AsmMatcherEmitter.cpp revision 54ddf3d9c756881021afcb869a6ec892a21aef5b
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "llvm/ADT/OwningPtr.h"
80#include "llvm/ADT/SmallVector.h"
81#include "llvm/ADT/STLExtras.h"
82#include "llvm/ADT/StringExtras.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/Debug.h"
85#include <list>
86#include <map>
87#include <set>
88using namespace llvm;
89
90static cl::opt<std::string>
91MatchPrefix("match-prefix", cl::init(""),
92            cl::desc("Only match instructions with the given prefix"));
93
94/// FlattenVariants - Flatten an .td file assembly string by selecting the
95/// variant at index \arg N.
96static std::string FlattenVariants(const std::string &AsmString,
97                                   unsigned N) {
98  StringRef Cur = AsmString;
99  std::string Res = "";
100
101  for (;;) {
102    // Find the start of the next variant string.
103    size_t VariantsStart = 0;
104    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
105      if (Cur[VariantsStart] == '{' &&
106          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
107                                  Cur[VariantsStart-1] != '\\')))
108        break;
109
110    // Add the prefix to the result.
111    Res += Cur.slice(0, VariantsStart);
112    if (VariantsStart == Cur.size())
113      break;
114
115    ++VariantsStart; // Skip the '{'.
116
117    // Scan to the end of the variants string.
118    size_t VariantsEnd = VariantsStart;
119    unsigned NestedBraces = 1;
120    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
121      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
122        if (--NestedBraces == 0)
123          break;
124      } else if (Cur[VariantsEnd] == '{')
125        ++NestedBraces;
126    }
127
128    // Select the Nth variant (or empty).
129    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
130    for (unsigned i = 0; i != N; ++i)
131      Selection = Selection.split('|').second;
132    Res += Selection.split('|').first;
133
134    assert(VariantsEnd != Cur.size() &&
135           "Unterminated variants in assembly string!");
136    Cur = Cur.substr(VariantsEnd + 1);
137  }
138
139  return Res;
140}
141
142/// TokenizeAsmString - Tokenize a simplified assembly string.
143static void TokenizeAsmString(StringRef AsmString,
144                              SmallVectorImpl<StringRef> &Tokens) {
145  unsigned Prev = 0;
146  bool InTok = true;
147  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
148    switch (AsmString[i]) {
149    case '[':
150    case ']':
151    case '*':
152    case '!':
153    case ' ':
154    case '\t':
155    case ',':
156      if (InTok) {
157        Tokens.push_back(AsmString.slice(Prev, i));
158        InTok = false;
159      }
160      if (!isspace(AsmString[i]) && AsmString[i] != ',')
161        Tokens.push_back(AsmString.substr(i, 1));
162      Prev = i + 1;
163      break;
164
165    case '\\':
166      if (InTok) {
167        Tokens.push_back(AsmString.slice(Prev, i));
168        InTok = false;
169      }
170      ++i;
171      assert(i != AsmString.size() && "Invalid quoted character");
172      Tokens.push_back(AsmString.substr(i, 1));
173      Prev = i + 1;
174      break;
175
176    case '$': {
177      // If this isn't "${", treat like a normal token.
178      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
179        if (InTok) {
180          Tokens.push_back(AsmString.slice(Prev, i));
181          InTok = false;
182        }
183        Prev = i;
184        break;
185      }
186
187      if (InTok) {
188        Tokens.push_back(AsmString.slice(Prev, i));
189        InTok = false;
190      }
191
192      StringRef::iterator End =
193        std::find(AsmString.begin() + i, AsmString.end(), '}');
194      assert(End != AsmString.end() && "Missing brace in operand reference!");
195      size_t EndPos = End - AsmString.begin();
196      Tokens.push_back(AsmString.slice(i, EndPos+1));
197      Prev = EndPos + 1;
198      i = EndPos;
199      break;
200    }
201
202    default:
203      InTok = true;
204    }
205  }
206  if (InTok && Prev != AsmString.size())
207    Tokens.push_back(AsmString.substr(Prev));
208}
209
210static bool IsAssemblerInstruction(StringRef Name,
211                                   const CodeGenInstruction &CGI,
212                                   const SmallVectorImpl<StringRef> &Tokens) {
213  // Ignore "codegen only" instructions.
214  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
215    return false;
216
217  // Ignore pseudo ops.
218  //
219  // FIXME: This is a hack; can we convert these instructions to set the
220  // "codegen only" bit instead?
221  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
222    if (Form->getValue()->getAsString() == "Pseudo")
223      return false;
224
225  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
226  //
227  // FIXME: This is a total hack.
228  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
229    return false;
230
231  // Ignore instructions with no .s string.
232  //
233  // FIXME: What are these?
234  if (CGI.AsmString.empty())
235    return false;
236
237  // FIXME: Hack; ignore any instructions with a newline in them.
238  if (std::find(CGI.AsmString.begin(),
239                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
240    return false;
241
242  // Ignore instructions with attributes, these are always fake instructions for
243  // simplifying codegen.
244  //
245  // FIXME: Is this true?
246  //
247  // Also, check for instructions which reference the operand multiple times;
248  // this implies a constraint we would not honor.
249  std::set<std::string> OperandNames;
250  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
251    if (Tokens[i][0] == '$' &&
252        std::find(Tokens[i].begin(),
253                  Tokens[i].end(), ':') != Tokens[i].end()) {
254      DEBUG({
255          errs() << "warning: '" << Name << "': "
256                 << "ignoring instruction; operand with attribute '"
257                 << Tokens[i] << "'\n";
258        });
259      return false;
260    }
261
262    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
263      std::string Err = "'" + Name.str() + "': " +
264        "invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
265      throw TGError(CGI.TheDef->getLoc(), Err);
266    }
267  }
268
269  return true;
270}
271
272namespace {
273
274/// ClassInfo - Helper class for storing the information about a particular
275/// class of operands which can be matched.
276struct ClassInfo {
277  enum ClassInfoKind {
278    /// Invalid kind, for use as a sentinel value.
279    Invalid = 0,
280
281    /// The class for a particular token.
282    Token,
283
284    /// The (first) register class, subsequent register classes are
285    /// RegisterClass0+1, and so on.
286    RegisterClass0,
287
288    /// The (first) user defined class, subsequent user defined classes are
289    /// UserClass0+1, and so on.
290    UserClass0 = 1<<16
291  };
292
293  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
294  /// N) for the Nth user defined class.
295  unsigned Kind;
296
297  /// SuperClasses - The super classes of this class. Note that for simplicities
298  /// sake user operands only record their immediate super class, while register
299  /// operands include all superclasses.
300  std::vector<ClassInfo*> SuperClasses;
301
302  /// Name - The full class name, suitable for use in an enum.
303  std::string Name;
304
305  /// ClassName - The unadorned generic name for this class (e.g., Token).
306  std::string ClassName;
307
308  /// ValueName - The name of the value this class represents; for a token this
309  /// is the literal token string, for an operand it is the TableGen class (or
310  /// empty if this is a derived class).
311  std::string ValueName;
312
313  /// PredicateMethod - The name of the operand method to test whether the
314  /// operand matches this class; this is not valid for Token or register kinds.
315  std::string PredicateMethod;
316
317  /// RenderMethod - The name of the operand method to add this operand to an
318  /// MCInst; this is not valid for Token or register kinds.
319  std::string RenderMethod;
320
321  /// For register classes, the records for all the registers in this class.
322  std::set<Record*> Registers;
323
324public:
325  /// isRegisterClass() - Check if this is a register class.
326  bool isRegisterClass() const {
327    return Kind >= RegisterClass0 && Kind < UserClass0;
328  }
329
330  /// isUserClass() - Check if this is a user defined class.
331  bool isUserClass() const {
332    return Kind >= UserClass0;
333  }
334
335  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
336  /// are related if they are in the same class hierarchy.
337  bool isRelatedTo(const ClassInfo &RHS) const {
338    // Tokens are only related to tokens.
339    if (Kind == Token || RHS.Kind == Token)
340      return Kind == Token && RHS.Kind == Token;
341
342    // Registers classes are only related to registers classes, and only if
343    // their intersection is non-empty.
344    if (isRegisterClass() || RHS.isRegisterClass()) {
345      if (!isRegisterClass() || !RHS.isRegisterClass())
346        return false;
347
348      std::set<Record*> Tmp;
349      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
350      std::set_intersection(Registers.begin(), Registers.end(),
351                            RHS.Registers.begin(), RHS.Registers.end(),
352                            II);
353
354      return !Tmp.empty();
355    }
356
357    // Otherwise we have two users operands; they are related if they are in the
358    // same class hierarchy.
359    //
360    // FIXME: This is an oversimplification, they should only be related if they
361    // intersect, however we don't have that information.
362    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
363    const ClassInfo *Root = this;
364    while (!Root->SuperClasses.empty())
365      Root = Root->SuperClasses.front();
366
367    const ClassInfo *RHSRoot = &RHS;
368    while (!RHSRoot->SuperClasses.empty())
369      RHSRoot = RHSRoot->SuperClasses.front();
370
371    return Root == RHSRoot;
372  }
373
374  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
375  bool isSubsetOf(const ClassInfo &RHS) const {
376    // This is a subset of RHS if it is the same class...
377    if (this == &RHS)
378      return true;
379
380    // ... or if any of its super classes are a subset of RHS.
381    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
382           ie = SuperClasses.end(); it != ie; ++it)
383      if ((*it)->isSubsetOf(RHS))
384        return true;
385
386    return false;
387  }
388
389  /// operator< - Compare two classes.
390  bool operator<(const ClassInfo &RHS) const {
391    // Unrelated classes can be ordered by kind.
392    if (!isRelatedTo(RHS))
393      return Kind < RHS.Kind;
394
395    switch (Kind) {
396    case Invalid:
397      assert(0 && "Invalid kind!");
398    case Token:
399      // Tokens are comparable by value.
400      //
401      // FIXME: Compare by enum value.
402      return ValueName < RHS.ValueName;
403
404    default:
405      // This class preceeds the RHS if it is a proper subset of the RHS.
406      return this != &RHS && isSubsetOf(RHS);
407    }
408  }
409};
410
411/// InstructionInfo - Helper class for storing the necessary information for an
412/// instruction which is capable of being matched.
413struct InstructionInfo {
414  struct Operand {
415    /// The unique class instance this operand should match.
416    ClassInfo *Class;
417
418    /// The original operand this corresponds to, if any.
419    const CodeGenInstruction::OperandInfo *OperandInfo;
420  };
421
422  /// InstrName - The target name for this instruction.
423  std::string InstrName;
424
425  /// Instr - The instruction this matches.
426  const CodeGenInstruction *Instr;
427
428  /// AsmString - The assembly string for this instruction (with variants
429  /// removed).
430  std::string AsmString;
431
432  /// Tokens - The tokenized assembly pattern that this instruction matches.
433  SmallVector<StringRef, 4> Tokens;
434
435  /// Operands - The operands that this instruction matches.
436  SmallVector<Operand, 4> Operands;
437
438  /// ConversionFnKind - The enum value which is passed to the generated
439  /// ConvertToMCInst to convert parsed operands into an MCInst for this
440  /// function.
441  std::string ConversionFnKind;
442
443  /// operator< - Compare two instructions.
444  bool operator<(const InstructionInfo &RHS) const {
445    if (Operands.size() != RHS.Operands.size())
446      return Operands.size() < RHS.Operands.size();
447
448    // Compare lexicographically by operand. The matcher validates that other
449    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
450    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
451      if (*Operands[i].Class < *RHS.Operands[i].Class)
452        return true;
453      if (*RHS.Operands[i].Class < *Operands[i].Class)
454        return false;
455    }
456
457    return false;
458  }
459
460  /// CouldMatchAmiguouslyWith - Check whether this instruction could
461  /// ambiguously match the same set of operands as \arg RHS (without being a
462  /// strictly superior match).
463  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
464    // The number of operands is unambiguous.
465    if (Operands.size() != RHS.Operands.size())
466      return false;
467
468    // Otherwise, make sure the ordering of the two instructions is unambiguous
469    // by checking that either (a) a token or operand kind discriminates them,
470    // or (b) the ordering among equivalent kinds is consistent.
471
472    // Tokens and operand kinds are unambiguous (assuming a correct target
473    // specific parser).
474    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
475      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
476          Operands[i].Class->Kind == ClassInfo::Token)
477        if (*Operands[i].Class < *RHS.Operands[i].Class ||
478            *RHS.Operands[i].Class < *Operands[i].Class)
479          return false;
480
481    // Otherwise, this operand could commute if all operands are equivalent, or
482    // there is a pair of operands that compare less than and a pair that
483    // compare greater than.
484    bool HasLT = false, HasGT = false;
485    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
486      if (*Operands[i].Class < *RHS.Operands[i].Class)
487        HasLT = true;
488      if (*RHS.Operands[i].Class < *Operands[i].Class)
489        HasGT = true;
490    }
491
492    return !(HasLT ^ HasGT);
493  }
494
495public:
496  void dump();
497};
498
499class AsmMatcherInfo {
500public:
501  /// The tablegen AsmParser record.
502  Record *AsmParser;
503
504  /// The AsmParser "CommentDelimiter" value.
505  std::string CommentDelimiter;
506
507  /// The AsmParser "RegisterPrefix" value.
508  std::string RegisterPrefix;
509
510  /// The classes which are needed for matching.
511  std::vector<ClassInfo*> Classes;
512
513  /// The information on the instruction to match.
514  std::vector<InstructionInfo*> Instructions;
515
516  /// Map of Register records to their class information.
517  std::map<Record*, ClassInfo*> RegisterClasses;
518
519private:
520  /// Map of token to class information which has already been constructed.
521  std::map<std::string, ClassInfo*> TokenClasses;
522
523  /// Map of RegisterClass records to their class information.
524  std::map<Record*, ClassInfo*> RegisterClassClasses;
525
526  /// Map of AsmOperandClass records to their class information.
527  std::map<Record*, ClassInfo*> AsmOperandClasses;
528
529private:
530  /// getTokenClass - Lookup or create the class for the given token.
531  ClassInfo *getTokenClass(StringRef Token);
532
533  /// getOperandClass - Lookup or create the class for the given operand.
534  ClassInfo *getOperandClass(StringRef Token,
535                             const CodeGenInstruction::OperandInfo &OI);
536
537  /// BuildRegisterClasses - Build the ClassInfo* instances for register
538  /// classes.
539  void BuildRegisterClasses(CodeGenTarget &Target,
540                            std::set<std::string> &SingletonRegisterNames);
541
542  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
543  /// operand classes.
544  void BuildOperandClasses(CodeGenTarget &Target);
545
546public:
547  AsmMatcherInfo(Record *_AsmParser);
548
549  /// BuildInfo - Construct the various tables used during matching.
550  void BuildInfo(CodeGenTarget &Target);
551};
552
553}
554
555void InstructionInfo::dump() {
556  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
557         << ", tokens:[";
558  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
559    errs() << Tokens[i];
560    if (i + 1 != e)
561      errs() << ", ";
562  }
563  errs() << "]\n";
564
565  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
566    Operand &Op = Operands[i];
567    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
568    if (Op.Class->Kind == ClassInfo::Token) {
569      errs() << '\"' << Tokens[i] << "\"\n";
570      continue;
571    }
572
573    if (!Op.OperandInfo) {
574      errs() << "(singleton register)\n";
575      continue;
576    }
577
578    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
579    errs() << OI.Name << " " << OI.Rec->getName()
580           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
581  }
582}
583
584static std::string getEnumNameForToken(StringRef Str) {
585  std::string Res;
586
587  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
588    switch (*it) {
589    case '*': Res += "_STAR_"; break;
590    case '%': Res += "_PCT_"; break;
591    case ':': Res += "_COLON_"; break;
592
593    default:
594      if (isalnum(*it))  {
595        Res += *it;
596      } else {
597        Res += "_" + utostr((unsigned) *it) + "_";
598      }
599    }
600  }
601
602  return Res;
603}
604
605/// getRegisterRecord - Get the register record for \arg name, or 0.
606static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
607  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
608    const CodeGenRegister &Reg = Target.getRegisters()[i];
609    if (Name == Reg.TheDef->getValueAsString("AsmName"))
610      return Reg.TheDef;
611  }
612
613  return 0;
614}
615
616ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
617  ClassInfo *&Entry = TokenClasses[Token];
618
619  if (!Entry) {
620    Entry = new ClassInfo();
621    Entry->Kind = ClassInfo::Token;
622    Entry->ClassName = "Token";
623    Entry->Name = "MCK_" + getEnumNameForToken(Token);
624    Entry->ValueName = Token;
625    Entry->PredicateMethod = "<invalid>";
626    Entry->RenderMethod = "<invalid>";
627    Classes.push_back(Entry);
628  }
629
630  return Entry;
631}
632
633ClassInfo *
634AsmMatcherInfo::getOperandClass(StringRef Token,
635                                const CodeGenInstruction::OperandInfo &OI) {
636  if (OI.Rec->isSubClassOf("RegisterClass")) {
637    ClassInfo *CI = RegisterClassClasses[OI.Rec];
638
639    if (!CI) {
640      PrintError(OI.Rec->getLoc(), "register class has no class info!");
641      throw std::string("ERROR: Missing register class!");
642    }
643
644    return CI;
645  }
646
647  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
648  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
649  ClassInfo *CI = AsmOperandClasses[MatchClass];
650
651  if (!CI) {
652    PrintError(OI.Rec->getLoc(), "operand has no match class!");
653    throw std::string("ERROR: Missing match class!");
654  }
655
656  return CI;
657}
658
659void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
660                                          std::set<std::string>
661                                            &SingletonRegisterNames) {
662  std::vector<CodeGenRegisterClass> RegisterClasses;
663  std::vector<CodeGenRegister> Registers;
664
665  RegisterClasses = Target.getRegisterClasses();
666  Registers = Target.getRegisters();
667
668  // The register sets used for matching.
669  std::set< std::set<Record*> > RegisterSets;
670
671  // Gather the defined sets.
672  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
673         ie = RegisterClasses.end(); it != ie; ++it)
674    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
675                                          it->Elements.end()));
676
677  // Add any required singleton sets.
678  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
679         ie = SingletonRegisterNames.end(); it != ie; ++it)
680    if (Record *Rec = getRegisterRecord(Target, *it))
681      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
682
683  // Introduce derived sets where necessary (when a register does not determine
684  // a unique register set class), and build the mapping of registers to the set
685  // they should classify to.
686  std::map<Record*, std::set<Record*> > RegisterMap;
687  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
688         ie = Registers.end(); it != ie; ++it) {
689    CodeGenRegister &CGR = *it;
690    // Compute the intersection of all sets containing this register.
691    std::set<Record*> ContainingSet;
692
693    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
694           ie = RegisterSets.end(); it != ie; ++it) {
695      if (!it->count(CGR.TheDef))
696        continue;
697
698      if (ContainingSet.empty()) {
699        ContainingSet = *it;
700      } else {
701        std::set<Record*> Tmp;
702        std::swap(Tmp, ContainingSet);
703        std::insert_iterator< std::set<Record*> > II(ContainingSet,
704                                                     ContainingSet.begin());
705        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
706                              II);
707      }
708    }
709
710    if (!ContainingSet.empty()) {
711      RegisterSets.insert(ContainingSet);
712      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
713    }
714  }
715
716  // Construct the register classes.
717  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
718  unsigned Index = 0;
719  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
720         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
721    ClassInfo *CI = new ClassInfo();
722    CI->Kind = ClassInfo::RegisterClass0 + Index;
723    CI->ClassName = "Reg" + utostr(Index);
724    CI->Name = "MCK_Reg" + utostr(Index);
725    CI->ValueName = "";
726    CI->PredicateMethod = ""; // unused
727    CI->RenderMethod = "addRegOperands";
728    CI->Registers = *it;
729    Classes.push_back(CI);
730    RegisterSetClasses.insert(std::make_pair(*it, CI));
731  }
732
733  // Find the superclasses; we could compute only the subgroup lattice edges,
734  // but there isn't really a point.
735  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
736         ie = RegisterSets.end(); it != ie; ++it) {
737    ClassInfo *CI = RegisterSetClasses[*it];
738    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
739           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
740      if (*it != *it2 &&
741          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
742        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
743  }
744
745  // Name the register classes which correspond to a user defined RegisterClass.
746  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
747         ie = RegisterClasses.end(); it != ie; ++it) {
748    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
749                                                         it->Elements.end())];
750    if (CI->ValueName.empty()) {
751      CI->ClassName = it->getName();
752      CI->Name = "MCK_" + it->getName();
753      CI->ValueName = it->getName();
754    } else
755      CI->ValueName = CI->ValueName + "," + it->getName();
756
757    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
758  }
759
760  // Populate the map for individual registers.
761  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
762         ie = RegisterMap.end(); it != ie; ++it)
763    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
764
765  // Name the register classes which correspond to singleton registers.
766  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
767         ie = SingletonRegisterNames.end(); it != ie; ++it) {
768    if (Record *Rec = getRegisterRecord(Target, *it)) {
769      ClassInfo *CI = this->RegisterClasses[Rec];
770      assert(CI && "Missing singleton register class info!");
771
772      if (CI->ValueName.empty()) {
773        CI->ClassName = Rec->getName();
774        CI->Name = "MCK_" + Rec->getName();
775        CI->ValueName = Rec->getName();
776      } else
777        CI->ValueName = CI->ValueName + "," + Rec->getName();
778    }
779  }
780}
781
782void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
783  std::vector<Record*> AsmOperands;
784  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
785
786  // Pre-populate AsmOperandClasses map.
787  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
788         ie = AsmOperands.end(); it != ie; ++it)
789    AsmOperandClasses[*it] = new ClassInfo();
790
791  unsigned Index = 0;
792  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
793         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
794    ClassInfo *CI = AsmOperandClasses[*it];
795    CI->Kind = ClassInfo::UserClass0 + Index;
796
797    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
798    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
799      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
800      if (!DI) {
801        PrintError((*it)->getLoc(), "Invalid super class reference!");
802        continue;
803      }
804
805      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
806      if (!SC)
807        PrintError((*it)->getLoc(), "Invalid super class reference!");
808      else
809        CI->SuperClasses.push_back(SC);
810    }
811    CI->ClassName = (*it)->getValueAsString("Name");
812    CI->Name = "MCK_" + CI->ClassName;
813    CI->ValueName = (*it)->getName();
814
815    // Get or construct the predicate method name.
816    Init *PMName = (*it)->getValueInit("PredicateMethod");
817    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
818      CI->PredicateMethod = SI->getValue();
819    } else {
820      assert(dynamic_cast<UnsetInit*>(PMName) &&
821             "Unexpected PredicateMethod field!");
822      CI->PredicateMethod = "is" + CI->ClassName;
823    }
824
825    // Get or construct the render method name.
826    Init *RMName = (*it)->getValueInit("RenderMethod");
827    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
828      CI->RenderMethod = SI->getValue();
829    } else {
830      assert(dynamic_cast<UnsetInit*>(RMName) &&
831             "Unexpected RenderMethod field!");
832      CI->RenderMethod = "add" + CI->ClassName + "Operands";
833    }
834
835    AsmOperandClasses[*it] = CI;
836    Classes.push_back(CI);
837  }
838}
839
840AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
841  : AsmParser(_AsmParser),
842    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
843    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
844{
845}
846
847void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
848  // Parse the instructions; we need to do this first so that we can gather the
849  // singleton register classes.
850  std::set<std::string> SingletonRegisterNames;
851
852  const std::vector<const CodeGenInstruction*> &InstrList =
853    Target.getInstructionsByEnumValue();
854
855  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
856    const CodeGenInstruction &CGI = *InstrList[i];
857
858    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
859      continue;
860
861    OwningPtr<InstructionInfo> II(new InstructionInfo());
862
863    II->InstrName = CGI.TheDef->getName();
864    II->Instr = &CGI;
865    II->AsmString = FlattenVariants(CGI.AsmString, 0);
866
867    // Remove comments from the asm string.
868    if (!CommentDelimiter.empty()) {
869      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
870      if (Idx != StringRef::npos)
871        II->AsmString = II->AsmString.substr(0, Idx);
872    }
873
874    TokenizeAsmString(II->AsmString, II->Tokens);
875
876    // Ignore instructions which shouldn't be matched.
877    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
878      continue;
879
880    // Collect singleton registers, if used.
881    if (!RegisterPrefix.empty()) {
882      for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
883        if (II->Tokens[i].startswith(RegisterPrefix)) {
884          StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
885          Record *Rec = getRegisterRecord(Target, RegName);
886
887          if (!Rec) {
888            std::string Err = "unable to find register for '" + RegName.str() +
889              "' (which matches register prefix)";
890            throw TGError(CGI.TheDef->getLoc(), Err);
891          }
892
893          SingletonRegisterNames.insert(RegName);
894        }
895      }
896    }
897
898    Instructions.push_back(II.take());
899  }
900
901  // Build info for the register classes.
902  BuildRegisterClasses(Target, SingletonRegisterNames);
903
904  // Build info for the user defined assembly operand classes.
905  BuildOperandClasses(Target);
906
907  // Build the instruction information.
908  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
909         ie = Instructions.end(); it != ie; ++it) {
910    InstructionInfo *II = *it;
911
912    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
913      StringRef Token = II->Tokens[i];
914
915      // Check for singleton registers.
916      if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
917        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
918        InstructionInfo::Operand Op;
919        Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
920        Op.OperandInfo = 0;
921        assert(Op.Class && Op.Class->Registers.size() == 1 &&
922               "Unexpected class for singleton register");
923        II->Operands.push_back(Op);
924        continue;
925      }
926
927      // Check for simple tokens.
928      if (Token[0] != '$') {
929        InstructionInfo::Operand Op;
930        Op.Class = getTokenClass(Token);
931        Op.OperandInfo = 0;
932        II->Operands.push_back(Op);
933        continue;
934      }
935
936      // Otherwise this is an operand reference.
937      StringRef OperandName;
938      if (Token[1] == '{')
939        OperandName = Token.substr(2, Token.size() - 3);
940      else
941        OperandName = Token.substr(1);
942
943      // Map this token to an operand. FIXME: Move elsewhere.
944      unsigned Idx;
945      try {
946        Idx = II->Instr->getOperandNamed(OperandName);
947      } catch(...) {
948        throw std::string("error: unable to find operand: '" +
949                          OperandName.str() + "'");
950      }
951
952      // FIXME: This is annoying, the named operand may be tied (e.g.,
953      // XCHG8rm). What we want is the untied operand, which we now have to
954      // grovel for. Only worry about this for single entry operands, we have to
955      // clean this up anyway.
956      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
957      if (OI->Constraints[0].isTied()) {
958        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
959
960        // The tied operand index is an MIOperand index, find the operand that
961        // contains it.
962        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
963          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
964            OI = &II->Instr->OperandList[i];
965            break;
966          }
967        }
968
969        assert(OI && "Unable to find tied operand target!");
970      }
971
972      InstructionInfo::Operand Op;
973      Op.Class = getOperandClass(Token, *OI);
974      Op.OperandInfo = OI;
975      II->Operands.push_back(Op);
976    }
977  }
978
979  // Reorder classes so that classes preceed super classes.
980  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
981}
982
983static std::pair<unsigned, unsigned> *
984GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
985                      unsigned Index) {
986  for (unsigned i = 0, e = List.size(); i != e; ++i)
987    if (Index == List[i].first)
988      return &List[i];
989
990  return 0;
991}
992
993static void EmitConvertToMCInst(CodeGenTarget &Target,
994                                std::vector<InstructionInfo*> &Infos,
995                                raw_ostream &OS) {
996  // Write the convert function to a separate stream, so we can drop it after
997  // the enum.
998  std::string ConvertFnBody;
999  raw_string_ostream CvtOS(ConvertFnBody);
1000
1001  // Function we have already generated.
1002  std::set<std::string> GeneratedFns;
1003
1004  // Start the unified conversion function.
1005
1006  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
1007        << "unsigned Opcode,\n"
1008        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1009        << "> &Operands) {\n";
1010  CvtOS << "  Inst.setOpcode(Opcode);\n";
1011  CvtOS << "  switch (Kind) {\n";
1012  CvtOS << "  default:\n";
1013
1014  // Start the enum, which we will generate inline.
1015
1016  OS << "// Unified function for converting operants to MCInst instances.\n\n";
1017  OS << "enum ConversionKind {\n";
1018
1019  // TargetOperandClass - This is the target's operand class, like X86Operand.
1020  std::string TargetOperandClass = Target.getName() + "Operand";
1021
1022  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
1023         ie = Infos.end(); it != ie; ++it) {
1024    InstructionInfo &II = **it;
1025
1026    // Order the (class) operands by the order to convert them into an MCInst.
1027    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
1028    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1029      InstructionInfo::Operand &Op = II.Operands[i];
1030      if (Op.OperandInfo)
1031        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
1032    }
1033
1034    // Find any tied operands.
1035    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
1036    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1037      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
1038      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
1039        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
1040        if (CI.isTied())
1041          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
1042                                                CI.getTiedOperand()));
1043      }
1044    }
1045
1046    std::sort(MIOperandList.begin(), MIOperandList.end());
1047
1048    // Compute the total number of operands.
1049    unsigned NumMIOperands = 0;
1050    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
1051      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
1052      NumMIOperands = std::max(NumMIOperands,
1053                               OI.MIOperandNo + OI.MINumOperands);
1054    }
1055
1056    // Build the conversion function signature.
1057    std::string Signature = "Convert";
1058    unsigned CurIndex = 0;
1059    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1060      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1061      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1062             "Duplicate match for instruction operand!");
1063
1064      // Skip operands which weren't matched by anything, this occurs when the
1065      // .td file encodes "implicit" operands as explicit ones.
1066      //
1067      // FIXME: This should be removed from the MCInst structure.
1068      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1069        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1070                                                                   CurIndex);
1071        if (!Tie)
1072          Signature += "__Imp";
1073        else
1074          Signature += "__Tie" + utostr(Tie->second);
1075      }
1076
1077      Signature += "__";
1078
1079      // Registers are always converted the same, don't duplicate the conversion
1080      // function based on them.
1081      //
1082      // FIXME: We could generalize this based on the render method, if it
1083      // mattered.
1084      if (Op.Class->isRegisterClass())
1085        Signature += "Reg";
1086      else
1087        Signature += Op.Class->ClassName;
1088      Signature += utostr(Op.OperandInfo->MINumOperands);
1089      Signature += "_" + utostr(MIOperandList[i].second);
1090
1091      CurIndex += Op.OperandInfo->MINumOperands;
1092    }
1093
1094    // Add any trailing implicit operands.
1095    for (; CurIndex != NumMIOperands; ++CurIndex) {
1096      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1097                                                                 CurIndex);
1098      if (!Tie)
1099        Signature += "__Imp";
1100      else
1101        Signature += "__Tie" + utostr(Tie->second);
1102    }
1103
1104    II.ConversionFnKind = Signature;
1105
1106    // Check if we have already generated this signature.
1107    if (!GeneratedFns.insert(Signature).second)
1108      continue;
1109
1110    // If not, emit it now.
1111
1112    // Add to the enum list.
1113    OS << "  " << Signature << ",\n";
1114
1115    // And to the convert function.
1116    CvtOS << "  case " << Signature << ":\n";
1117    CurIndex = 0;
1118    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1119      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1120
1121      // Add the implicit operands.
1122      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
1123        // See if this is a tied operand.
1124        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1125                                                                   CurIndex);
1126
1127        if (!Tie) {
1128          // If not, this is some implicit operand. Just assume it is a register
1129          // for now.
1130          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1131        } else {
1132          // Copy the tied operand.
1133          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1134          CvtOS << "    Inst.addOperand(Inst.getOperand("
1135                << Tie->second << "));\n";
1136        }
1137      }
1138
1139      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1140         << MIOperandList[i].second
1141         << "])->" << Op.Class->RenderMethod
1142         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1143      CurIndex += Op.OperandInfo->MINumOperands;
1144    }
1145
1146    // And add trailing implicit operands.
1147    for (; CurIndex != NumMIOperands; ++CurIndex) {
1148      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
1149                                                                 CurIndex);
1150
1151      if (!Tie) {
1152        // If not, this is some implicit operand. Just assume it is a register
1153        // for now.
1154        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1155      } else {
1156        // Copy the tied operand.
1157        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
1158        CvtOS << "    Inst.addOperand(Inst.getOperand("
1159              << Tie->second << "));\n";
1160      }
1161    }
1162
1163    CvtOS << "    return;\n";
1164  }
1165
1166  // Finish the convert function.
1167
1168  CvtOS << "  }\n";
1169  CvtOS << "}\n\n";
1170
1171  // Finish the enum, and drop the convert function after it.
1172
1173  OS << "  NumConversionVariants\n";
1174  OS << "};\n\n";
1175
1176  OS << CvtOS.str();
1177}
1178
1179/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1180static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1181                                      std::vector<ClassInfo*> &Infos,
1182                                      raw_ostream &OS) {
1183  OS << "namespace {\n\n";
1184
1185  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1186     << "/// instruction matching.\n";
1187  OS << "enum MatchClassKind {\n";
1188  OS << "  InvalidMatchClass = 0,\n";
1189  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1190         ie = Infos.end(); it != ie; ++it) {
1191    ClassInfo &CI = **it;
1192    OS << "  " << CI.Name << ", // ";
1193    if (CI.Kind == ClassInfo::Token) {
1194      OS << "'" << CI.ValueName << "'\n";
1195    } else if (CI.isRegisterClass()) {
1196      if (!CI.ValueName.empty())
1197        OS << "register class '" << CI.ValueName << "'\n";
1198      else
1199        OS << "derived register class\n";
1200    } else {
1201      OS << "user defined class '" << CI.ValueName << "'\n";
1202    }
1203  }
1204  OS << "  NumMatchClassKinds\n";
1205  OS << "};\n\n";
1206
1207  OS << "}\n\n";
1208}
1209
1210/// EmitClassifyOperand - Emit the function to classify an operand.
1211static void EmitClassifyOperand(CodeGenTarget &Target,
1212                                AsmMatcherInfo &Info,
1213                                raw_ostream &OS) {
1214  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1215     << "  " << Target.getName() << "Operand &Operand = *("
1216     << Target.getName() << "Operand*)GOp;\n";
1217
1218  // Classify tokens.
1219  OS << "  if (Operand.isToken())\n";
1220  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1221
1222  // Classify registers.
1223  //
1224  // FIXME: Don't hardcode isReg, getReg.
1225  OS << "  if (Operand.isReg()) {\n";
1226  OS << "    switch (Operand.getReg()) {\n";
1227  OS << "    default: return InvalidMatchClass;\n";
1228  for (std::map<Record*, ClassInfo*>::iterator
1229         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1230       it != ie; ++it)
1231    OS << "    case " << Target.getName() << "::"
1232       << it->first->getName() << ": return " << it->second->Name << ";\n";
1233  OS << "    }\n";
1234  OS << "  }\n\n";
1235
1236  // Classify user defined operands.
1237  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1238         ie = Info.Classes.end(); it != ie; ++it) {
1239    ClassInfo &CI = **it;
1240
1241    if (!CI.isUserClass())
1242      continue;
1243
1244    OS << "  // '" << CI.ClassName << "' class";
1245    if (!CI.SuperClasses.empty()) {
1246      OS << ", subclass of ";
1247      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1248        if (i) OS << ", ";
1249        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1250        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1251      }
1252    }
1253    OS << "\n";
1254
1255    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1256
1257    // Validate subclass relationships.
1258    if (!CI.SuperClasses.empty()) {
1259      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1260        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1261           << "() && \"Invalid class relationship!\");\n";
1262    }
1263
1264    OS << "    return " << CI.Name << ";\n";
1265    OS << "  }\n\n";
1266  }
1267  OS << "  return InvalidMatchClass;\n";
1268  OS << "}\n\n";
1269}
1270
1271/// EmitIsSubclass - Emit the subclass predicate function.
1272static void EmitIsSubclass(CodeGenTarget &Target,
1273                           std::vector<ClassInfo*> &Infos,
1274                           raw_ostream &OS) {
1275  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1276  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1277  OS << "  if (A == B)\n";
1278  OS << "    return true;\n\n";
1279
1280  OS << "  switch (A) {\n";
1281  OS << "  default:\n";
1282  OS << "    return false;\n";
1283  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1284         ie = Infos.end(); it != ie; ++it) {
1285    ClassInfo &A = **it;
1286
1287    if (A.Kind != ClassInfo::Token) {
1288      std::vector<StringRef> SuperClasses;
1289      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1290             ie = Infos.end(); it != ie; ++it) {
1291        ClassInfo &B = **it;
1292
1293        if (&A != &B && A.isSubsetOf(B))
1294          SuperClasses.push_back(B.Name);
1295      }
1296
1297      if (SuperClasses.empty())
1298        continue;
1299
1300      OS << "\n  case " << A.Name << ":\n";
1301
1302      if (SuperClasses.size() == 1) {
1303        OS << "    return B == " << SuperClasses.back() << ";\n";
1304        continue;
1305      }
1306
1307      OS << "    switch (B) {\n";
1308      OS << "    default: return false;\n";
1309      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1310        OS << "    case " << SuperClasses[i] << ": return true;\n";
1311      OS << "    }\n";
1312    }
1313  }
1314  OS << "  }\n";
1315  OS << "}\n\n";
1316}
1317
1318typedef std::pair<std::string, std::string> StringPair;
1319
1320/// FindFirstNonCommonLetter - Find the first character in the keys of the
1321/// string pairs that is not shared across the whole set of strings.  All
1322/// strings are assumed to have the same length.
1323static unsigned
1324FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
1325  assert(!Matches.empty());
1326  for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
1327    // Check to see if letter i is the same across the set.
1328    char Letter = Matches[0]->first[i];
1329
1330    for (unsigned str = 0, e = Matches.size(); str != e; ++str)
1331      if (Matches[str]->first[i] != Letter)
1332        return i;
1333  }
1334
1335  return Matches[0]->first.size();
1336}
1337
1338/// EmitStringMatcherForChar - Given a set of strings that are known to be the
1339/// same length and whose characters leading up to CharNo are the same, emit
1340/// code to verify that CharNo and later are the same.
1341///
1342/// \return - True if control can leave the emitted code fragment.
1343static bool EmitStringMatcherForChar(const std::string &StrVariableName,
1344                                  const std::vector<const StringPair*> &Matches,
1345                                     unsigned CharNo, unsigned IndentCount,
1346                                     raw_ostream &OS) {
1347  assert(!Matches.empty() && "Must have at least one string to match!");
1348  std::string Indent(IndentCount*2+4, ' ');
1349
1350  // If we have verified that the entire string matches, we're done: output the
1351  // matching code.
1352  if (CharNo == Matches[0]->first.size()) {
1353    assert(Matches.size() == 1 && "Had duplicate keys to match on");
1354
1355    // FIXME: If Matches[0].first has embeded \n, this will be bad.
1356    OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
1357       << "\"\n";
1358    return false;
1359  }
1360
1361  // Bucket the matches by the character we are comparing.
1362  std::map<char, std::vector<const StringPair*> > MatchesByLetter;
1363
1364  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1365    MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
1366
1367
1368  // If we have exactly one bucket to match, see how many characters are common
1369  // across the whole set and match all of them at once.
1370  if (MatchesByLetter.size() == 1) {
1371    unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
1372    unsigned NumChars = FirstNonCommonLetter-CharNo;
1373
1374    // Emit code to break out if the prefix doesn't match.
1375    if (NumChars == 1) {
1376      // Do the comparison with if (Str[1] != 'f')
1377      // FIXME: Need to escape general characters.
1378      OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
1379         << Matches[0]->first[CharNo] << "')\n";
1380      OS << Indent << "  break;\n";
1381    } else {
1382      // Do the comparison with if (Str.substr(1,3) != "foo").
1383      // FIXME: Need to escape general strings.
1384      OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
1385         << NumChars << ") != \"";
1386      OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
1387      OS << Indent << "  break;\n";
1388    }
1389
1390    return EmitStringMatcherForChar(StrVariableName, Matches,
1391                                    FirstNonCommonLetter, IndentCount, OS);
1392  }
1393
1394  // Otherwise, we have multiple possible things, emit a switch on the
1395  // character.
1396  OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
1397  OS << Indent << "default: break;\n";
1398
1399  for (std::map<char, std::vector<const StringPair*> >::iterator LI =
1400       MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
1401    // TODO: escape hard stuff (like \n) if we ever care about it.
1402    OS << Indent << "case '" << LI->first << "':\t // "
1403       << LI->second.size() << " strings to match.\n";
1404    if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
1405                                 IndentCount+1, OS))
1406      OS << Indent << "  break;\n";
1407  }
1408
1409  OS << Indent << "}\n";
1410  return true;
1411}
1412
1413
1414/// EmitStringMatcher - Given a list of strings and code to execute when they
1415/// match, output a simple switch tree to classify the input string.
1416///
1417/// If a match is found, the code in Vals[i].second is executed; control must
1418/// not exit this code fragment.  If nothing matches, execution falls through.
1419///
1420/// \param StrVariableName - The name of the variable to test.
1421static void EmitStringMatcher(const std::string &StrVariableName,
1422                              const std::vector<StringPair> &Matches,
1423                              raw_ostream &OS) {
1424  // First level categorization: group strings by length.
1425  std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
1426
1427  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1428    MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
1429
1430  // Output a switch statement on length and categorize the elements within each
1431  // bin.
1432  OS << "  switch (" << StrVariableName << ".size()) {\n";
1433  OS << "  default: break;\n";
1434
1435  for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
1436       MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
1437    OS << "  case " << LI->first << ":\t // " << LI->second.size()
1438       << " strings to match.\n";
1439    if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
1440      OS << "    break;\n";
1441  }
1442
1443  OS << "  }\n";
1444}
1445
1446
1447/// EmitMatchTokenString - Emit the function to match a token string to the
1448/// appropriate match class value.
1449static void EmitMatchTokenString(CodeGenTarget &Target,
1450                                 std::vector<ClassInfo*> &Infos,
1451                                 raw_ostream &OS) {
1452  // Construct the match list.
1453  std::vector<StringPair> Matches;
1454  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1455         ie = Infos.end(); it != ie; ++it) {
1456    ClassInfo &CI = **it;
1457
1458    if (CI.Kind == ClassInfo::Token)
1459      Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
1460  }
1461
1462  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
1463
1464  EmitStringMatcher("Name", Matches, OS);
1465
1466  OS << "  return InvalidMatchClass;\n";
1467  OS << "}\n\n";
1468}
1469
1470/// EmitMatchRegisterName - Emit the function to match a string to the target
1471/// specific register enum.
1472static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1473                                  raw_ostream &OS) {
1474  // Construct the match list.
1475  std::vector<StringPair> Matches;
1476  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1477    const CodeGenRegister &Reg = Target.getRegisters()[i];
1478    if (Reg.TheDef->getValueAsString("AsmName").empty())
1479      continue;
1480
1481    Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
1482                                 "return " + utostr(i + 1) + ";"));
1483  }
1484
1485  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1486
1487  EmitStringMatcher("Name", Matches, OS);
1488
1489  OS << "  return 0;\n";
1490  OS << "}\n\n";
1491}
1492
1493void AsmMatcherEmitter::run(raw_ostream &OS) {
1494  CodeGenTarget Target;
1495  Record *AsmParser = Target.getAsmParser();
1496  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1497
1498  // Compute the information on the instructions to match.
1499  AsmMatcherInfo Info(AsmParser);
1500  Info.BuildInfo(Target);
1501
1502  // Sort the instruction table using the partial order on classes. We use
1503  // stable_sort to ensure that ambiguous instructions are still
1504  // deterministically ordered.
1505  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
1506                   less_ptr<InstructionInfo>());
1507
1508  DEBUG_WITH_TYPE("instruction_info", {
1509      for (std::vector<InstructionInfo*>::iterator
1510             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1511           it != ie; ++it)
1512        (*it)->dump();
1513    });
1514
1515  // Check for ambiguous instructions.
1516  unsigned NumAmbiguous = 0;
1517  for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1518    for (unsigned j = i + 1; j != e; ++j) {
1519      InstructionInfo &A = *Info.Instructions[i];
1520      InstructionInfo &B = *Info.Instructions[j];
1521
1522      if (A.CouldMatchAmiguouslyWith(B)) {
1523        DEBUG_WITH_TYPE("ambiguous_instrs", {
1524            errs() << "warning: ambiguous instruction match:\n";
1525            A.dump();
1526            errs() << "\nis incomparable with:\n";
1527            B.dump();
1528            errs() << "\n\n";
1529          });
1530        ++NumAmbiguous;
1531      }
1532    }
1533  }
1534  if (NumAmbiguous)
1535    DEBUG_WITH_TYPE("ambiguous_instrs", {
1536        errs() << "warning: " << NumAmbiguous
1537               << " ambiguous instructions!\n";
1538      });
1539
1540  // Write the output.
1541
1542  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1543
1544  // Emit the function to match a register name to number.
1545  EmitMatchRegisterName(Target, AsmParser, OS);
1546
1547  OS << "#ifndef REGISTERS_ONLY\n\n";
1548
1549  // Generate the unified function to convert operands into an MCInst.
1550  EmitConvertToMCInst(Target, Info.Instructions, OS);
1551
1552  // Emit the enumeration for classes which participate in matching.
1553  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1554
1555  // Emit the routine to match token strings to their match class.
1556  EmitMatchTokenString(Target, Info.Classes, OS);
1557
1558  // Emit the routine to classify an operand.
1559  EmitClassifyOperand(Target, Info, OS);
1560
1561  // Emit the subclass predicate routine.
1562  EmitIsSubclass(Target, Info.Classes, OS);
1563
1564  // Finally, build the match function.
1565
1566  size_t MaxNumOperands = 0;
1567  for (std::vector<InstructionInfo*>::const_iterator it =
1568         Info.Instructions.begin(), ie = Info.Instructions.end();
1569       it != ie; ++it)
1570    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1571
1572  const std::string &MatchName =
1573    AsmParser->getValueAsString("MatchInstructionName");
1574  OS << "bool " << Target.getName() << ClassName << "::\n"
1575     << MatchName
1576     << "(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
1577  OS.indent(MatchName.size() + 1);
1578  OS << "MCInst &Inst) {\n";
1579
1580  // Emit the static match table; unused classes get initalized to 0 which is
1581  // guaranteed to be InvalidMatchClass.
1582  //
1583  // FIXME: We can reduce the size of this table very easily. First, we change
1584  // it so that store the kinds in separate bit-fields for each index, which
1585  // only needs to be the max width used for classes at that index (we also need
1586  // to reject based on this during classification). If we then make sure to
1587  // order the match kinds appropriately (putting mnemonics last), then we
1588  // should only end up using a few bits for each class, especially the ones
1589  // following the mnemonic.
1590  OS << "  static const struct MatchEntry {\n";
1591  OS << "    unsigned Opcode;\n";
1592  OS << "    ConversionKind ConvertFn;\n";
1593  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1594  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";
1595
1596  for (std::vector<InstructionInfo*>::const_iterator it =
1597         Info.Instructions.begin(), ie = Info.Instructions.end();
1598       it != ie; ++it) {
1599    InstructionInfo &II = **it;
1600
1601    OS << "    { " << Target.getName() << "::" << II.InstrName
1602       << ", " << II.ConversionFnKind << ", { ";
1603    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1604      InstructionInfo::Operand &Op = II.Operands[i];
1605
1606      if (i) OS << ", ";
1607      OS << Op.Class->Name;
1608    }
1609    OS << " } },\n";
1610  }
1611
1612  OS << "  };\n\n";
1613
1614  // Emit code to compute the class list for this operand vector.
1615  OS << "  // Eliminate obvious mismatches.\n";
1616  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
1617  OS << "    return true;\n\n";
1618
1619  OS << "  // Compute the class list for this operand vector.\n";
1620  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1621  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
1622  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";
1623
1624  OS << "    // Check for invalid operands before matching.\n";
1625  OS << "    if (Classes[i] == InvalidMatchClass)\n";
1626  OS << "      return true;\n";
1627  OS << "  }\n\n";
1628
1629  OS << "  // Mark unused classes.\n";
1630  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
1631     << "i != e; ++i)\n";
1632  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1633
1634  // Emit code to search the table.
1635  OS << "  // Search the table.\n";
1636  OS << "  for (const MatchEntry *it = MatchTable, "
1637     << "*ie = MatchTable + " << Info.Instructions.size()
1638     << "; it != ie; ++it) {\n";
1639  for (unsigned i = 0; i != MaxNumOperands; ++i) {
1640    OS << "    if (!IsSubclass(Classes["
1641       << i << "], it->Classes[" << i << "]))\n";
1642    OS << "      continue;\n";
1643  }
1644  OS << "\n";
1645  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
1646
1647  // Call the post-processing function, if used.
1648  std::string InsnCleanupFn =
1649    AsmParser->getValueAsString("AsmParserInstCleanup");
1650  if (!InsnCleanupFn.empty())
1651    OS << "    " << InsnCleanupFn << "(Inst);\n";
1652
1653  OS << "    return false;\n";
1654  OS << "  }\n\n";
1655
1656  OS << "  return true;\n";
1657  OS << "}\n\n";
1658
1659  OS << "#endif // REGISTERS_ONLY\n";
1660}
1661