AsmMatcherEmitter.cpp revision 4fd32c66481c107a4f32cbec0c3017d9c6154a93
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "StringMatcher.h"
80#include "llvm/ADT/OwningPtr.h"
81#include "llvm/ADT/SmallVector.h"
82#include "llvm/ADT/STLExtras.h"
83#include "llvm/ADT/StringExtras.h"
84#include "llvm/Support/CommandLine.h"
85#include "llvm/Support/Debug.h"
86#include <list>
87#include <map>
88#include <set>
89using namespace llvm;
90
91static cl::opt<std::string>
92MatchPrefix("match-prefix", cl::init(""),
93            cl::desc("Only match instructions with the given prefix"));
94
95/// FlattenVariants - Flatten an .td file assembly string by selecting the
96/// variant at index \arg N.
97static std::string FlattenVariants(const std::string &AsmString,
98                                   unsigned N) {
99  StringRef Cur = AsmString;
100  std::string Res = "";
101
102  for (;;) {
103    // Find the start of the next variant string.
104    size_t VariantsStart = 0;
105    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
106      if (Cur[VariantsStart] == '{' &&
107          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
108                                  Cur[VariantsStart-1] != '\\')))
109        break;
110
111    // Add the prefix to the result.
112    Res += Cur.slice(0, VariantsStart);
113    if (VariantsStart == Cur.size())
114      break;
115
116    ++VariantsStart; // Skip the '{'.
117
118    // Scan to the end of the variants string.
119    size_t VariantsEnd = VariantsStart;
120    unsigned NestedBraces = 1;
121    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
122      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
123        if (--NestedBraces == 0)
124          break;
125      } else if (Cur[VariantsEnd] == '{')
126        ++NestedBraces;
127    }
128
129    // Select the Nth variant (or empty).
130    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
131    for (unsigned i = 0; i != N; ++i)
132      Selection = Selection.split('|').second;
133    Res += Selection.split('|').first;
134
135    assert(VariantsEnd != Cur.size() &&
136           "Unterminated variants in assembly string!");
137    Cur = Cur.substr(VariantsEnd + 1);
138  }
139
140  return Res;
141}
142
143/// TokenizeAsmString - Tokenize a simplified assembly string.
144static void TokenizeAsmString(StringRef AsmString,
145                              SmallVectorImpl<StringRef> &Tokens) {
146  unsigned Prev = 0;
147  bool InTok = true;
148  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
149    switch (AsmString[i]) {
150    case '[':
151    case ']':
152    case '*':
153    case '!':
154    case ' ':
155    case '\t':
156    case ',':
157      if (InTok) {
158        Tokens.push_back(AsmString.slice(Prev, i));
159        InTok = false;
160      }
161      if (!isspace(AsmString[i]) && AsmString[i] != ',')
162        Tokens.push_back(AsmString.substr(i, 1));
163      Prev = i + 1;
164      break;
165
166    case '\\':
167      if (InTok) {
168        Tokens.push_back(AsmString.slice(Prev, i));
169        InTok = false;
170      }
171      ++i;
172      assert(i != AsmString.size() && "Invalid quoted character");
173      Tokens.push_back(AsmString.substr(i, 1));
174      Prev = i + 1;
175      break;
176
177    case '$': {
178      // If this isn't "${", treat like a normal token.
179      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
180        if (InTok) {
181          Tokens.push_back(AsmString.slice(Prev, i));
182          InTok = false;
183        }
184        Prev = i;
185        break;
186      }
187
188      if (InTok) {
189        Tokens.push_back(AsmString.slice(Prev, i));
190        InTok = false;
191      }
192
193      StringRef::iterator End =
194        std::find(AsmString.begin() + i, AsmString.end(), '}');
195      assert(End != AsmString.end() && "Missing brace in operand reference!");
196      size_t EndPos = End - AsmString.begin();
197      Tokens.push_back(AsmString.slice(i, EndPos+1));
198      Prev = EndPos + 1;
199      i = EndPos;
200      break;
201    }
202
203    case '.':
204      if (InTok) {
205        Tokens.push_back(AsmString.slice(Prev, i));
206      }
207      Prev = i;
208      InTok = true;
209      break;
210
211    default:
212      InTok = true;
213    }
214  }
215  if (InTok && Prev != AsmString.size())
216    Tokens.push_back(AsmString.substr(Prev));
217}
218
219static bool IsAssemblerInstruction(StringRef Name,
220                                   const CodeGenInstruction &CGI,
221                                   const SmallVectorImpl<StringRef> &Tokens) {
222  // Ignore "codegen only" instructions.
223  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
224    return false;
225
226  // Ignore pseudo ops.
227  //
228  // FIXME: This is a hack; can we convert these instructions to set the
229  // "codegen only" bit instead?
230  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
231    if (Form->getValue()->getAsString() == "Pseudo")
232      return false;
233
234  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
235  //
236  // FIXME: This is a total hack.
237  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
238    return false;
239
240  // Ignore instructions with no .s string.
241  //
242  // FIXME: What are these?
243  if (CGI.AsmString.empty())
244    return false;
245
246  // FIXME: Hack; ignore any instructions with a newline in them.
247  if (std::find(CGI.AsmString.begin(),
248                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
249    return false;
250
251  // Ignore instructions with attributes, these are always fake instructions for
252  // simplifying codegen.
253  //
254  // FIXME: Is this true?
255  //
256  // Also, check for instructions which reference the operand multiple times;
257  // this implies a constraint we would not honor.
258  std::set<std::string> OperandNames;
259  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
260    if (Tokens[i][0] == '$' &&
261        std::find(Tokens[i].begin(),
262                  Tokens[i].end(), ':') != Tokens[i].end()) {
263      DEBUG({
264          errs() << "warning: '" << Name << "': "
265                 << "ignoring instruction; operand with attribute '"
266                 << Tokens[i] << "'\n";
267        });
268      return false;
269    }
270
271    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
272      DEBUG({
273          errs() << "warning: '" << Name << "': "
274                 << "ignoring instruction with tied operand '"
275                 << Tokens[i].str() << "'\n";
276        });
277      return false;
278    }
279  }
280
281  return true;
282}
283
284namespace {
285
286struct SubtargetFeatureInfo;
287
288/// ClassInfo - Helper class for storing the information about a particular
289/// class of operands which can be matched.
290struct ClassInfo {
291  enum ClassInfoKind {
292    /// Invalid kind, for use as a sentinel value.
293    Invalid = 0,
294
295    /// The class for a particular token.
296    Token,
297
298    /// The (first) register class, subsequent register classes are
299    /// RegisterClass0+1, and so on.
300    RegisterClass0,
301
302    /// The (first) user defined class, subsequent user defined classes are
303    /// UserClass0+1, and so on.
304    UserClass0 = 1<<16
305  };
306
307  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
308  /// N) for the Nth user defined class.
309  unsigned Kind;
310
311  /// SuperClasses - The super classes of this class. Note that for simplicities
312  /// sake user operands only record their immediate super class, while register
313  /// operands include all superclasses.
314  std::vector<ClassInfo*> SuperClasses;
315
316  /// Name - The full class name, suitable for use in an enum.
317  std::string Name;
318
319  /// ClassName - The unadorned generic name for this class (e.g., Token).
320  std::string ClassName;
321
322  /// ValueName - The name of the value this class represents; for a token this
323  /// is the literal token string, for an operand it is the TableGen class (or
324  /// empty if this is a derived class).
325  std::string ValueName;
326
327  /// PredicateMethod - The name of the operand method to test whether the
328  /// operand matches this class; this is not valid for Token or register kinds.
329  std::string PredicateMethod;
330
331  /// RenderMethod - The name of the operand method to add this operand to an
332  /// MCInst; this is not valid for Token or register kinds.
333  std::string RenderMethod;
334
335  /// For register classes, the records for all the registers in this class.
336  std::set<Record*> Registers;
337
338public:
339  /// isRegisterClass() - Check if this is a register class.
340  bool isRegisterClass() const {
341    return Kind >= RegisterClass0 && Kind < UserClass0;
342  }
343
344  /// isUserClass() - Check if this is a user defined class.
345  bool isUserClass() const {
346    return Kind >= UserClass0;
347  }
348
349  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
350  /// are related if they are in the same class hierarchy.
351  bool isRelatedTo(const ClassInfo &RHS) const {
352    // Tokens are only related to tokens.
353    if (Kind == Token || RHS.Kind == Token)
354      return Kind == Token && RHS.Kind == Token;
355
356    // Registers classes are only related to registers classes, and only if
357    // their intersection is non-empty.
358    if (isRegisterClass() || RHS.isRegisterClass()) {
359      if (!isRegisterClass() || !RHS.isRegisterClass())
360        return false;
361
362      std::set<Record*> Tmp;
363      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
364      std::set_intersection(Registers.begin(), Registers.end(),
365                            RHS.Registers.begin(), RHS.Registers.end(),
366                            II);
367
368      return !Tmp.empty();
369    }
370
371    // Otherwise we have two users operands; they are related if they are in the
372    // same class hierarchy.
373    //
374    // FIXME: This is an oversimplification, they should only be related if they
375    // intersect, however we don't have that information.
376    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
377    const ClassInfo *Root = this;
378    while (!Root->SuperClasses.empty())
379      Root = Root->SuperClasses.front();
380
381    const ClassInfo *RHSRoot = &RHS;
382    while (!RHSRoot->SuperClasses.empty())
383      RHSRoot = RHSRoot->SuperClasses.front();
384
385    return Root == RHSRoot;
386  }
387
388  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
389  bool isSubsetOf(const ClassInfo &RHS) const {
390    // This is a subset of RHS if it is the same class...
391    if (this == &RHS)
392      return true;
393
394    // ... or if any of its super classes are a subset of RHS.
395    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
396           ie = SuperClasses.end(); it != ie; ++it)
397      if ((*it)->isSubsetOf(RHS))
398        return true;
399
400    return false;
401  }
402
403  /// operator< - Compare two classes.
404  bool operator<(const ClassInfo &RHS) const {
405    if (this == &RHS)
406      return false;
407
408    // Unrelated classes can be ordered by kind.
409    if (!isRelatedTo(RHS))
410      return Kind < RHS.Kind;
411
412    switch (Kind) {
413    case Invalid:
414      assert(0 && "Invalid kind!");
415    case Token:
416      // Tokens are comparable by value.
417      //
418      // FIXME: Compare by enum value.
419      return ValueName < RHS.ValueName;
420
421    default:
422      // This class preceeds the RHS if it is a proper subset of the RHS.
423      if (isSubsetOf(RHS))
424        return true;
425      if (RHS.isSubsetOf(*this))
426        return false;
427
428      // Otherwise, order by name to ensure we have a total ordering.
429      return ValueName < RHS.ValueName;
430    }
431  }
432};
433
434/// InstructionInfo - Helper class for storing the necessary information for an
435/// instruction which is capable of being matched.
436struct InstructionInfo {
437  struct Operand {
438    /// The unique class instance this operand should match.
439    ClassInfo *Class;
440
441    /// The original operand this corresponds to, if any.
442    const CodeGenInstruction::OperandInfo *OperandInfo;
443  };
444
445  /// InstrName - The target name for this instruction.
446  std::string InstrName;
447
448  /// Instr - The instruction this matches.
449  const CodeGenInstruction *Instr;
450
451  /// AsmString - The assembly string for this instruction (with variants
452  /// removed).
453  std::string AsmString;
454
455  /// Tokens - The tokenized assembly pattern that this instruction matches.
456  SmallVector<StringRef, 4> Tokens;
457
458  /// Operands - The operands that this instruction matches.
459  SmallVector<Operand, 4> Operands;
460
461  /// Predicates - The required subtarget features to match this instruction.
462  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
463
464  /// ConversionFnKind - The enum value which is passed to the generated
465  /// ConvertToMCInst to convert parsed operands into an MCInst for this
466  /// function.
467  std::string ConversionFnKind;
468
469  /// operator< - Compare two instructions.
470  bool operator<(const InstructionInfo &RHS) const {
471    // The primary comparator is the instruction mnemonic.
472    if (Tokens[0] != RHS.Tokens[0])
473      return Tokens[0] < RHS.Tokens[0];
474
475    if (Operands.size() != RHS.Operands.size())
476      return Operands.size() < RHS.Operands.size();
477
478    // Compare lexicographically by operand. The matcher validates that other
479    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
480    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
481      if (*Operands[i].Class < *RHS.Operands[i].Class)
482        return true;
483      if (*RHS.Operands[i].Class < *Operands[i].Class)
484        return false;
485    }
486
487    return false;
488  }
489
490  /// CouldMatchAmiguouslyWith - Check whether this instruction could
491  /// ambiguously match the same set of operands as \arg RHS (without being a
492  /// strictly superior match).
493  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
494    // The number of operands is unambiguous.
495    if (Operands.size() != RHS.Operands.size())
496      return false;
497
498    // Otherwise, make sure the ordering of the two instructions is unambiguous
499    // by checking that either (a) a token or operand kind discriminates them,
500    // or (b) the ordering among equivalent kinds is consistent.
501
502    // Tokens and operand kinds are unambiguous (assuming a correct target
503    // specific parser).
504    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
505      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
506          Operands[i].Class->Kind == ClassInfo::Token)
507        if (*Operands[i].Class < *RHS.Operands[i].Class ||
508            *RHS.Operands[i].Class < *Operands[i].Class)
509          return false;
510
511    // Otherwise, this operand could commute if all operands are equivalent, or
512    // there is a pair of operands that compare less than and a pair that
513    // compare greater than.
514    bool HasLT = false, HasGT = false;
515    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
516      if (*Operands[i].Class < *RHS.Operands[i].Class)
517        HasLT = true;
518      if (*RHS.Operands[i].Class < *Operands[i].Class)
519        HasGT = true;
520    }
521
522    return !(HasLT ^ HasGT);
523  }
524
525public:
526  void dump();
527};
528
529/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
530/// feature which participates in instruction matching.
531struct SubtargetFeatureInfo {
532  /// \brief The predicate record for this feature.
533  Record *TheDef;
534
535  /// \brief An unique index assigned to represent this feature.
536  unsigned Index;
537
538  /// \brief The name of the enumerated constant identifying this feature.
539  std::string EnumName;
540};
541
542class AsmMatcherInfo {
543public:
544  /// The tablegen AsmParser record.
545  Record *AsmParser;
546
547  /// The AsmParser "CommentDelimiter" value.
548  std::string CommentDelimiter;
549
550  /// The AsmParser "RegisterPrefix" value.
551  std::string RegisterPrefix;
552
553  /// The classes which are needed for matching.
554  std::vector<ClassInfo*> Classes;
555
556  /// The information on the instruction to match.
557  std::vector<InstructionInfo*> Instructions;
558
559  /// Map of Register records to their class information.
560  std::map<Record*, ClassInfo*> RegisterClasses;
561
562  /// Map of Predicate records to their subtarget information.
563  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
564
565private:
566  /// Map of token to class information which has already been constructed.
567  std::map<std::string, ClassInfo*> TokenClasses;
568
569  /// Map of RegisterClass records to their class information.
570  std::map<Record*, ClassInfo*> RegisterClassClasses;
571
572  /// Map of AsmOperandClass records to their class information.
573  std::map<Record*, ClassInfo*> AsmOperandClasses;
574
575private:
576  /// getTokenClass - Lookup or create the class for the given token.
577  ClassInfo *getTokenClass(StringRef Token);
578
579  /// getOperandClass - Lookup or create the class for the given operand.
580  ClassInfo *getOperandClass(StringRef Token,
581                             const CodeGenInstruction::OperandInfo &OI);
582
583  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
584  /// given operand.
585  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) {
586    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
587
588    SubtargetFeatureInfo *&Entry = SubtargetFeatures[Def];
589    if (!Entry) {
590      Entry = new SubtargetFeatureInfo;
591      Entry->TheDef = Def;
592      Entry->Index = SubtargetFeatures.size() - 1;
593      Entry->EnumName = "Feature_" + Def->getName();
594      assert(Entry->Index < 32 && "Too many subtarget features!");
595    }
596
597    return Entry;
598  }
599
600  /// BuildRegisterClasses - Build the ClassInfo* instances for register
601  /// classes.
602  void BuildRegisterClasses(CodeGenTarget &Target,
603                            std::set<std::string> &SingletonRegisterNames);
604
605  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
606  /// operand classes.
607  void BuildOperandClasses(CodeGenTarget &Target);
608
609public:
610  AsmMatcherInfo(Record *_AsmParser);
611
612  /// BuildInfo - Construct the various tables used during matching.
613  void BuildInfo(CodeGenTarget &Target);
614};
615
616}
617
618void InstructionInfo::dump() {
619  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
620         << ", tokens:[";
621  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
622    errs() << Tokens[i];
623    if (i + 1 != e)
624      errs() << ", ";
625  }
626  errs() << "]\n";
627
628  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
629    Operand &Op = Operands[i];
630    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
631    if (Op.Class->Kind == ClassInfo::Token) {
632      errs() << '\"' << Tokens[i] << "\"\n";
633      continue;
634    }
635
636    if (!Op.OperandInfo) {
637      errs() << "(singleton register)\n";
638      continue;
639    }
640
641    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
642    errs() << OI.Name << " " << OI.Rec->getName()
643           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
644  }
645}
646
647static std::string getEnumNameForToken(StringRef Str) {
648  std::string Res;
649
650  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
651    switch (*it) {
652    case '*': Res += "_STAR_"; break;
653    case '%': Res += "_PCT_"; break;
654    case ':': Res += "_COLON_"; break;
655
656    default:
657      if (isalnum(*it))  {
658        Res += *it;
659      } else {
660        Res += "_" + utostr((unsigned) *it) + "_";
661      }
662    }
663  }
664
665  return Res;
666}
667
668/// getRegisterRecord - Get the register record for \arg name, or 0.
669static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
670  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
671    const CodeGenRegister &Reg = Target.getRegisters()[i];
672    if (Name == Reg.TheDef->getValueAsString("AsmName"))
673      return Reg.TheDef;
674  }
675
676  return 0;
677}
678
679ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
680  ClassInfo *&Entry = TokenClasses[Token];
681
682  if (!Entry) {
683    Entry = new ClassInfo();
684    Entry->Kind = ClassInfo::Token;
685    Entry->ClassName = "Token";
686    Entry->Name = "MCK_" + getEnumNameForToken(Token);
687    Entry->ValueName = Token;
688    Entry->PredicateMethod = "<invalid>";
689    Entry->RenderMethod = "<invalid>";
690    Classes.push_back(Entry);
691  }
692
693  return Entry;
694}
695
696ClassInfo *
697AsmMatcherInfo::getOperandClass(StringRef Token,
698                                const CodeGenInstruction::OperandInfo &OI) {
699  if (OI.Rec->isSubClassOf("RegisterClass")) {
700    ClassInfo *CI = RegisterClassClasses[OI.Rec];
701
702    if (!CI) {
703      PrintError(OI.Rec->getLoc(), "register class has no class info!");
704      throw std::string("ERROR: Missing register class!");
705    }
706
707    return CI;
708  }
709
710  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
711  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
712  ClassInfo *CI = AsmOperandClasses[MatchClass];
713
714  if (!CI) {
715    PrintError(OI.Rec->getLoc(), "operand has no match class!");
716    throw std::string("ERROR: Missing match class!");
717  }
718
719  return CI;
720}
721
722void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
723                                          std::set<std::string>
724                                            &SingletonRegisterNames) {
725  std::vector<CodeGenRegisterClass> RegisterClasses;
726  std::vector<CodeGenRegister> Registers;
727
728  RegisterClasses = Target.getRegisterClasses();
729  Registers = Target.getRegisters();
730
731  // The register sets used for matching.
732  std::set< std::set<Record*> > RegisterSets;
733
734  // Gather the defined sets.
735  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
736         ie = RegisterClasses.end(); it != ie; ++it)
737    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
738                                          it->Elements.end()));
739
740  // Add any required singleton sets.
741  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
742         ie = SingletonRegisterNames.end(); it != ie; ++it)
743    if (Record *Rec = getRegisterRecord(Target, *it))
744      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
745
746  // Introduce derived sets where necessary (when a register does not determine
747  // a unique register set class), and build the mapping of registers to the set
748  // they should classify to.
749  std::map<Record*, std::set<Record*> > RegisterMap;
750  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
751         ie = Registers.end(); it != ie; ++it) {
752    CodeGenRegister &CGR = *it;
753    // Compute the intersection of all sets containing this register.
754    std::set<Record*> ContainingSet;
755
756    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
757           ie = RegisterSets.end(); it != ie; ++it) {
758      if (!it->count(CGR.TheDef))
759        continue;
760
761      if (ContainingSet.empty()) {
762        ContainingSet = *it;
763      } else {
764        std::set<Record*> Tmp;
765        std::swap(Tmp, ContainingSet);
766        std::insert_iterator< std::set<Record*> > II(ContainingSet,
767                                                     ContainingSet.begin());
768        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
769                              II);
770      }
771    }
772
773    if (!ContainingSet.empty()) {
774      RegisterSets.insert(ContainingSet);
775      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
776    }
777  }
778
779  // Construct the register classes.
780  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
781  unsigned Index = 0;
782  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
783         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
784    ClassInfo *CI = new ClassInfo();
785    CI->Kind = ClassInfo::RegisterClass0 + Index;
786    CI->ClassName = "Reg" + utostr(Index);
787    CI->Name = "MCK_Reg" + utostr(Index);
788    CI->ValueName = "";
789    CI->PredicateMethod = ""; // unused
790    CI->RenderMethod = "addRegOperands";
791    CI->Registers = *it;
792    Classes.push_back(CI);
793    RegisterSetClasses.insert(std::make_pair(*it, CI));
794  }
795
796  // Find the superclasses; we could compute only the subgroup lattice edges,
797  // but there isn't really a point.
798  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
799         ie = RegisterSets.end(); it != ie; ++it) {
800    ClassInfo *CI = RegisterSetClasses[*it];
801    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
802           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
803      if (*it != *it2 &&
804          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
805        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
806  }
807
808  // Name the register classes which correspond to a user defined RegisterClass.
809  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
810         ie = RegisterClasses.end(); it != ie; ++it) {
811    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
812                                                         it->Elements.end())];
813    if (CI->ValueName.empty()) {
814      CI->ClassName = it->getName();
815      CI->Name = "MCK_" + it->getName();
816      CI->ValueName = it->getName();
817    } else
818      CI->ValueName = CI->ValueName + "," + it->getName();
819
820    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
821  }
822
823  // Populate the map for individual registers.
824  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
825         ie = RegisterMap.end(); it != ie; ++it)
826    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
827
828  // Name the register classes which correspond to singleton registers.
829  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
830         ie = SingletonRegisterNames.end(); it != ie; ++it) {
831    if (Record *Rec = getRegisterRecord(Target, *it)) {
832      ClassInfo *CI = this->RegisterClasses[Rec];
833      assert(CI && "Missing singleton register class info!");
834
835      if (CI->ValueName.empty()) {
836        CI->ClassName = Rec->getName();
837        CI->Name = "MCK_" + Rec->getName();
838        CI->ValueName = Rec->getName();
839      } else
840        CI->ValueName = CI->ValueName + "," + Rec->getName();
841    }
842  }
843}
844
845void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
846  std::vector<Record*> AsmOperands;
847  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
848
849  // Pre-populate AsmOperandClasses map.
850  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
851         ie = AsmOperands.end(); it != ie; ++it)
852    AsmOperandClasses[*it] = new ClassInfo();
853
854  unsigned Index = 0;
855  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
856         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
857    ClassInfo *CI = AsmOperandClasses[*it];
858    CI->Kind = ClassInfo::UserClass0 + Index;
859
860    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
861    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
862      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
863      if (!DI) {
864        PrintError((*it)->getLoc(), "Invalid super class reference!");
865        continue;
866      }
867
868      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
869      if (!SC)
870        PrintError((*it)->getLoc(), "Invalid super class reference!");
871      else
872        CI->SuperClasses.push_back(SC);
873    }
874    CI->ClassName = (*it)->getValueAsString("Name");
875    CI->Name = "MCK_" + CI->ClassName;
876    CI->ValueName = (*it)->getName();
877
878    // Get or construct the predicate method name.
879    Init *PMName = (*it)->getValueInit("PredicateMethod");
880    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
881      CI->PredicateMethod = SI->getValue();
882    } else {
883      assert(dynamic_cast<UnsetInit*>(PMName) &&
884             "Unexpected PredicateMethod field!");
885      CI->PredicateMethod = "is" + CI->ClassName;
886    }
887
888    // Get or construct the render method name.
889    Init *RMName = (*it)->getValueInit("RenderMethod");
890    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
891      CI->RenderMethod = SI->getValue();
892    } else {
893      assert(dynamic_cast<UnsetInit*>(RMName) &&
894             "Unexpected RenderMethod field!");
895      CI->RenderMethod = "add" + CI->ClassName + "Operands";
896    }
897
898    AsmOperandClasses[*it] = CI;
899    Classes.push_back(CI);
900  }
901}
902
903AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
904  : AsmParser(_AsmParser),
905    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
906    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
907{
908}
909
910void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
911  // Parse the instructions; we need to do this first so that we can gather the
912  // singleton register classes.
913  std::set<std::string> SingletonRegisterNames;
914
915  const std::vector<const CodeGenInstruction*> &InstrList =
916    Target.getInstructionsByEnumValue();
917
918  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
919    const CodeGenInstruction &CGI = *InstrList[i];
920
921    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
922      continue;
923
924    OwningPtr<InstructionInfo> II(new InstructionInfo());
925
926    II->InstrName = CGI.TheDef->getName();
927    II->Instr = &CGI;
928    II->AsmString = FlattenVariants(CGI.AsmString, 0);
929
930    // Remove comments from the asm string.
931    if (!CommentDelimiter.empty()) {
932      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
933      if (Idx != StringRef::npos)
934        II->AsmString = II->AsmString.substr(0, Idx);
935    }
936
937    TokenizeAsmString(II->AsmString, II->Tokens);
938
939    // Ignore instructions which shouldn't be matched.
940    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
941      continue;
942
943    // Collect singleton registers, if used.
944    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
945      if (!II->Tokens[i].startswith(RegisterPrefix))
946        continue;
947
948      StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
949      Record *Rec = getRegisterRecord(Target, RegName);
950
951      if (!Rec) {
952        // If there is no register prefix (i.e. "%" in "%eax"), then this may
953        // be some random non-register token, just ignore it.
954        if (RegisterPrefix.empty())
955          continue;
956
957        std::string Err = "unable to find register for '" + RegName.str() +
958          "' (which matches register prefix)";
959        throw TGError(CGI.TheDef->getLoc(), Err);
960      }
961
962      SingletonRegisterNames.insert(RegName);
963    }
964
965    // Compute the require features.
966    ListInit *Predicates = CGI.TheDef->getValueAsListInit("Predicates");
967    for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
968      if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
969        // Ignore OptForSize and OptForSpeed, they aren't really requirements,
970        // rather they are hints to isel.
971        //
972        // FIXME: Find better way to model this.
973        if (Pred->getDef()->getName() == "OptForSize" ||
974            Pred->getDef()->getName() == "OptForSpeed")
975          continue;
976
977        // FIXME: Total hack; for now, we just limit ourselves to In32BitMode
978        // and In64BitMode, because we aren't going to have the right feature
979        // masks for SSE and friends. We need to decide what we are going to do
980        // about CPU subtypes to implement this the right way.
981        if (Pred->getDef()->getName() != "In32BitMode" &&
982            Pred->getDef()->getName() != "In64BitMode")
983          continue;
984
985        II->RequiredFeatures.push_back(getSubtargetFeature(Pred->getDef()));
986      }
987    }
988
989    Instructions.push_back(II.take());
990  }
991
992  // Build info for the register classes.
993  BuildRegisterClasses(Target, SingletonRegisterNames);
994
995  // Build info for the user defined assembly operand classes.
996  BuildOperandClasses(Target);
997
998  // Build the instruction information.
999  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
1000         ie = Instructions.end(); it != ie; ++it) {
1001    InstructionInfo *II = *it;
1002
1003    // The first token of the instruction is the mnemonic, which must be a
1004    // simple string.
1005    assert(!II->Tokens.empty() && "Instruction has no tokens?");
1006    StringRef Mnemonic = II->Tokens[0];
1007    assert(Mnemonic[0] != '$' &&
1008           (RegisterPrefix.empty() || !Mnemonic.startswith(RegisterPrefix)));
1009
1010    // Parse the tokens after the mnemonic.
1011    for (unsigned i = 1, e = II->Tokens.size(); i != e; ++i) {
1012      StringRef Token = II->Tokens[i];
1013
1014      // Check for singleton registers.
1015      if (Token.startswith(RegisterPrefix)) {
1016        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
1017        if (Record *RegRecord = getRegisterRecord(Target, RegName)) {
1018          InstructionInfo::Operand Op;
1019          Op.Class = RegisterClasses[RegRecord];
1020          Op.OperandInfo = 0;
1021          assert(Op.Class && Op.Class->Registers.size() == 1 &&
1022                 "Unexpected class for singleton register");
1023          II->Operands.push_back(Op);
1024          continue;
1025        }
1026
1027        if (!RegisterPrefix.empty()) {
1028          std::string Err = "unable to find register for '" + RegName.str() +
1029                  "' (which matches register prefix)";
1030          throw TGError(II->Instr->TheDef->getLoc(), Err);
1031        }
1032      }
1033
1034      // Check for simple tokens.
1035      if (Token[0] != '$') {
1036        InstructionInfo::Operand Op;
1037        Op.Class = getTokenClass(Token);
1038        Op.OperandInfo = 0;
1039        II->Operands.push_back(Op);
1040        continue;
1041      }
1042
1043      // Otherwise this is an operand reference.
1044      StringRef OperandName;
1045      if (Token[1] == '{')
1046        OperandName = Token.substr(2, Token.size() - 3);
1047      else
1048        OperandName = Token.substr(1);
1049
1050      // Map this token to an operand. FIXME: Move elsewhere.
1051      unsigned Idx;
1052      try {
1053        Idx = II->Instr->getOperandNamed(OperandName);
1054      } catch(...) {
1055        throw std::string("error: unable to find operand: '" +
1056                          OperandName.str() + "'");
1057      }
1058
1059      // FIXME: This is annoying, the named operand may be tied (e.g.,
1060      // XCHG8rm). What we want is the untied operand, which we now have to
1061      // grovel for. Only worry about this for single entry operands, we have to
1062      // clean this up anyway.
1063      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
1064      if (OI->Constraints[0].isTied()) {
1065        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
1066
1067        // The tied operand index is an MIOperand index, find the operand that
1068        // contains it.
1069        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
1070          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
1071            OI = &II->Instr->OperandList[i];
1072            break;
1073          }
1074        }
1075
1076        assert(OI && "Unable to find tied operand target!");
1077      }
1078
1079      InstructionInfo::Operand Op;
1080      Op.Class = getOperandClass(Token, *OI);
1081      Op.OperandInfo = OI;
1082      II->Operands.push_back(Op);
1083    }
1084  }
1085
1086  // Reorder classes so that classes preceed super classes.
1087  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1088}
1089
1090static std::pair<unsigned, unsigned> *
1091GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
1092                      unsigned Index) {
1093  for (unsigned i = 0, e = List.size(); i != e; ++i)
1094    if (Index == List[i].first)
1095      return &List[i];
1096
1097  return 0;
1098}
1099
1100static void EmitConvertToMCInst(CodeGenTarget &Target,
1101                                std::vector<InstructionInfo*> &Infos,
1102                                raw_ostream &OS) {
1103  // Write the convert function to a separate stream, so we can drop it after
1104  // the enum.
1105  std::string ConvertFnBody;
1106  raw_string_ostream CvtOS(ConvertFnBody);
1107
1108  // Function we have already generated.
1109  std::set<std::string> GeneratedFns;
1110
1111  // Start the unified conversion function.
1112
1113  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1114        << "unsigned Opcode,\n"
1115        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1116        << "> &Operands) {\n";
1117  CvtOS << "  Inst.setOpcode(Opcode);\n";
1118  CvtOS << "  switch (Kind) {\n";
1119  CvtOS << "  default:\n";
1120
1121  // Start the enum, which we will generate inline.
1122
1123  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1124  OS << "enum ConversionKind {\n";
1125
1126  // TargetOperandClass - This is the target's operand class, like X86Operand.
1127  std::string TargetOperandClass = Target.getName() + "Operand";
1128
1129  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
1130         ie = Infos.end(); it != ie; ++it) {
1131    InstructionInfo &II = **it;
1132
1133    // Order the (class) operands by the order to convert them into an MCInst.
1134    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1135    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1136      InstructionInfo::Operand &Op = II.Operands[i];
1137      if (Op.OperandInfo)
1138        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1139    }
1140
1141    // Find any tied operands.
1142    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1143    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1144      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
1145      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1146        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
1147        if (CI.isTied())
1148          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1149                                                CI.getTiedOperand()));
1150      }
1151    }
1152
1153    std::sort(MIOperandList.begin(), MIOperandList.end());
1154
1155    // Compute the total number of operands.
1156    unsigned NumMIOperands = 0;
1157    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1158      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
1159      NumMIOperands = std::max(NumMIOperands,
1160                               OI.MIOperandNo + OI.MINumOperands);
1161    }
1162
1163    // Build the conversion function signature.
1164    std::string Signature = "Convert";
1165    unsigned CurIndex = 0;
1166    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1167      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1168      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1169             "Duplicate match for instruction operand!");
1170
1171      // Skip operands which weren't matched by anything, this occurs when the
1172      // .td file encodes "implicit" operands as explicit ones.
1173      //
1174      // FIXME: This should be removed from the MCInst structure.
1175      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1176        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1177                                                                   CurIndex);
1178        if (!Tie)
1179          Signature += "__Imp";
1180        else
1181          Signature += "__Tie" + utostr(Tie->second);
1182      }
1183
1184      Signature += "__";
1185
1186      // Registers are always converted the same, don't duplicate the conversion
1187      // function based on them.
1188      //
1189      // FIXME: We could generalize this based on the render method, if it
1190      // mattered.
1191      if (Op.Class->isRegisterClass())
1192        Signature += "Reg";
1193      else
1194        Signature += Op.Class->ClassName;
1195      Signature += utostr(Op.OperandInfo->MINumOperands);
1196      Signature += "_" + utostr(MIOperandList[i].second);
1197
1198      CurIndex += Op.OperandInfo->MINumOperands;
1199    }
1200
1201    // Add any trailing implicit operands.
1202    for (; CurIndex != NumMIOperands; ++CurIndex) {
1203      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1204                                                                 CurIndex);
1205      if (!Tie)
1206        Signature += "__Imp";
1207      else
1208        Signature += "__Tie" + utostr(Tie->second);
1209    }
1210
1211    II.ConversionFnKind = Signature;
1212
1213    // Check if we have already generated this signature.
1214    if (!GeneratedFns.insert(Signature).second)
1215      continue;
1216
1217    // If not, emit it now.
1218
1219    // Add to the enum list.
1220    OS << "  " << Signature << ",\n";
1221
1222    // And to the convert function.
1223    CvtOS << "  case " << Signature << ":\n";
1224    CurIndex = 0;
1225    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1226      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1227
1228      // Add the implicit operands.
1229      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1230        // See if this is a tied operand.
1231        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1232                                                                   CurIndex);
1233
1234        if (!Tie) {
1235          // If not, this is some implicit operand. Just assume it is a register
1236          // for now.
1237          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1238        } else {
1239          // Copy the tied operand.
1240          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1241          CvtOS << "    Inst.addOperand(Inst.getOperand("
1242                << Tie->second << "));\n";
1243        }
1244      }
1245
1246      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1247         << MIOperandList[i].second
1248         << "+1])->" << Op.Class->RenderMethod
1249         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1250      CurIndex += Op.OperandInfo->MINumOperands;
1251    }
1252
1253    // And add trailing implicit operands.
1254    for (; CurIndex != NumMIOperands; ++CurIndex) {
1255      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1256                                                                 CurIndex);
1257
1258      if (!Tie) {
1259        // If not, this is some implicit operand. Just assume it is a register
1260        // for now.
1261        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1262      } else {
1263        // Copy the tied operand.
1264        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1265        CvtOS << "    Inst.addOperand(Inst.getOperand("
1266              << Tie->second << "));\n";
1267      }
1268    }
1269
1270    CvtOS << "    return;\n";
1271  }
1272
1273  // Finish the convert function.
1274
1275  CvtOS << "  }\n";
1276  CvtOS << "}\n\n";
1277
1278  // Finish the enum, and drop the convert function after it.
1279
1280  OS << "  NumConversionVariants\n";
1281  OS << "};\n\n";
1282
1283  OS << CvtOS.str();
1284}
1285
1286/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1287static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1288                                      std::vector<ClassInfo*> &Infos,
1289                                      raw_ostream &OS) {
1290  OS << "namespace {\n\n";
1291
1292  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1293     << "/// instruction matching.\n";
1294  OS << "enum MatchClassKind {\n";
1295  OS << "  InvalidMatchClass = 0,\n";
1296  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1297         ie = Infos.end(); it != ie; ++it) {
1298    ClassInfo &CI = **it;
1299    OS << "  " << CI.Name << ", // ";
1300    if (CI.Kind == ClassInfo::Token) {
1301      OS << "'" << CI.ValueName << "'\n";
1302    } else if (CI.isRegisterClass()) {
1303      if (!CI.ValueName.empty())
1304        OS << "register class '" << CI.ValueName << "'\n";
1305      else
1306        OS << "derived register class\n";
1307    } else {
1308      OS << "user defined class '" << CI.ValueName << "'\n";
1309    }
1310  }
1311  OS << "  NumMatchClassKinds\n";
1312  OS << "};\n\n";
1313
1314  OS << "}\n\n";
1315}
1316
1317/// EmitClassifyOperand - Emit the function to classify an operand.
1318static void EmitClassifyOperand(CodeGenTarget &Target,
1319                                AsmMatcherInfo &Info,
1320                                raw_ostream &OS) {
1321  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1322     << "  " << Target.getName() << "Operand &Operand = *("
1323     << Target.getName() << "Operand*)GOp;\n";
1324
1325  // Classify tokens.
1326  OS << "  if (Operand.isToken())\n";
1327  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1328
1329  // Classify registers.
1330  //
1331  // FIXME: Don't hardcode isReg, getReg.
1332  OS << "  if (Operand.isReg()) {\n";
1333  OS << "    switch (Operand.getReg()) {\n";
1334  OS << "    default: return InvalidMatchClass;\n";
1335  for (std::map<Record*, ClassInfo*>::iterator
1336         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1337       it != ie; ++it)
1338    OS << "    case " << Target.getName() << "::"
1339       << it->first->getName() << ": return " << it->second->Name << ";\n";
1340  OS << "    }\n";
1341  OS << "  }\n\n";
1342
1343  // Classify user defined operands.
1344  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1345         ie = Info.Classes.end(); it != ie; ++it) {
1346    ClassInfo &CI = **it;
1347
1348    if (!CI.isUserClass())
1349      continue;
1350
1351    OS << "  // '" << CI.ClassName << "' class";
1352    if (!CI.SuperClasses.empty()) {
1353      OS << ", subclass of ";
1354      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1355        if (i) OS << ", ";
1356        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1357        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1358      }
1359    }
1360    OS << "\n";
1361
1362    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1363
1364    // Validate subclass relationships.
1365    if (!CI.SuperClasses.empty()) {
1366      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1367        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1368           << "() && \"Invalid class relationship!\");\n";
1369    }
1370
1371    OS << "    return " << CI.Name << ";\n";
1372    OS << "  }\n\n";
1373  }
1374  OS << "  return InvalidMatchClass;\n";
1375  OS << "}\n\n";
1376}
1377
1378/// EmitIsSubclass - Emit the subclass predicate function.
1379static void EmitIsSubclass(CodeGenTarget &Target,
1380                           std::vector<ClassInfo*> &Infos,
1381                           raw_ostream &OS) {
1382  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1383  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1384  OS << "  if (A == B)\n";
1385  OS << "    return true;\n\n";
1386
1387  OS << "  switch (A) {\n";
1388  OS << "  default:\n";
1389  OS << "    return false;\n";
1390  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1391         ie = Infos.end(); it != ie; ++it) {
1392    ClassInfo &A = **it;
1393
1394    if (A.Kind != ClassInfo::Token) {
1395      std::vector<StringRef> SuperClasses;
1396      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1397             ie = Infos.end(); it != ie; ++it) {
1398        ClassInfo &B = **it;
1399
1400        if (&A != &B && A.isSubsetOf(B))
1401          SuperClasses.push_back(B.Name);
1402      }
1403
1404      if (SuperClasses.empty())
1405        continue;
1406
1407      OS << "\n  case " << A.Name << ":\n";
1408
1409      if (SuperClasses.size() == 1) {
1410        OS << "    return B == " << SuperClasses.back() << ";\n";
1411        continue;
1412      }
1413
1414      OS << "    switch (B) {\n";
1415      OS << "    default: return false;\n";
1416      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1417        OS << "    case " << SuperClasses[i] << ": return true;\n";
1418      OS << "    }\n";
1419    }
1420  }
1421  OS << "  }\n";
1422  OS << "}\n\n";
1423}
1424
1425
1426
1427/// EmitMatchTokenString - Emit the function to match a token string to the
1428/// appropriate match class value.
1429static void EmitMatchTokenString(CodeGenTarget &Target,
1430                                 std::vector<ClassInfo*> &Infos,
1431                                 raw_ostream &OS) {
1432  // Construct the match list.
1433  std::vector<StringMatcher::StringPair> Matches;
1434  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1435         ie = Infos.end(); it != ie; ++it) {
1436    ClassInfo &CI = **it;
1437
1438    if (CI.Kind == ClassInfo::Token)
1439      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1440                                                  "return " + CI.Name + ";"));
1441  }
1442
1443  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1444
1445  StringMatcher("Name", Matches, OS).Emit();
1446
1447  OS << "  return InvalidMatchClass;\n";
1448  OS << "}\n\n";
1449}
1450
1451/// EmitMatchRegisterName - Emit the function to match a string to the target
1452/// specific register enum.
1453static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1454                                  raw_ostream &OS) {
1455  // Construct the match list.
1456  std::vector<StringMatcher::StringPair> Matches;
1457  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1458    const CodeGenRegister &Reg = Target.getRegisters()[i];
1459    if (Reg.TheDef->getValueAsString("AsmName").empty())
1460      continue;
1461
1462    Matches.push_back(StringMatcher::StringPair(
1463                                        Reg.TheDef->getValueAsString("AsmName"),
1464                                        "return " + utostr(i + 1) + ";"));
1465  }
1466
1467  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1468
1469  StringMatcher("Name", Matches, OS).Emit();
1470
1471  OS << "  return 0;\n";
1472  OS << "}\n\n";
1473}
1474
1475/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1476/// definitions.
1477static void EmitSubtargetFeatureFlagEnumeration(CodeGenTarget &Target,
1478                                                AsmMatcherInfo &Info,
1479                                                raw_ostream &OS) {
1480  OS << "// Flags for subtarget features that participate in "
1481     << "instruction matching.\n";
1482  OS << "enum SubtargetFeatureFlag {\n";
1483  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1484         it = Info.SubtargetFeatures.begin(),
1485         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1486    SubtargetFeatureInfo &SFI = *it->second;
1487    OS << "  " << SFI.EnumName << " = (1 << " << SFI.Index << "),\n";
1488  }
1489  OS << "  Feature_None = 0\n";
1490  OS << "};\n\n";
1491}
1492
1493/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1494/// available features given a subtarget.
1495static void EmitComputeAvailableFeatures(CodeGenTarget &Target,
1496                                         AsmMatcherInfo &Info,
1497                                         raw_ostream &OS) {
1498  std::string ClassName =
1499    Info.AsmParser->getValueAsString("AsmParserClassName");
1500
1501  OS << "unsigned " << Target.getName() << ClassName << "::\n"
1502     << "ComputeAvailableFeatures(const " << Target.getName()
1503     << "Subtarget *Subtarget) const {\n";
1504  OS << "  unsigned Features = 0;\n";
1505  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1506         it = Info.SubtargetFeatures.begin(),
1507         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1508    SubtargetFeatureInfo &SFI = *it->second;
1509    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
1510       << ")\n";
1511    OS << "    Features |= " << SFI.EnumName << ";\n";
1512  }
1513  OS << "  return Features;\n";
1514  OS << "}\n\n";
1515}
1516
1517/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1518/// emit a function for them and return true, otherwise return false.
1519static bool EmitMnemonicAliases(raw_ostream &OS) {
1520  OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, "
1521  "unsigned Features) {\n";
1522
1523  std::vector<Record*> Aliases =
1524    Records.getAllDerivedDefinitions("MnemonicAlias");
1525  if (Aliases.empty()) return false;
1526
1527  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1528  // iteration order of the map is stable.
1529  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1530
1531  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1532    Record *R = Aliases[i];
1533    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1534  }
1535
1536  // Process each alias a "from" mnemonic at a time, building the code executed
1537  // by the string remapper.
1538  std::vector<StringMatcher::StringPair> Cases;
1539  for (std::map<std::string, std::vector<Record*> >::iterator
1540       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1541       I != E; ++I) {
1542    const std::string &From = I->first;
1543    const std::vector<Record*> &ToVec = I->second;
1544
1545    // If there is only one destination mnemonic, generate simple code.
1546    if (ToVec.size() == 1) {
1547      Cases.push_back(std::make_pair(From, "Mnemonic = \"" +
1548                                     ToVec[0]->getValueAsString("ToMnemonic") +
1549                                     "\"; return;"));
1550      continue;
1551    }
1552
1553    // Otherwise, diagnose an error, can't have two aliases from the same
1554    // mnemonic.
1555    PrintError(ToVec[0]->getLoc(), "two MnemonicAliases with the same 'from' mnemonic!");
1556    PrintError(ToVec[1]->getLoc(), "this is the other MnemonicAliases.");
1557    throw std::string("ERROR: Invalid MnemonicAliases definitions!");
1558  }
1559
1560
1561  StringMatcher("Mnemonic", Cases, OS).Emit();
1562  OS << "}\n";
1563
1564  return true;
1565}
1566
1567void AsmMatcherEmitter::run(raw_ostream &OS) {
1568  CodeGenTarget Target;
1569  Record *AsmParser = Target.getAsmParser();
1570  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1571
1572  // Compute the information on the instructions to match.
1573  AsmMatcherInfo Info(AsmParser);
1574  Info.BuildInfo(Target);
1575
1576  // Sort the instruction table using the partial order on classes. We use
1577  // stable_sort to ensure that ambiguous instructions are still
1578  // deterministically ordered.
1579  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
1580                   less_ptr<InstructionInfo>());
1581
1582  DEBUG_WITH_TYPE("instruction_info", {
1583      for (std::vector<InstructionInfo*>::iterator
1584             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1585           it != ie; ++it)
1586        (*it)->dump();
1587    });
1588
1589  // Check for ambiguous instructions.
1590  DEBUG_WITH_TYPE("ambiguous_instrs", {
1591    unsigned NumAmbiguous = 0;
1592    for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1593      for (unsigned j = i + 1; j != e; ++j) {
1594        InstructionInfo &A = *Info.Instructions[i];
1595        InstructionInfo &B = *Info.Instructions[j];
1596
1597        if (A.CouldMatchAmiguouslyWith(B)) {
1598          errs() << "warning: ambiguous instruction match:\n";
1599          A.dump();
1600          errs() << "\nis incomparable with:\n";
1601          B.dump();
1602          errs() << "\n\n";
1603          ++NumAmbiguous;
1604        }
1605      }
1606    }
1607    if (NumAmbiguous)
1608      errs() << "warning: " << NumAmbiguous
1609             << " ambiguous instructions!\n";
1610  });
1611
1612  // Write the output.
1613
1614  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1615
1616  // Information for the class declaration.
1617  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
1618  OS << "#undef GET_ASSEMBLER_HEADER\n";
1619  OS << "  // This should be included into the middle of the declaration of \n";
1620  OS << "  // your subclasses implementation of TargetAsmParser.\n";
1621  OS << "  unsigned ComputeAvailableFeatures(const " <<
1622           Target.getName() << "Subtarget *Subtarget) const;\n";
1623  OS << "  enum MatchResultTy {\n";
1624  OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
1625  OS << "    Match_MissingFeature\n";
1626  OS << "  };\n";
1627  OS << "  MatchResultTy MatchInstructionImpl(const "
1628     << "SmallVectorImpl<MCParsedAsmOperand*>"
1629     << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
1630  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
1631
1632
1633
1634
1635  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
1636  OS << "#undef GET_REGISTER_MATCHER\n\n";
1637
1638  // Emit the subtarget feature enumeration.
1639  EmitSubtargetFeatureFlagEnumeration(Target, Info, OS);
1640
1641  // Emit the function to match a register name to number.
1642  EmitMatchRegisterName(Target, AsmParser, OS);
1643
1644  OS << "#endif // GET_REGISTER_MATCHER\n\n";
1645
1646
1647  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
1648  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
1649
1650  // Generate the function that remaps for mnemonic aliases.
1651  bool HasMnemonicAliases = EmitMnemonicAliases(OS);
1652
1653  // Generate the unified function to convert operands into an MCInst.
1654  EmitConvertToMCInst(Target, Info.Instructions, OS);
1655
1656  // Emit the enumeration for classes which participate in matching.
1657  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1658
1659  // Emit the routine to match token strings to their match class.
1660  EmitMatchTokenString(Target, Info.Classes, OS);
1661
1662  // Emit the routine to classify an operand.
1663  EmitClassifyOperand(Target, Info, OS);
1664
1665  // Emit the subclass predicate routine.
1666  EmitIsSubclass(Target, Info.Classes, OS);
1667
1668  // Emit the available features compute function.
1669  EmitComputeAvailableFeatures(Target, Info, OS);
1670
1671
1672  size_t MaxNumOperands = 0;
1673  for (std::vector<InstructionInfo*>::const_iterator it =
1674         Info.Instructions.begin(), ie = Info.Instructions.end();
1675       it != ie; ++it)
1676    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1677
1678
1679  // Emit the static match table; unused classes get initalized to 0 which is
1680  // guaranteed to be InvalidMatchClass.
1681  //
1682  // FIXME: We can reduce the size of this table very easily. First, we change
1683  // it so that store the kinds in separate bit-fields for each index, which
1684  // only needs to be the max width used for classes at that index (we also need
1685  // to reject based on this during classification). If we then make sure to
1686  // order the match kinds appropriately (putting mnemonics last), then we
1687  // should only end up using a few bits for each class, especially the ones
1688  // following the mnemonic.
1689  OS << "namespace {\n";
1690  OS << "  struct MatchEntry {\n";
1691  OS << "    unsigned Opcode;\n";
1692  OS << "    const char *Mnemonic;\n";
1693  OS << "    ConversionKind ConvertFn;\n";
1694  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1695  OS << "    unsigned RequiredFeatures;\n";
1696  OS << "  };\n\n";
1697
1698  OS << "// Predicate for searching for an opcode.\n";
1699  OS << "  struct LessOpcode {\n";
1700  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
1701  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
1702  OS << "    }\n";
1703  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
1704  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
1705  OS << "    }\n";
1706  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
1707  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
1708  OS << "    }\n";
1709  OS << "  };\n";
1710
1711  OS << "} // end anonymous namespace.\n\n";
1712
1713  OS << "static const MatchEntry MatchTable["
1714     << Info.Instructions.size() << "] = {\n";
1715
1716  for (std::vector<InstructionInfo*>::const_iterator it =
1717       Info.Instructions.begin(), ie = Info.Instructions.end();
1718       it != ie; ++it) {
1719    InstructionInfo &II = **it;
1720
1721    OS << "  { " << Target.getName() << "::" << II.InstrName
1722    << ", \"" << II.Tokens[0] << "\""
1723    << ", " << II.ConversionFnKind << ", { ";
1724    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1725      InstructionInfo::Operand &Op = II.Operands[i];
1726
1727      if (i) OS << ", ";
1728      OS << Op.Class->Name;
1729    }
1730    OS << " }, ";
1731
1732    // Write the required features mask.
1733    if (!II.RequiredFeatures.empty()) {
1734      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
1735        if (i) OS << "|";
1736        OS << II.RequiredFeatures[i]->EnumName;
1737      }
1738    } else
1739      OS << "0";
1740
1741    OS << "},\n";
1742  }
1743
1744  OS << "};\n\n";
1745
1746  // Finally, build the match function.
1747  OS << Target.getName() << ClassName << "::MatchResultTy "
1748     << Target.getName() << ClassName << "::\n"
1749     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
1750     << " &Operands,\n";
1751  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
1752
1753  // Emit code to get the available features.
1754  OS << "  // Get the current feature set.\n";
1755  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
1756
1757  OS << "  // Get the instruction mnemonic, which is the first token.\n";
1758  OS << "  StringRef Mnemonic = ((" << Target.getName()
1759     << "Operand*)Operands[0])->getToken();\n\n";
1760
1761  if (HasMnemonicAliases) {
1762    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
1763    OS << "  ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
1764  }
1765
1766  // Emit code to compute the class list for this operand vector.
1767  OS << "  // Eliminate obvious mismatches.\n";
1768  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
1769  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
1770  OS << "    return Match_InvalidOperand;\n";
1771  OS << "  }\n\n";
1772
1773  OS << "  // Compute the class list for this operand vector.\n";
1774  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1775  OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
1776  OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
1777
1778  OS << "    // Check for invalid operands before matching.\n";
1779  OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
1780  OS << "      ErrorInfo = i;\n";
1781  OS << "      return Match_InvalidOperand;\n";
1782  OS << "    }\n";
1783  OS << "  }\n\n";
1784
1785  OS << "  // Mark unused classes.\n";
1786  OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
1787     << "i != e; ++i)\n";
1788  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1789
1790  OS << "  // Some state to try to produce better error messages.\n";
1791  OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
1792  OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
1793  OS << "  // wrong for all instances of the instruction.\n";
1794  OS << "  ErrorInfo = ~0U;\n";
1795
1796  // Emit code to search the table.
1797  OS << "  // Search the table.\n";
1798  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
1799  OS << "    std::equal_range(MatchTable, MatchTable+"
1800     << Info.Instructions.size() << ", Mnemonic, LessOpcode());\n\n";
1801
1802  OS << "  // Return a more specific error code if no mnemonics match.\n";
1803  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
1804  OS << "    return Match_MnemonicFail;\n\n";
1805
1806  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
1807     << "*ie = MnemonicRange.second;\n";
1808  OS << "       it != ie; ++it) {\n";
1809
1810  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
1811  OS << "    assert(Mnemonic == it->Mnemonic);\n";
1812
1813  // Emit check that the subclasses match.
1814  OS << "    bool OperandsValid = true;\n";
1815  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
1816  OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
1817  OS << "        continue;\n";
1818  OS << "      // If this operand is broken for all of the instances of this\n";
1819  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
1820  OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
1821  OS << "        ErrorInfo = i+1;\n";
1822  OS << "      else\n";
1823  OS << "        ErrorInfo = ~0U;";
1824  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
1825  OS << "      OperandsValid = false;\n";
1826  OS << "      break;\n";
1827  OS << "    }\n\n";
1828
1829  OS << "    if (!OperandsValid) continue;\n";
1830
1831  // Emit check that the required features are available.
1832  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
1833     << "!= it->RequiredFeatures) {\n";
1834  OS << "      HadMatchOtherThanFeatures = true;\n";
1835  OS << "      continue;\n";
1836  OS << "    }\n";
1837
1838  OS << "\n";
1839  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1840
1841  // Call the post-processing function, if used.
1842  std::string InsnCleanupFn =
1843    AsmParser->getValueAsString("AsmParserInstCleanup");
1844  if (!InsnCleanupFn.empty())
1845    OS << "    " << InsnCleanupFn << "(Inst);\n";
1846
1847  OS << "    return Match_Success;\n";
1848  OS << "  }\n\n";
1849
1850  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
1851  OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
1852  OS << "  return Match_InvalidOperand;\n";
1853  OS << "}\n\n";
1854
1855  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
1856}
1857