AsmMatcherEmitter.cpp revision 3472766f9eb7d66f234c390ce1b3a8b76f0ee9ce
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "llvm/ADT/OwningPtr.h"
80#include "llvm/ADT/SmallVector.h"
81#include "llvm/ADT/STLExtras.h"
82#include "llvm/ADT/StringExtras.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/Debug.h"
85#include <list>
86#include <map>
87#include <set>
88using namespace llvm;
89
90static cl::opt<std::string>
91MatchPrefix("match-prefix", cl::init(""),
92            cl::desc("Only match instructions with the given prefix"));
93
94/// FlattenVariants - Flatten an .td file assembly string by selecting the
95/// variant at index \arg N.
96static std::string FlattenVariants(const std::string &AsmString,
97                                   unsigned N) {
98  StringRef Cur = AsmString;
99  std::string Res = "";
100
101  for (;;) {
102    // Find the start of the next variant string.
103    size_t VariantsStart = 0;
104    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
105      if (Cur[VariantsStart] == '{' &&
106          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
107                                  Cur[VariantsStart-1] != '\\')))
108        break;
109
110    // Add the prefix to the result.
111    Res += Cur.slice(0, VariantsStart);
112    if (VariantsStart == Cur.size())
113      break;
114
115    ++VariantsStart; // Skip the '{'.
116
117    // Scan to the end of the variants string.
118    size_t VariantsEnd = VariantsStart;
119    unsigned NestedBraces = 1;
120    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
121      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
122        if (--NestedBraces == 0)
123          break;
124      } else if (Cur[VariantsEnd] == '{')
125        ++NestedBraces;
126    }
127
128    // Select the Nth variant (or empty).
129    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
130    for (unsigned i = 0; i != N; ++i)
131      Selection = Selection.split('|').second;
132    Res += Selection.split('|').first;
133
134    assert(VariantsEnd != Cur.size() &&
135           "Unterminated variants in assembly string!");
136    Cur = Cur.substr(VariantsEnd + 1);
137  }
138
139  return Res;
140}
141
142/// TokenizeAsmString - Tokenize a simplified assembly string.
143static void TokenizeAsmString(StringRef AsmString,
144                              SmallVectorImpl<StringRef> &Tokens) {
145  unsigned Prev = 0;
146  bool InTok = true;
147  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
148    switch (AsmString[i]) {
149    case '[':
150    case ']':
151    case '*':
152    case '!':
153    case ' ':
154    case '\t':
155    case ',':
156      if (InTok) {
157        Tokens.push_back(AsmString.slice(Prev, i));
158        InTok = false;
159      }
160      if (!isspace(AsmString[i]) && AsmString[i] != ',')
161        Tokens.push_back(AsmString.substr(i, 1));
162      Prev = i + 1;
163      break;
164
165    case '\\':
166      if (InTok) {
167        Tokens.push_back(AsmString.slice(Prev, i));
168        InTok = false;
169      }
170      ++i;
171      assert(i != AsmString.size() && "Invalid quoted character");
172      Tokens.push_back(AsmString.substr(i, 1));
173      Prev = i + 1;
174      break;
175
176    case '$': {
177      // If this isn't "${", treat like a normal token.
178      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
179        if (InTok) {
180          Tokens.push_back(AsmString.slice(Prev, i));
181          InTok = false;
182        }
183        Prev = i;
184        break;
185      }
186
187      if (InTok) {
188        Tokens.push_back(AsmString.slice(Prev, i));
189        InTok = false;
190      }
191
192      StringRef::iterator End =
193        std::find(AsmString.begin() + i, AsmString.end(), '}');
194      assert(End != AsmString.end() && "Missing brace in operand reference!");
195      size_t EndPos = End - AsmString.begin();
196      Tokens.push_back(AsmString.slice(i, EndPos+1));
197      Prev = EndPos + 1;
198      i = EndPos;
199      break;
200    }
201
202    default:
203      InTok = true;
204    }
205  }
206  if (InTok && Prev != AsmString.size())
207    Tokens.push_back(AsmString.substr(Prev));
208}
209
210static bool IsAssemblerInstruction(StringRef Name,
211                                   const CodeGenInstruction &CGI,
212                                   const SmallVectorImpl<StringRef> &Tokens) {
213  // Ignore "codegen only" instructions.
214  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
215    return false;
216
217  // Ignore pseudo ops.
218  //
219  // FIXME: This is a hack; can we convert these instructions to set the
220  // "codegen only" bit instead?
221  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
222    if (Form->getValue()->getAsString() == "Pseudo")
223      return false;
224
225  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
226  //
227  // FIXME: This is a total hack.
228  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
229    return false;
230
231  // Ignore instructions with no .s string.
232  //
233  // FIXME: What are these?
234  if (CGI.AsmString.empty())
235    return false;
236
237  // FIXME: Hack; ignore any instructions with a newline in them.
238  if (std::find(CGI.AsmString.begin(),
239                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
240    return false;
241
242  // Ignore instructions with attributes, these are always fake instructions for
243  // simplifying codegen.
244  //
245  // FIXME: Is this true?
246  //
247  // Also, check for instructions which reference the operand multiple times;
248  // this implies a constraint we would not honor.
249  std::set<std::string> OperandNames;
250  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
251    if (Tokens[i][0] == '$' &&
252        std::find(Tokens[i].begin(),
253                  Tokens[i].end(), ':') != Tokens[i].end()) {
254      DEBUG({
255          errs() << "warning: '" << Name << "': "
256                 << "ignoring instruction; operand with attribute '"
257                 << Tokens[i] << "'\n";
258        });
259      return false;
260    }
261
262    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
263      std::string Err = "'" + Name.str() + "': " +
264        "invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
265      throw TGError(CGI.TheDef->getLoc(), Err);
266    }
267  }
268
269  return true;
270}
271
272namespace {
273
274/// ClassInfo - Helper class for storing the information about a particular
275/// class of operands which can be matched.
276struct ClassInfo {
277  enum ClassInfoKind {
278    /// Invalid kind, for use as a sentinel value.
279    Invalid = 0,
280
281    /// The class for a particular token.
282    Token,
283
284    /// The (first) register class, subsequent register classes are
285    /// RegisterClass0+1, and so on.
286    RegisterClass0,
287
288    /// The (first) user defined class, subsequent user defined classes are
289    /// UserClass0+1, and so on.
290    UserClass0 = 1<<16
291  };
292
293  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
294  /// N) for the Nth user defined class.
295  unsigned Kind;
296
297  /// SuperClasses - The super classes of this class. Note that for simplicities
298  /// sake user operands only record their immediate super class, while register
299  /// operands include all superclasses.
300  std::vector<ClassInfo*> SuperClasses;
301
302  /// Name - The full class name, suitable for use in an enum.
303  std::string Name;
304
305  /// ClassName - The unadorned generic name for this class (e.g., Token).
306  std::string ClassName;
307
308  /// ValueName - The name of the value this class represents; for a token this
309  /// is the literal token string, for an operand it is the TableGen class (or
310  /// empty if this is a derived class).
311  std::string ValueName;
312
313  /// PredicateMethod - The name of the operand method to test whether the
314  /// operand matches this class; this is not valid for Token or register kinds.
315  std::string PredicateMethod;
316
317  /// RenderMethod - The name of the operand method to add this operand to an
318  /// MCInst; this is not valid for Token or register kinds.
319  std::string RenderMethod;
320
321  /// For register classes, the records for all the registers in this class.
322  std::set<Record*> Registers;
323
324public:
325  /// isRegisterClass() - Check if this is a register class.
326  bool isRegisterClass() const {
327    return Kind >= RegisterClass0 && Kind < UserClass0;
328  }
329
330  /// isUserClass() - Check if this is a user defined class.
331  bool isUserClass() const {
332    return Kind >= UserClass0;
333  }
334
335  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
336  /// are related if they are in the same class hierarchy.
337  bool isRelatedTo(const ClassInfo &RHS) const {
338    // Tokens are only related to tokens.
339    if (Kind == Token || RHS.Kind == Token)
340      return Kind == Token && RHS.Kind == Token;
341
342    // Registers classes are only related to registers classes, and only if
343    // their intersection is non-empty.
344    if (isRegisterClass() || RHS.isRegisterClass()) {
345      if (!isRegisterClass() || !RHS.isRegisterClass())
346        return false;
347
348      std::set<Record*> Tmp;
349      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
350      std::set_intersection(Registers.begin(), Registers.end(),
351                            RHS.Registers.begin(), RHS.Registers.end(),
352                            II);
353
354      return !Tmp.empty();
355    }
356
357    // Otherwise we have two users operands; they are related if they are in the
358    // same class hierarchy.
359    //
360    // FIXME: This is an oversimplification, they should only be related if they
361    // intersect, however we don't have that information.
362    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
363    const ClassInfo *Root = this;
364    while (!Root->SuperClasses.empty())
365      Root = Root->SuperClasses.front();
366
367    const ClassInfo *RHSRoot = &RHS;
368    while (!RHSRoot->SuperClasses.empty())
369      RHSRoot = RHSRoot->SuperClasses.front();
370
371    return Root == RHSRoot;
372  }
373
374  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
375  bool isSubsetOf(const ClassInfo &RHS) const {
376    // This is a subset of RHS if it is the same class...
377    if (this == &RHS)
378      return true;
379
380    // ... or if any of its super classes are a subset of RHS.
381    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
382           ie = SuperClasses.end(); it != ie; ++it)
383      if ((*it)->isSubsetOf(RHS))
384        return true;
385
386    return false;
387  }
388
389  /// operator< - Compare two classes.
390  bool operator<(const ClassInfo &RHS) const {
391    if (this == &RHS)
392      return false;
393
394    // Unrelated classes can be ordered by kind.
395    if (!isRelatedTo(RHS))
396      return Kind < RHS.Kind;
397
398    switch (Kind) {
399    case Invalid:
400      assert(0 && "Invalid kind!");
401    case Token:
402      // Tokens are comparable by value.
403      //
404      // FIXME: Compare by enum value.
405      return ValueName < RHS.ValueName;
406
407    default:
408      // This class preceeds the RHS if it is a proper subset of the RHS.
409      if (isSubsetOf(RHS))
410        return true;
411      if (RHS.isSubsetOf(*this))
412        return false;
413
414      // Otherwise, order by name to ensure we have a total ordering.
415      return ValueName < RHS.ValueName;
416    }
417  }
418};
419
420/// InstructionInfo - Helper class for storing the necessary information for an
421/// instruction which is capable of being matched.
422struct InstructionInfo {
423  struct Operand {
424    /// The unique class instance this operand should match.
425    ClassInfo *Class;
426
427    /// The original operand this corresponds to, if any.
428    const CodeGenInstruction::OperandInfo *OperandInfo;
429  };
430
431  /// InstrName - The target name for this instruction.
432  std::string InstrName;
433
434  /// Instr - The instruction this matches.
435  const CodeGenInstruction *Instr;
436
437  /// AsmString - The assembly string for this instruction (with variants
438  /// removed).
439  std::string AsmString;
440
441  /// Tokens - The tokenized assembly pattern that this instruction matches.
442  SmallVector<StringRef, 4> Tokens;
443
444  /// Operands - The operands that this instruction matches.
445  SmallVector<Operand, 4> Operands;
446
447  /// ConversionFnKind - The enum value which is passed to the generated
448  /// ConvertToMCInst to convert parsed operands into an MCInst for this
449  /// function.
450  std::string ConversionFnKind;
451
452  /// operator< - Compare two instructions.
453  bool operator<(const InstructionInfo &RHS) const {
454    if (Operands.size() != RHS.Operands.size())
455      return Operands.size() < RHS.Operands.size();
456
457    // Compare lexicographically by operand. The matcher validates that other
458    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
459    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
460      if (*Operands[i].Class < *RHS.Operands[i].Class)
461        return true;
462      if (*RHS.Operands[i].Class < *Operands[i].Class)
463        return false;
464    }
465
466    return false;
467  }
468
469  /// CouldMatchAmiguouslyWith - Check whether this instruction could
470  /// ambiguously match the same set of operands as \arg RHS (without being a
471  /// strictly superior match).
472  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
473    // The number of operands is unambiguous.
474    if (Operands.size() != RHS.Operands.size())
475      return false;
476
477    // Otherwise, make sure the ordering of the two instructions is unambiguous
478    // by checking that either (a) a token or operand kind discriminates them,
479    // or (b) the ordering among equivalent kinds is consistent.
480
481    // Tokens and operand kinds are unambiguous (assuming a correct target
482    // specific parser).
483    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
484      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
485          Operands[i].Class->Kind == ClassInfo::Token)
486        if (*Operands[i].Class < *RHS.Operands[i].Class ||
487            *RHS.Operands[i].Class < *Operands[i].Class)
488          return false;
489
490    // Otherwise, this operand could commute if all operands are equivalent, or
491    // there is a pair of operands that compare less than and a pair that
492    // compare greater than.
493    bool HasLT = false, HasGT = false;
494    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
495      if (*Operands[i].Class < *RHS.Operands[i].Class)
496        HasLT = true;
497      if (*RHS.Operands[i].Class < *Operands[i].Class)
498        HasGT = true;
499    }
500
501    return !(HasLT ^ HasGT);
502  }
503
504public:
505  void dump();
506};
507
508class AsmMatcherInfo {
509public:
510  /// The tablegen AsmParser record.
511  Record *AsmParser;
512
513  /// The AsmParser "CommentDelimiter" value.
514  std::string CommentDelimiter;
515
516  /// The AsmParser "RegisterPrefix" value.
517  std::string RegisterPrefix;
518
519  /// The classes which are needed for matching.
520  std::vector<ClassInfo*> Classes;
521
522  /// The information on the instruction to match.
523  std::vector<InstructionInfo*> Instructions;
524
525  /// Map of Register records to their class information.
526  std::map<Record*, ClassInfo*> RegisterClasses;
527
528private:
529  /// Map of token to class information which has already been constructed.
530  std::map<std::string, ClassInfo*> TokenClasses;
531
532  /// Map of RegisterClass records to their class information.
533  std::map<Record*, ClassInfo*> RegisterClassClasses;
534
535  /// Map of AsmOperandClass records to their class information.
536  std::map<Record*, ClassInfo*> AsmOperandClasses;
537
538private:
539  /// getTokenClass - Lookup or create the class for the given token.
540  ClassInfo *getTokenClass(StringRef Token);
541
542  /// getOperandClass - Lookup or create the class for the given operand.
543  ClassInfo *getOperandClass(StringRef Token,
544                             const CodeGenInstruction::OperandInfo &OI);
545
546  /// BuildRegisterClasses - Build the ClassInfo* instances for register
547  /// classes.
548  void BuildRegisterClasses(CodeGenTarget &Target,
549                            std::set<std::string> &SingletonRegisterNames);
550
551  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
552  /// operand classes.
553  void BuildOperandClasses(CodeGenTarget &Target);
554
555public:
556  AsmMatcherInfo(Record *_AsmParser);
557
558  /// BuildInfo - Construct the various tables used during matching.
559  void BuildInfo(CodeGenTarget &Target);
560};
561
562}
563
564void InstructionInfo::dump() {
565  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
566         << ", tokens:[";
567  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
568    errs() << Tokens[i];
569    if (i + 1 != e)
570      errs() << ", ";
571  }
572  errs() << "]\n";
573
574  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
575    Operand &Op = Operands[i];
576    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
577    if (Op.Class->Kind == ClassInfo::Token) {
578      errs() << '\"' << Tokens[i] << "\"\n";
579      continue;
580    }
581
582    if (!Op.OperandInfo) {
583      errs() << "(singleton register)\n";
584      continue;
585    }
586
587    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
588    errs() << OI.Name << " " << OI.Rec->getName()
589           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
590  }
591}
592
593static std::string getEnumNameForToken(StringRef Str) {
594  std::string Res;
595
596  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
597    switch (*it) {
598    case '*': Res += "_STAR_"; break;
599    case '%': Res += "_PCT_"; break;
600    case ':': Res += "_COLON_"; break;
601
602    default:
603      if (isalnum(*it))  {
604        Res += *it;
605      } else {
606        Res += "_" + utostr((unsigned) *it) + "_";
607      }
608    }
609  }
610
611  return Res;
612}
613
614/// getRegisterRecord - Get the register record for \arg name, or 0.
615static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
616  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
617    const CodeGenRegister &Reg = Target.getRegisters()[i];
618    if (Name == Reg.TheDef->getValueAsString("AsmName"))
619      return Reg.TheDef;
620  }
621
622  return 0;
623}
624
625ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
626  ClassInfo *&Entry = TokenClasses[Token];
627
628  if (!Entry) {
629    Entry = new ClassInfo();
630    Entry->Kind = ClassInfo::Token;
631    Entry->ClassName = "Token";
632    Entry->Name = "MCK_" + getEnumNameForToken(Token);
633    Entry->ValueName = Token;
634    Entry->PredicateMethod = "<invalid>";
635    Entry->RenderMethod = "<invalid>";
636    Classes.push_back(Entry);
637  }
638
639  return Entry;
640}
641
642ClassInfo *
643AsmMatcherInfo::getOperandClass(StringRef Token,
644                                const CodeGenInstruction::OperandInfo &OI) {
645  if (OI.Rec->isSubClassOf("RegisterClass")) {
646    ClassInfo *CI = RegisterClassClasses[OI.Rec];
647
648    if (!CI) {
649      PrintError(OI.Rec->getLoc(), "register class has no class info!");
650      throw std::string("ERROR: Missing register class!");
651    }
652
653    return CI;
654  }
655
656  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
657  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
658  ClassInfo *CI = AsmOperandClasses[MatchClass];
659
660  if (!CI) {
661    PrintError(OI.Rec->getLoc(), "operand has no match class!");
662    throw std::string("ERROR: Missing match class!");
663  }
664
665  return CI;
666}
667
668void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
669                                          std::set<std::string>
670                                            &SingletonRegisterNames) {
671  std::vector<CodeGenRegisterClass> RegisterClasses;
672  std::vector<CodeGenRegister> Registers;
673
674  RegisterClasses = Target.getRegisterClasses();
675  Registers = Target.getRegisters();
676
677  // The register sets used for matching.
678  std::set< std::set<Record*> > RegisterSets;
679
680  // Gather the defined sets.
681  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
682         ie = RegisterClasses.end(); it != ie; ++it)
683    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
684                                          it->Elements.end()));
685
686  // Add any required singleton sets.
687  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
688         ie = SingletonRegisterNames.end(); it != ie; ++it)
689    if (Record *Rec = getRegisterRecord(Target, *it))
690      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
691
692  // Introduce derived sets where necessary (when a register does not determine
693  // a unique register set class), and build the mapping of registers to the set
694  // they should classify to.
695  std::map<Record*, std::set<Record*> > RegisterMap;
696  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
697         ie = Registers.end(); it != ie; ++it) {
698    CodeGenRegister &CGR = *it;
699    // Compute the intersection of all sets containing this register.
700    std::set<Record*> ContainingSet;
701
702    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
703           ie = RegisterSets.end(); it != ie; ++it) {
704      if (!it->count(CGR.TheDef))
705        continue;
706
707      if (ContainingSet.empty()) {
708        ContainingSet = *it;
709      } else {
710        std::set<Record*> Tmp;
711        std::swap(Tmp, ContainingSet);
712        std::insert_iterator< std::set<Record*> > II(ContainingSet,
713                                                     ContainingSet.begin());
714        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
715                              II);
716      }
717    }
718
719    if (!ContainingSet.empty()) {
720      RegisterSets.insert(ContainingSet);
721      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
722    }
723  }
724
725  // Construct the register classes.
726  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
727  unsigned Index = 0;
728  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
729         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
730    ClassInfo *CI = new ClassInfo();
731    CI->Kind = ClassInfo::RegisterClass0 + Index;
732    CI->ClassName = "Reg" + utostr(Index);
733    CI->Name = "MCK_Reg" + utostr(Index);
734    CI->ValueName = "";
735    CI->PredicateMethod = ""; // unused
736    CI->RenderMethod = "addRegOperands";
737    CI->Registers = *it;
738    Classes.push_back(CI);
739    RegisterSetClasses.insert(std::make_pair(*it, CI));
740  }
741
742  // Find the superclasses; we could compute only the subgroup lattice edges,
743  // but there isn't really a point.
744  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
745         ie = RegisterSets.end(); it != ie; ++it) {
746    ClassInfo *CI = RegisterSetClasses[*it];
747    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
748           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
749      if (*it != *it2 &&
750          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
751        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
752  }
753
754  // Name the register classes which correspond to a user defined RegisterClass.
755  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
756         ie = RegisterClasses.end(); it != ie; ++it) {
757    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
758                                                         it->Elements.end())];
759    if (CI->ValueName.empty()) {
760      CI->ClassName = it->getName();
761      CI->Name = "MCK_" + it->getName();
762      CI->ValueName = it->getName();
763    } else
764      CI->ValueName = CI->ValueName + "," + it->getName();
765
766    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
767  }
768
769  // Populate the map for individual registers.
770  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
771         ie = RegisterMap.end(); it != ie; ++it)
772    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
773
774  // Name the register classes which correspond to singleton registers.
775  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
776         ie = SingletonRegisterNames.end(); it != ie; ++it) {
777    if (Record *Rec = getRegisterRecord(Target, *it)) {
778      ClassInfo *CI = this->RegisterClasses[Rec];
779      assert(CI && "Missing singleton register class info!");
780
781      if (CI->ValueName.empty()) {
782        CI->ClassName = Rec->getName();
783        CI->Name = "MCK_" + Rec->getName();
784        CI->ValueName = Rec->getName();
785      } else
786        CI->ValueName = CI->ValueName + "," + Rec->getName();
787    }
788  }
789}
790
791void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
792  std::vector<Record*> AsmOperands;
793  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
794
795  // Pre-populate AsmOperandClasses map.
796  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
797         ie = AsmOperands.end(); it != ie; ++it)
798    AsmOperandClasses[*it] = new ClassInfo();
799
800  unsigned Index = 0;
801  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
802         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
803    ClassInfo *CI = AsmOperandClasses[*it];
804    CI->Kind = ClassInfo::UserClass0 + Index;
805
806    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
807    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
808      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
809      if (!DI) {
810        PrintError((*it)->getLoc(), "Invalid super class reference!");
811        continue;
812      }
813
814      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
815      if (!SC)
816        PrintError((*it)->getLoc(), "Invalid super class reference!");
817      else
818        CI->SuperClasses.push_back(SC);
819    }
820    CI->ClassName = (*it)->getValueAsString("Name");
821    CI->Name = "MCK_" + CI->ClassName;
822    CI->ValueName = (*it)->getName();
823
824    // Get or construct the predicate method name.
825    Init *PMName = (*it)->getValueInit("PredicateMethod");
826    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
827      CI->PredicateMethod = SI->getValue();
828    } else {
829      assert(dynamic_cast<UnsetInit*>(PMName) &&
830             "Unexpected PredicateMethod field!");
831      CI->PredicateMethod = "is" + CI->ClassName;
832    }
833
834    // Get or construct the render method name.
835    Init *RMName = (*it)->getValueInit("RenderMethod");
836    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
837      CI->RenderMethod = SI->getValue();
838    } else {
839      assert(dynamic_cast<UnsetInit*>(RMName) &&
840             "Unexpected RenderMethod field!");
841      CI->RenderMethod = "add" + CI->ClassName + "Operands";
842    }
843
844    AsmOperandClasses[*it] = CI;
845    Classes.push_back(CI);
846  }
847}
848
849AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
850  : AsmParser(_AsmParser),
851    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
852    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
853{
854}
855
856void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
857  // Parse the instructions; we need to do this first so that we can gather the
858  // singleton register classes.
859  std::set<std::string> SingletonRegisterNames;
860
861  const std::vector<const CodeGenInstruction*> &InstrList =
862    Target.getInstructionsByEnumValue();
863
864  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
865    const CodeGenInstruction &CGI = *InstrList[i];
866
867    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
868      continue;
869
870    OwningPtr<InstructionInfo> II(new InstructionInfo());
871
872    II->InstrName = CGI.TheDef->getName();
873    II->Instr = &CGI;
874    II->AsmString = FlattenVariants(CGI.AsmString, 0);
875
876    // Remove comments from the asm string.
877    if (!CommentDelimiter.empty()) {
878      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
879      if (Idx != StringRef::npos)
880        II->AsmString = II->AsmString.substr(0, Idx);
881    }
882
883    TokenizeAsmString(II->AsmString, II->Tokens);
884
885    // Ignore instructions which shouldn't be matched.
886    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
887      continue;
888
889    // Collect singleton registers, if used.
890    if (!RegisterPrefix.empty()) {
891      for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
892        if (II->Tokens[i].startswith(RegisterPrefix)) {
893          StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
894          Record *Rec = getRegisterRecord(Target, RegName);
895
896          if (!Rec) {
897            std::string Err = "unable to find register for '" + RegName.str() +
898              "' (which matches register prefix)";
899            throw TGError(CGI.TheDef->getLoc(), Err);
900          }
901
902          SingletonRegisterNames.insert(RegName);
903        }
904      }
905    }
906
907    Instructions.push_back(II.take());
908  }
909
910  // Build info for the register classes.
911  BuildRegisterClasses(Target, SingletonRegisterNames);
912
913  // Build info for the user defined assembly operand classes.
914  BuildOperandClasses(Target);
915
916  // Build the instruction information.
917  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
918         ie = Instructions.end(); it != ie; ++it) {
919    InstructionInfo *II = *it;
920
921    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
922      StringRef Token = II->Tokens[i];
923
924      // Check for singleton registers.
925      if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
926        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
927        InstructionInfo::Operand Op;
928        Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
929        Op.OperandInfo = 0;
930        assert(Op.Class && Op.Class->Registers.size() == 1 &&
931               "Unexpected class for singleton register");
932        II->Operands.push_back(Op);
933        continue;
934      }
935
936      // Check for simple tokens.
937      if (Token[0] != '$') {
938        InstructionInfo::Operand Op;
939        Op.Class = getTokenClass(Token);
940        Op.OperandInfo = 0;
941        II->Operands.push_back(Op);
942        continue;
943      }
944
945      // Otherwise this is an operand reference.
946      StringRef OperandName;
947      if (Token[1] == '{')
948        OperandName = Token.substr(2, Token.size() - 3);
949      else
950        OperandName = Token.substr(1);
951
952      // Map this token to an operand. FIXME: Move elsewhere.
953      unsigned Idx;
954      try {
955        Idx = II->Instr->getOperandNamed(OperandName);
956      } catch(...) {
957        throw std::string("error: unable to find operand: '" +
958                          OperandName.str() + "'");
959      }
960
961      // FIXME: This is annoying, the named operand may be tied (e.g.,
962      // XCHG8rm). What we want is the untied operand, which we now have to
963      // grovel for. Only worry about this for single entry operands, we have to
964      // clean this up anyway.
965      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
966      if (OI->Constraints[0].isTied()) {
967        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
968
969        // The tied operand index is an MIOperand index, find the operand that
970        // contains it.
971        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
972          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
973            OI = &II->Instr->OperandList[i];
974            break;
975          }
976        }
977
978        assert(OI && "Unable to find tied operand target!");
979      }
980
981      InstructionInfo::Operand Op;
982      Op.Class = getOperandClass(Token, *OI);
983      Op.OperandInfo = OI;
984      II->Operands.push_back(Op);
985    }
986  }
987
988  // Reorder classes so that classes preceed super classes.
989  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
990}
991
992static std::pair<unsigned, unsigned> *
993GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
994                      unsigned Index) {
995  for (unsigned i = 0, e = List.size(); i != e; ++i)
996    if (Index == List[i].first)
997      return &List[i];
998
999  return 0;
1000}
1001
1002static void EmitConvertToMCInst(CodeGenTarget &Target,
1003                                std::vector<InstructionInfo*> &Infos,
1004                                raw_ostream &OS) {
1005  // Write the convert function to a separate stream, so we can drop it after
1006  // the enum.
1007  std::string ConvertFnBody;
1008  raw_string_ostream CvtOS(ConvertFnBody);
1009
1010  // Function we have already generated.
1011  std::set<std::string> GeneratedFns;
1012
1013  // Start the unified conversion function.
1014
1015  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1016        << "unsigned Opcode,\n"
1017        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1018        << "> &Operands) {\n";
1019  CvtOS << "  Inst.setOpcode(Opcode);\n";
1020  CvtOS << "  switch (Kind) {\n";
1021  CvtOS << "  default:\n";
1022
1023  // Start the enum, which we will generate inline.
1024
1025  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1026  OS << "enum ConversionKind {\n";
1027
1028  // TargetOperandClass - This is the target's operand class, like X86Operand.
1029  std::string TargetOperandClass = Target.getName() + "Operand";
1030
1031  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
1032         ie = Infos.end(); it != ie; ++it) {
1033    InstructionInfo &II = **it;
1034
1035    // Order the (class) operands by the order to convert them into an MCInst.
1036    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1037    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1038      InstructionInfo::Operand &Op = II.Operands[i];
1039      if (Op.OperandInfo)
1040        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1041    }
1042
1043    // Find any tied operands.
1044    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1045    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1046      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
1047      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1048        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
1049        if (CI.isTied())
1050          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1051                                                CI.getTiedOperand()));
1052      }
1053    }
1054
1055    std::sort(MIOperandList.begin(), MIOperandList.end());
1056
1057    // Compute the total number of operands.
1058    unsigned NumMIOperands = 0;
1059    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1060      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
1061      NumMIOperands = std::max(NumMIOperands,
1062                               OI.MIOperandNo + OI.MINumOperands);
1063    }
1064
1065    // Build the conversion function signature.
1066    std::string Signature = "Convert";
1067    unsigned CurIndex = 0;
1068    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1069      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1070      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1071             "Duplicate match for instruction operand!");
1072
1073      // Skip operands which weren't matched by anything, this occurs when the
1074      // .td file encodes "implicit" operands as explicit ones.
1075      //
1076      // FIXME: This should be removed from the MCInst structure.
1077      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1078        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1079                                                                   CurIndex);
1080        if (!Tie)
1081          Signature += "__Imp";
1082        else
1083          Signature += "__Tie" + utostr(Tie->second);
1084      }
1085
1086      Signature += "__";
1087
1088      // Registers are always converted the same, don't duplicate the conversion
1089      // function based on them.
1090      //
1091      // FIXME: We could generalize this based on the render method, if it
1092      // mattered.
1093      if (Op.Class->isRegisterClass())
1094        Signature += "Reg";
1095      else
1096        Signature += Op.Class->ClassName;
1097      Signature += utostr(Op.OperandInfo->MINumOperands);
1098      Signature += "_" + utostr(MIOperandList[i].second);
1099
1100      CurIndex += Op.OperandInfo->MINumOperands;
1101    }
1102
1103    // Add any trailing implicit operands.
1104    for (; CurIndex != NumMIOperands; ++CurIndex) {
1105      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1106                                                                 CurIndex);
1107      if (!Tie)
1108        Signature += "__Imp";
1109      else
1110        Signature += "__Tie" + utostr(Tie->second);
1111    }
1112
1113    II.ConversionFnKind = Signature;
1114
1115    // Check if we have already generated this signature.
1116    if (!GeneratedFns.insert(Signature).second)
1117      continue;
1118
1119    // If not, emit it now.
1120
1121    // Add to the enum list.
1122    OS << "  " << Signature << ",\n";
1123
1124    // And to the convert function.
1125    CvtOS << "  case " << Signature << ":\n";
1126    CurIndex = 0;
1127    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1128      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1129
1130      // Add the implicit operands.
1131      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1132        // See if this is a tied operand.
1133        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1134                                                                   CurIndex);
1135
1136        if (!Tie) {
1137          // If not, this is some implicit operand. Just assume it is a register
1138          // for now.
1139          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1140        } else {
1141          // Copy the tied operand.
1142          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1143          CvtOS << "    Inst.addOperand(Inst.getOperand("
1144                << Tie->second << "));\n";
1145        }
1146      }
1147
1148      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1149         << MIOperandList[i].second
1150         << "])->" << Op.Class->RenderMethod
1151         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1152      CurIndex += Op.OperandInfo->MINumOperands;
1153    }
1154
1155    // And add trailing implicit operands.
1156    for (; CurIndex != NumMIOperands; ++CurIndex) {
1157      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1158                                                                 CurIndex);
1159
1160      if (!Tie) {
1161        // If not, this is some implicit operand. Just assume it is a register
1162        // for now.
1163        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1164      } else {
1165        // Copy the tied operand.
1166        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1167        CvtOS << "    Inst.addOperand(Inst.getOperand("
1168              << Tie->second << "));\n";
1169      }
1170    }
1171
1172    CvtOS << "    return;\n";
1173  }
1174
1175  // Finish the convert function.
1176
1177  CvtOS << "  }\n";
1178  CvtOS << "}\n\n";
1179
1180  // Finish the enum, and drop the convert function after it.
1181
1182  OS << "  NumConversionVariants\n";
1183  OS << "};\n\n";
1184
1185  OS << CvtOS.str();
1186}
1187
1188/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1189static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1190                                      std::vector<ClassInfo*> &Infos,
1191                                      raw_ostream &OS) {
1192  OS << "namespace {\n\n";
1193
1194  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1195     << "/// instruction matching.\n";
1196  OS << "enum MatchClassKind {\n";
1197  OS << "  InvalidMatchClass = 0,\n";
1198  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1199         ie = Infos.end(); it != ie; ++it) {
1200    ClassInfo &CI = **it;
1201    OS << "  " << CI.Name << ", // ";
1202    if (CI.Kind == ClassInfo::Token) {
1203      OS << "'" << CI.ValueName << "'\n";
1204    } else if (CI.isRegisterClass()) {
1205      if (!CI.ValueName.empty())
1206        OS << "register class '" << CI.ValueName << "'\n";
1207      else
1208        OS << "derived register class\n";
1209    } else {
1210      OS << "user defined class '" << CI.ValueName << "'\n";
1211    }
1212  }
1213  OS << "  NumMatchClassKinds\n";
1214  OS << "};\n\n";
1215
1216  OS << "}\n\n";
1217}
1218
1219/// EmitClassifyOperand - Emit the function to classify an operand.
1220static void EmitClassifyOperand(CodeGenTarget &Target,
1221                                AsmMatcherInfo &Info,
1222                                raw_ostream &OS) {
1223  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1224     << "  " << Target.getName() << "Operand &Operand = *("
1225     << Target.getName() << "Operand*)GOp;\n";
1226
1227  // Classify tokens.
1228  OS << "  if (Operand.isToken())\n";
1229  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1230
1231  // Classify registers.
1232  //
1233  // FIXME: Don't hardcode isReg, getReg.
1234  OS << "  if (Operand.isReg()) {\n";
1235  OS << "    switch (Operand.getReg()) {\n";
1236  OS << "    default: return InvalidMatchClass;\n";
1237  for (std::map<Record*, ClassInfo*>::iterator
1238         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1239       it != ie; ++it)
1240    OS << "    case " << Target.getName() << "::"
1241       << it->first->getName() << ": return " << it->second->Name << ";\n";
1242  OS << "    }\n";
1243  OS << "  }\n\n";
1244
1245  // Classify user defined operands.
1246  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1247         ie = Info.Classes.end(); it != ie; ++it) {
1248    ClassInfo &CI = **it;
1249
1250    if (!CI.isUserClass())
1251      continue;
1252
1253    OS << "  // '" << CI.ClassName << "' class";
1254    if (!CI.SuperClasses.empty()) {
1255      OS << ", subclass of ";
1256      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1257        if (i) OS << ", ";
1258        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1259        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1260      }
1261    }
1262    OS << "\n";
1263
1264    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1265
1266    // Validate subclass relationships.
1267    if (!CI.SuperClasses.empty()) {
1268      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1269        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1270           << "() && \"Invalid class relationship!\");\n";
1271    }
1272
1273    OS << "    return " << CI.Name << ";\n";
1274    OS << "  }\n\n";
1275  }
1276  OS << "  return InvalidMatchClass;\n";
1277  OS << "}\n\n";
1278}
1279
1280/// EmitIsSubclass - Emit the subclass predicate function.
1281static void EmitIsSubclass(CodeGenTarget &Target,
1282                           std::vector<ClassInfo*> &Infos,
1283                           raw_ostream &OS) {
1284  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1285  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1286  OS << "  if (A == B)\n";
1287  OS << "    return true;\n\n";
1288
1289  OS << "  switch (A) {\n";
1290  OS << "  default:\n";
1291  OS << "    return false;\n";
1292  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1293         ie = Infos.end(); it != ie; ++it) {
1294    ClassInfo &A = **it;
1295
1296    if (A.Kind != ClassInfo::Token) {
1297      std::vector<StringRef> SuperClasses;
1298      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1299             ie = Infos.end(); it != ie; ++it) {
1300        ClassInfo &B = **it;
1301
1302        if (&A != &B && A.isSubsetOf(B))
1303          SuperClasses.push_back(B.Name);
1304      }
1305
1306      if (SuperClasses.empty())
1307        continue;
1308
1309      OS << "\n  case " << A.Name << ":\n";
1310
1311      if (SuperClasses.size() == 1) {
1312        OS << "    return B == " << SuperClasses.back() << ";\n";
1313        continue;
1314      }
1315
1316      OS << "    switch (B) {\n";
1317      OS << "    default: return false;\n";
1318      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1319        OS << "    case " << SuperClasses[i] << ": return true;\n";
1320      OS << "    }\n";
1321    }
1322  }
1323  OS << "  }\n";
1324  OS << "}\n\n";
1325}
1326
1327typedef std::pair<std::string, std::string> StringPair;
1328
1329/// FindFirstNonCommonLetter - Find the first character in the keys of the
1330/// string pairs that is not shared across the whole set of strings.  All
1331/// strings are assumed to have the same length.
1332static unsigned
1333FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
1334  assert(!Matches.empty());
1335  for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
1336    // Check to see if letter i is the same across the set.
1337    char Letter = Matches[0]->first[i];
1338
1339    for (unsigned str = 0, e = Matches.size(); str != e; ++str)
1340      if (Matches[str]->first[i] != Letter)
1341        return i;
1342  }
1343
1344  return Matches[0]->first.size();
1345}
1346
1347/// EmitStringMatcherForChar - Given a set of strings that are known to be the
1348/// same length and whose characters leading up to CharNo are the same, emit
1349/// code to verify that CharNo and later are the same.
1350///
1351/// \return - True if control can leave the emitted code fragment.
1352static bool EmitStringMatcherForChar(const std::string &StrVariableName,
1353                                  const std::vector<const StringPair*> &Matches,
1354                                     unsigned CharNo, unsigned IndentCount,
1355                                     raw_ostream &OS) {
1356  assert(!Matches.empty() && "Must have at least one string to match!");
1357  std::string Indent(IndentCount*2+4, ' ');
1358
1359  // If we have verified that the entire string matches, we're done: output the
1360  // matching code.
1361  if (CharNo == Matches[0]->first.size()) {
1362    assert(Matches.size() == 1 && "Had duplicate keys to match on");
1363
1364    // FIXME: If Matches[0].first has embeded \n, this will be bad.
1365    OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
1366       << "\"\n";
1367    return false;
1368  }
1369
1370  // Bucket the matches by the character we are comparing.
1371  std::map<char, std::vector<const StringPair*> > MatchesByLetter;
1372
1373  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1374    MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
1375
1376
1377  // If we have exactly one bucket to match, see how many characters are common
1378  // across the whole set and match all of them at once.
1379  if (MatchesByLetter.size() == 1) {
1380    unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
1381    unsigned NumChars = FirstNonCommonLetter-CharNo;
1382
1383    // Emit code to break out if the prefix doesn't match.
1384    if (NumChars == 1) {
1385      // Do the comparison with if (Str[1] != 'f')
1386      // FIXME: Need to escape general characters.
1387      OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
1388         << Matches[0]->first[CharNo] << "')\n";
1389      OS << Indent << "  break;\n";
1390    } else {
1391      // Do the comparison with if (Str.substr(1,3) != "foo").
1392      // FIXME: Need to escape general strings.
1393      OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
1394         << NumChars << ") != \"";
1395      OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
1396      OS << Indent << "  break;\n";
1397    }
1398
1399    return EmitStringMatcherForChar(StrVariableName, Matches,
1400                                    FirstNonCommonLetter, IndentCount, OS);
1401  }
1402
1403  // Otherwise, we have multiple possible things, emit a switch on the
1404  // character.
1405  OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
1406  OS << Indent << "default: break;\n";
1407
1408  for (std::map<char, std::vector<const StringPair*> >::iterator LI =
1409       MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
1410    // TODO: escape hard stuff (like \n) if we ever care about it.
1411    OS << Indent << "case '" << LI->first << "':\t // "
1412       << LI->second.size() << " strings to match.\n";
1413    if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
1414                                 IndentCount+1, OS))
1415      OS << Indent << "  break;\n";
1416  }
1417
1418  OS << Indent << "}\n";
1419  return true;
1420}
1421
1422
1423/// EmitStringMatcher - Given a list of strings and code to execute when they
1424/// match, output a simple switch tree to classify the input string.
1425///
1426/// If a match is found, the code in Vals[i].second is executed; control must
1427/// not exit this code fragment.  If nothing matches, execution falls through.
1428///
1429/// \param StrVariableName - The name of the variable to test.
1430static void EmitStringMatcher(const std::string &StrVariableName,
1431                              const std::vector<StringPair> &Matches,
1432                              raw_ostream &OS) {
1433  // First level categorization: group strings by length.
1434  std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
1435
1436  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1437    MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
1438
1439  // Output a switch statement on length and categorize the elements within each
1440  // bin.
1441  OS << "  switch (" << StrVariableName << ".size()) {\n";
1442  OS << "  default: break;\n";
1443
1444  for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
1445       MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
1446    OS << "  case " << LI->first << ":\t // " << LI->second.size()
1447       << " strings to match.\n";
1448    if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
1449      OS << "    break;\n";
1450  }
1451
1452  OS << "  }\n";
1453}
1454
1455
1456/// EmitMatchTokenString - Emit the function to match a token string to the
1457/// appropriate match class value.
1458static void EmitMatchTokenString(CodeGenTarget &Target,
1459                                 std::vector<ClassInfo*> &Infos,
1460                                 raw_ostream &OS) {
1461  // Construct the match list.
1462  std::vector<StringPair> Matches;
1463  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1464         ie = Infos.end(); it != ie; ++it) {
1465    ClassInfo &CI = **it;
1466
1467    if (CI.Kind == ClassInfo::Token)
1468      Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
1469  }
1470
1471  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1472
1473  EmitStringMatcher("Name", Matches, OS);
1474
1475  OS << "  return InvalidMatchClass;\n";
1476  OS << "}\n\n";
1477}
1478
1479/// EmitMatchRegisterName - Emit the function to match a string to the target
1480/// specific register enum.
1481static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1482                                  raw_ostream &OS) {
1483  // Construct the match list.
1484  std::vector<StringPair> Matches;
1485  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1486    const CodeGenRegister &Reg = Target.getRegisters()[i];
1487    if (Reg.TheDef->getValueAsString("AsmName").empty())
1488      continue;
1489
1490    Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
1491                                 "return " + utostr(i + 1) + ";"));
1492  }
1493
1494  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1495
1496  EmitStringMatcher("Name", Matches, OS);
1497
1498  OS << "  return 0;\n";
1499  OS << "}\n\n";
1500}
1501
1502void AsmMatcherEmitter::run(raw_ostream &OS) {
1503  CodeGenTarget Target;
1504  Record *AsmParser = Target.getAsmParser();
1505  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1506
1507  // Compute the information on the instructions to match.
1508  AsmMatcherInfo Info(AsmParser);
1509  Info.BuildInfo(Target);
1510
1511  // Sort the instruction table using the partial order on classes. We use
1512  // stable_sort to ensure that ambiguous instructions are still
1513  // deterministically ordered.
1514  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
1515                   less_ptr<InstructionInfo>());
1516
1517  DEBUG_WITH_TYPE("instruction_info", {
1518      for (std::vector<InstructionInfo*>::iterator
1519             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1520           it != ie; ++it)
1521        (*it)->dump();
1522    });
1523
1524  // Check for ambiguous instructions.
1525  unsigned NumAmbiguous = 0;
1526  for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1527    for (unsigned j = i + 1; j != e; ++j) {
1528      InstructionInfo &A = *Info.Instructions[i];
1529      InstructionInfo &B = *Info.Instructions[j];
1530
1531      if (A.CouldMatchAmiguouslyWith(B)) {
1532        DEBUG_WITH_TYPE("ambiguous_instrs", {
1533            errs() << "warning: ambiguous instruction match:\n";
1534            A.dump();
1535            errs() << "\nis incomparable with:\n";
1536            B.dump();
1537            errs() << "\n\n";
1538          });
1539        ++NumAmbiguous;
1540      }
1541    }
1542  }
1543  if (NumAmbiguous)
1544    DEBUG_WITH_TYPE("ambiguous_instrs", {
1545        errs() << "warning: " << NumAmbiguous
1546               << " ambiguous instructions!\n";
1547      });
1548
1549  // Write the output.
1550
1551  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1552
1553  // Emit the function to match a register name to number.
1554  EmitMatchRegisterName(Target, AsmParser, OS);
1555
1556  OS << "#ifndef REGISTERS_ONLY\n\n";
1557
1558  // Generate the unified function to convert operands into an MCInst.
1559  EmitConvertToMCInst(Target, Info.Instructions, OS);
1560
1561  // Emit the enumeration for classes which participate in matching.
1562  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1563
1564  // Emit the routine to match token strings to their match class.
1565  EmitMatchTokenString(Target, Info.Classes, OS);
1566
1567  // Emit the routine to classify an operand.
1568  EmitClassifyOperand(Target, Info, OS);
1569
1570  // Emit the subclass predicate routine.
1571  EmitIsSubclass(Target, Info.Classes, OS);
1572
1573  // Finally, build the match function.
1574
1575  size_t MaxNumOperands = 0;
1576  for (std::vector<InstructionInfo*>::const_iterator it =
1577         Info.Instructions.begin(), ie = Info.Instructions.end();
1578       it != ie; ++it)
1579    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1580
1581  const std::string &MatchName =
1582    AsmParser->getValueAsString("MatchInstructionName");
1583  OS << "bool " << Target.getName() << ClassName << "::\n"
1584     << MatchName
1585     << "(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
1586  OS.indent(MatchName.size() + 1);
1587  OS << "MCInst &Inst) {\n";
1588
1589  // Emit the static match table; unused classes get initalized to 0 which is
1590  // guaranteed to be InvalidMatchClass.
1591  //
1592  // FIXME: We can reduce the size of this table very easily. First, we change
1593  // it so that store the kinds in separate bit-fields for each index, which
1594  // only needs to be the max width used for classes at that index (we also need
1595  // to reject based on this during classification). If we then make sure to
1596  // order the match kinds appropriately (putting mnemonics last), then we
1597  // should only end up using a few bits for each class, especially the ones
1598  // following the mnemonic.
1599  OS << "  static const struct MatchEntry {\n";
1600  OS << "    unsigned Opcode;\n";
1601  OS << "    ConversionKind ConvertFn;\n";
1602  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1603  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";
1604
1605  for (std::vector<InstructionInfo*>::const_iterator it =
1606         Info.Instructions.begin(), ie = Info.Instructions.end();
1607       it != ie; ++it) {
1608    InstructionInfo &II = **it;
1609
1610    OS << "    { " << Target.getName() << "::" << II.InstrName
1611       << ", " << II.ConversionFnKind << ", { ";
1612    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1613      InstructionInfo::Operand &Op = II.Operands[i];
1614
1615      if (i) OS << ", ";
1616      OS << Op.Class->Name;
1617    }
1618    OS << " } },\n";
1619  }
1620
1621  OS << "  };\n\n";
1622
1623  // Emit code to compute the class list for this operand vector.
1624  OS << "  // Eliminate obvious mismatches.\n";
1625  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
1626  OS << "    return true;\n\n";
1627
1628  OS << "  // Compute the class list for this operand vector.\n";
1629  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1630  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
1631  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";
1632
1633  OS << "    // Check for invalid operands before matching.\n";
1634  OS << "    if (Classes[i] == InvalidMatchClass)\n";
1635  OS << "      return true;\n";
1636  OS << "  }\n\n";
1637
1638  OS << "  // Mark unused classes.\n";
1639  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
1640     << "i != e; ++i)\n";
1641  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1642
1643  // Emit code to search the table.
1644  OS << "  // Search the table.\n";
1645  OS << "  for (const MatchEntry *it = MatchTable, "
1646     << "*ie = MatchTable + " << Info.Instructions.size()
1647     << "; it != ie; ++it) {\n";
1648  for (unsigned i = 0; i != MaxNumOperands; ++i) {
1649    OS << "    if (!IsSubclass(Classes["
1650       << i << "], it->Classes[" << i << "]))\n";
1651    OS << "      continue;\n";
1652  }
1653  OS << "\n";
1654  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1655
1656  // Call the post-processing function, if used.
1657  std::string InsnCleanupFn =
1658    AsmParser->getValueAsString("AsmParserInstCleanup");
1659  if (!InsnCleanupFn.empty())
1660    OS << "    " << InsnCleanupFn << "(Inst);\n";
1661
1662  OS << "    return false;\n";
1663  OS << "  }\n\n";
1664
1665  OS << "  return true;\n";
1666  OS << "}\n\n";
1667
1668  OS << "#endif // REGISTERS_ONLY\n";
1669}
1670