  DenseMap<const Value*, Value*> ValueMap;
888  Module *ToNotCodeGen = CloneModule(getProgram(), ValueMap);
889  Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, ValueMap);
890
891  // Condition the modules
892  CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
893
894  sys::Path TestModuleBC("bugpoint.test.bc");
895  std::string ErrMsg;
896  if (TestModuleBC.makeUnique(true, &ErrMsg)) {
897    errs() << getToolName() << "Error making unique filename: "
898           << ErrMsg << "\n";
899    exit(1);
900  }
901
902  if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
903    errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
904    exit(1);
905  }
906  delete ToCodeGen;
907
908  // Make the shared library
909  sys::Path SafeModuleBC("bugpoint.safe.bc");
910  if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
911    errs() << getToolName() << "Error making unique filename: "
912           << ErrMsg << "\n";
913    exit(1);
914  }
915
916  if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
917    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
918    exit(1);
919  }
920  std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
921  delete ToNotCodeGen;
922
923  outs() << "You can reproduce the problem with the command line: \n";
924  if (isExecutingJIT()) {
925    outs() << "  lli -load " << SharedObject << " " << TestModuleBC;
926  } else {
927    outs() << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
928    outs() << "  gcc " << SharedObject << " " << TestModuleBC
929              << ".s -o " << TestModuleBC << ".exe";
930#if defined (HAVE_LINK_R)
931    outs() << " -Wl,-R.";
932#endif
933    outs() << "\n";
934    outs() << "  " << TestModuleBC << ".exe";
935  }
936  for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
937    outs() << " " << InputArgv[i];
938  outs() << '\n';
939  outs() << "The shared object was created with:\n  llc -march=c "
940         << SafeModuleBC << " -o temporary.c\n"
941         << "  gcc -xc temporary.c -O2 -o " << SharedObject;
942  if (TargetTriple.getArch() == Triple::sparc)
943    outs() << " -G";              // Compile a shared library, `-G' for Sparc
944  else
945    outs() << " -fPIC -shared";   // `-shared' for Linux/X86, maybe others
946
947  outs() << " -fno-strict-aliasing\n";
948
949  return false;
950}
951