AsmMatcherEmitter.cpp revision 56315d319c104dc96187444e1e19711a1c801166
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific valeus in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "AsmMatcherEmitter.h"
100#include "CodeGenTarget.h"
101#include "StringMatcher.h"
102#include "llvm/ADT/OwningPtr.h"
103#include "llvm/ADT/PointerUnion.h"
104#include "llvm/ADT/SmallPtrSet.h"
105#include "llvm/ADT/SmallVector.h"
106#include "llvm/ADT/STLExtras.h"
107#include "llvm/ADT/StringExtras.h"
108#include "llvm/Support/CommandLine.h"
109#include "llvm/Support/Debug.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include <map>
113#include <set>
114using namespace llvm;
115
116static cl::opt<std::string>
117MatchPrefix("match-prefix", cl::init(""),
118            cl::desc("Only match instructions with the given prefix"));
119
120namespace {
121class AsmMatcherInfo;
122struct SubtargetFeatureInfo;
123
124/// ClassInfo - Helper class for storing the information about a particular
125/// class of operands which can be matched.
126struct ClassInfo {
127  enum ClassInfoKind {
128    /// Invalid kind, for use as a sentinel value.
129    Invalid = 0,
130
131    /// The class for a particular token.
132    Token,
133
134    /// The (first) register class, subsequent register classes are
135    /// RegisterClass0+1, and so on.
136    RegisterClass0,
137
138    /// The (first) user defined class, subsequent user defined classes are
139    /// UserClass0+1, and so on.
140    UserClass0 = 1<<16
141  };
142
143  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
144  /// N) for the Nth user defined class.
145  unsigned Kind;
146
147  /// SuperClasses - The super classes of this class. Note that for simplicities
148  /// sake user operands only record their immediate super class, while register
149  /// operands include all superclasses.
150  std::vector<ClassInfo*> SuperClasses;
151
152  /// Name - The full class name, suitable for use in an enum.
153  std::string Name;
154
155  /// ClassName - The unadorned generic name for this class (e.g., Token).
156  std::string ClassName;
157
158  /// ValueName - The name of the value this class represents; for a token this
159  /// is the literal token string, for an operand it is the TableGen class (or
160  /// empty if this is a derived class).
161  std::string ValueName;
162
163  /// PredicateMethod - The name of the operand method to test whether the
164  /// operand matches this class; this is not valid for Token or register kinds.
165  std::string PredicateMethod;
166
167  /// RenderMethod - The name of the operand method to add this operand to an
168  /// MCInst; this is not valid for Token or register kinds.
169  std::string RenderMethod;
170
171  /// ParserMethod - The name of the operand method to do a target specific
172  /// parsing on the operand.
173  std::string ParserMethod;
174
175  /// For register classes, the records for all the registers in this class.
176  std::set<Record*> Registers;
177
178public:
179  /// isRegisterClass() - Check if this is a register class.
180  bool isRegisterClass() const {
181    return Kind >= RegisterClass0 && Kind < UserClass0;
182  }
183
184  /// isUserClass() - Check if this is a user defined class.
185  bool isUserClass() const {
186    return Kind >= UserClass0;
187  }
188
189  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
190  /// are related if they are in the same class hierarchy.
191  bool isRelatedTo(const ClassInfo &RHS) const {
192    // Tokens are only related to tokens.
193    if (Kind == Token || RHS.Kind == Token)
194      return Kind == Token && RHS.Kind == Token;
195
196    // Registers classes are only related to registers classes, and only if
197    // their intersection is non-empty.
198    if (isRegisterClass() || RHS.isRegisterClass()) {
199      if (!isRegisterClass() || !RHS.isRegisterClass())
200        return false;
201
202      std::set<Record*> Tmp;
203      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
204      std::set_intersection(Registers.begin(), Registers.end(),
205                            RHS.Registers.begin(), RHS.Registers.end(),
206                            II);
207
208      return !Tmp.empty();
209    }
210
211    // Otherwise we have two users operands; they are related if they are in the
212    // same class hierarchy.
213    //
214    // FIXME: This is an oversimplification, they should only be related if they
215    // intersect, however we don't have that information.
216    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
217    const ClassInfo *Root = this;
218    while (!Root->SuperClasses.empty())
219      Root = Root->SuperClasses.front();
220
221    const ClassInfo *RHSRoot = &RHS;
222    while (!RHSRoot->SuperClasses.empty())
223      RHSRoot = RHSRoot->SuperClasses.front();
224
225    return Root == RHSRoot;
226  }
227
228  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
229  bool isSubsetOf(const ClassInfo &RHS) const {
230    // This is a subset of RHS if it is the same class...
231    if (this == &RHS)
232      return true;
233
234    // ... or if any of its super classes are a subset of RHS.
235    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
236           ie = SuperClasses.end(); it != ie; ++it)
237      if ((*it)->isSubsetOf(RHS))
238        return true;
239
240    return false;
241  }
242
243  /// operator< - Compare two classes.
244  bool operator<(const ClassInfo &RHS) const {
245    if (this == &RHS)
246      return false;
247
248    // Unrelated classes can be ordered by kind.
249    if (!isRelatedTo(RHS))
250      return Kind < RHS.Kind;
251
252    switch (Kind) {
253    case Invalid:
254      assert(0 && "Invalid kind!");
255
256    default:
257      // This class precedes the RHS if it is a proper subset of the RHS.
258      if (isSubsetOf(RHS))
259        return true;
260      if (RHS.isSubsetOf(*this))
261        return false;
262
263      // Otherwise, order by name to ensure we have a total ordering.
264      return ValueName < RHS.ValueName;
265    }
266  }
267};
268
269/// MatchableInfo - Helper class for storing the necessary information for an
270/// instruction or alias which is capable of being matched.
271struct MatchableInfo {
272  struct AsmOperand {
273    /// Token - This is the token that the operand came from.
274    StringRef Token;
275
276    /// The unique class instance this operand should match.
277    ClassInfo *Class;
278
279    /// The operand name this is, if anything.
280    StringRef SrcOpName;
281
282    /// The suboperand index within SrcOpName, or -1 for the entire operand.
283    int SubOpIdx;
284
285    /// Register record if this token is singleton register.
286    Record *SingletonReg;
287
288    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
289				       SingletonReg(0) {}
290  };
291
292  /// ResOperand - This represents a single operand in the result instruction
293  /// generated by the match.  In cases (like addressing modes) where a single
294  /// assembler operand expands to multiple MCOperands, this represents the
295  /// single assembler operand, not the MCOperand.
296  struct ResOperand {
297    enum {
298      /// RenderAsmOperand - This represents an operand result that is
299      /// generated by calling the render method on the assembly operand.  The
300      /// corresponding AsmOperand is specified by AsmOperandNum.
301      RenderAsmOperand,
302
303      /// TiedOperand - This represents a result operand that is a duplicate of
304      /// a previous result operand.
305      TiedOperand,
306
307      /// ImmOperand - This represents an immediate value that is dumped into
308      /// the operand.
309      ImmOperand,
310
311      /// RegOperand - This represents a fixed register that is dumped in.
312      RegOperand
313    } Kind;
314
315    union {
316      /// This is the operand # in the AsmOperands list that this should be
317      /// copied from.
318      unsigned AsmOperandNum;
319
320      /// TiedOperandNum - This is the (earlier) result operand that should be
321      /// copied from.
322      unsigned TiedOperandNum;
323
324      /// ImmVal - This is the immediate value added to the instruction.
325      int64_t ImmVal;
326
327      /// Register - This is the register record.
328      Record *Register;
329    };
330
331    /// MINumOperands - The number of MCInst operands populated by this
332    /// operand.
333    unsigned MINumOperands;
334
335    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
336      ResOperand X;
337      X.Kind = RenderAsmOperand;
338      X.AsmOperandNum = AsmOpNum;
339      X.MINumOperands = NumOperands;
340      return X;
341    }
342
343    static ResOperand getTiedOp(unsigned TiedOperandNum) {
344      ResOperand X;
345      X.Kind = TiedOperand;
346      X.TiedOperandNum = TiedOperandNum;
347      X.MINumOperands = 1;
348      return X;
349    }
350
351    static ResOperand getImmOp(int64_t Val) {
352      ResOperand X;
353      X.Kind = ImmOperand;
354      X.ImmVal = Val;
355      X.MINumOperands = 1;
356      return X;
357    }
358
359    static ResOperand getRegOp(Record *Reg) {
360      ResOperand X;
361      X.Kind = RegOperand;
362      X.Register = Reg;
363      X.MINumOperands = 1;
364      return X;
365    }
366  };
367
368  /// AsmVariantID - Target's assembly syntax variant no.
369  int AsmVariantID;
370
371  /// TheDef - This is the definition of the instruction or InstAlias that this
372  /// matchable came from.
373  Record *const TheDef;
374
375  /// DefRec - This is the definition that it came from.
376  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
377
378  const CodeGenInstruction *getResultInst() const {
379    if (DefRec.is<const CodeGenInstruction*>())
380      return DefRec.get<const CodeGenInstruction*>();
381    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
382  }
383
384  /// ResOperands - This is the operand list that should be built for the result
385  /// MCInst.
386  std::vector<ResOperand> ResOperands;
387
388  /// AsmString - The assembly string for this instruction (with variants
389  /// removed), e.g. "movsx $src, $dst".
390  std::string AsmString;
391
392  /// Mnemonic - This is the first token of the matched instruction, its
393  /// mnemonic.
394  StringRef Mnemonic;
395
396  /// AsmOperands - The textual operands that this instruction matches,
397  /// annotated with a class and where in the OperandList they were defined.
398  /// This directly corresponds to the tokenized AsmString after the mnemonic is
399  /// removed.
400  SmallVector<AsmOperand, 4> AsmOperands;
401
402  /// Predicates - The required subtarget features to match this instruction.
403  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
404
405  /// ConversionFnKind - The enum value which is passed to the generated
406  /// ConvertToMCInst to convert parsed operands into an MCInst for this
407  /// function.
408  std::string ConversionFnKind;
409
410  MatchableInfo(const CodeGenInstruction &CGI)
411    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
412      AsmString(CGI.AsmString) {
413  }
414
415  MatchableInfo(const CodeGenInstAlias *Alias)
416    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
417      AsmString(Alias->AsmString) {
418  }
419
420  void Initialize(const AsmMatcherInfo &Info,
421                  SmallPtrSet<Record*, 16> &SingletonRegisters,
422		  int AsmVariantNo, std::string &RegisterPrefix);
423
424  /// Validate - Return true if this matchable is a valid thing to match against
425  /// and perform a bunch of validity checking.
426  bool Validate(StringRef CommentDelimiter, bool Hack) const;
427
428  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
429  /// if present, from specified token.
430  void
431  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
432                                        std::string &RegisterPrefix);
433
434  /// FindAsmOperand - Find the AsmOperand with the specified name and
435  /// suboperand index.
436  int FindAsmOperand(StringRef N, int SubOpIdx) const {
437    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
438      if (N == AsmOperands[i].SrcOpName &&
439          SubOpIdx == AsmOperands[i].SubOpIdx)
440        return i;
441    return -1;
442  }
443
444  /// FindAsmOperandNamed - Find the first AsmOperand with the specified name.
445  /// This does not check the suboperand index.
446  int FindAsmOperandNamed(StringRef N) const {
447    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
448      if (N == AsmOperands[i].SrcOpName)
449        return i;
450    return -1;
451  }
452
453  void BuildInstructionResultOperands();
454  void BuildAliasResultOperands();
455
456  /// operator< - Compare two matchables.
457  bool operator<(const MatchableInfo &RHS) const {
458    // The primary comparator is the instruction mnemonic.
459    if (Mnemonic != RHS.Mnemonic)
460      return Mnemonic < RHS.Mnemonic;
461
462    if (AsmOperands.size() != RHS.AsmOperands.size())
463      return AsmOperands.size() < RHS.AsmOperands.size();
464
465    // Compare lexicographically by operand. The matcher validates that other
466    // orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith().
467    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
468      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
469        return true;
470      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
471        return false;
472    }
473
474    return false;
475  }
476
477  /// CouldMatchAmbiguouslyWith - Check whether this matchable could
478  /// ambiguously match the same set of operands as \arg RHS (without being a
479  /// strictly superior match).
480  bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
481    // The primary comparator is the instruction mnemonic.
482    if (Mnemonic != RHS.Mnemonic)
483      return false;
484
485    // The number of operands is unambiguous.
486    if (AsmOperands.size() != RHS.AsmOperands.size())
487      return false;
488
489    // Otherwise, make sure the ordering of the two instructions is unambiguous
490    // by checking that either (a) a token or operand kind discriminates them,
491    // or (b) the ordering among equivalent kinds is consistent.
492
493    // Tokens and operand kinds are unambiguous (assuming a correct target
494    // specific parser).
495    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
496      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
497          AsmOperands[i].Class->Kind == ClassInfo::Token)
498        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
499            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
500          return false;
501
502    // Otherwise, this operand could commute if all operands are equivalent, or
503    // there is a pair of operands that compare less than and a pair that
504    // compare greater than.
505    bool HasLT = false, HasGT = false;
506    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
507      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
508        HasLT = true;
509      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
510        HasGT = true;
511    }
512
513    return !(HasLT ^ HasGT);
514  }
515
516  void dump();
517
518private:
519  void TokenizeAsmString(const AsmMatcherInfo &Info);
520};
521
522/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
523/// feature which participates in instruction matching.
524struct SubtargetFeatureInfo {
525  /// \brief The predicate record for this feature.
526  Record *TheDef;
527
528  /// \brief An unique index assigned to represent this feature.
529  unsigned Index;
530
531  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
532
533  /// \brief The name of the enumerated constant identifying this feature.
534  std::string getEnumName() const {
535    return "Feature_" + TheDef->getName();
536  }
537};
538
539struct OperandMatchEntry {
540  unsigned OperandMask;
541  MatchableInfo* MI;
542  ClassInfo *CI;
543
544  static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci,
545                                  unsigned opMask) {
546    OperandMatchEntry X;
547    X.OperandMask = opMask;
548    X.CI = ci;
549    X.MI = mi;
550    return X;
551  }
552};
553
554
555class AsmMatcherInfo {
556public:
557  /// Tracked Records
558  RecordKeeper &Records;
559
560  /// The tablegen AsmParser record.
561  Record *AsmParser;
562
563  /// Target - The target information.
564  CodeGenTarget &Target;
565
566  /// The classes which are needed for matching.
567  std::vector<ClassInfo*> Classes;
568
569  /// The information on the matchables to match.
570  std::vector<MatchableInfo*> Matchables;
571
572  /// Info for custom matching operands by user defined methods.
573  std::vector<OperandMatchEntry> OperandMatchInfo;
574
575  /// Map of Register records to their class information.
576  std::map<Record*, ClassInfo*> RegisterClasses;
577
578  /// Map of Predicate records to their subtarget information.
579  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
580
581private:
582  /// Map of token to class information which has already been constructed.
583  std::map<std::string, ClassInfo*> TokenClasses;
584
585  /// Map of RegisterClass records to their class information.
586  std::map<Record*, ClassInfo*> RegisterClassClasses;
587
588  /// Map of AsmOperandClass records to their class information.
589  std::map<Record*, ClassInfo*> AsmOperandClasses;
590
591private:
592  /// getTokenClass - Lookup or create the class for the given token.
593  ClassInfo *getTokenClass(StringRef Token);
594
595  /// getOperandClass - Lookup or create the class for the given operand.
596  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
597                             int SubOpIdx);
598  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
599
600  /// BuildRegisterClasses - Build the ClassInfo* instances for register
601  /// classes.
602  void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
603
604  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
605  /// operand classes.
606  void BuildOperandClasses();
607
608  void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
609                                        unsigned AsmOpIdx);
610  void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName,
611                                  MatchableInfo::AsmOperand &Op);
612
613public:
614  AsmMatcherInfo(Record *AsmParser,
615                 CodeGenTarget &Target,
616                 RecordKeeper &Records);
617
618  /// BuildInfo - Construct the various tables used during matching.
619  void BuildInfo();
620
621  /// BuildOperandMatchInfo - Build the necessary information to handle user
622  /// defined operand parsing methods.
623  void BuildOperandMatchInfo();
624
625  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
626  /// given operand.
627  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
628    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
629    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
630      SubtargetFeatures.find(Def);
631    return I == SubtargetFeatures.end() ? 0 : I->second;
632  }
633
634  RecordKeeper &getRecords() const {
635    return Records;
636  }
637};
638
639}
640
641void MatchableInfo::dump() {
642  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
643
644  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
645    AsmOperand &Op = AsmOperands[i];
646    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
647    errs() << '\"' << Op.Token << "\"\n";
648  }
649}
650
651void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
652                               SmallPtrSet<Record*, 16> &SingletonRegisters,
653                               int AsmVariantNo, std::string &RegisterPrefix) {
654  AsmVariantID = AsmVariantNo;
655  AsmString =
656    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
657
658  TokenizeAsmString(Info);
659
660  // Compute the require features.
661  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
662  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
663    if (SubtargetFeatureInfo *Feature =
664        Info.getSubtargetFeature(Predicates[i]))
665      RequiredFeatures.push_back(Feature);
666
667  // Collect singleton registers, if used.
668  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
669    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
670    if (Record *Reg = AsmOperands[i].SingletonReg)
671      SingletonRegisters.insert(Reg);
672  }
673}
674
675/// TokenizeAsmString - Tokenize a simplified assembly string.
676void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
677  StringRef String = AsmString;
678  unsigned Prev = 0;
679  bool InTok = true;
680  for (unsigned i = 0, e = String.size(); i != e; ++i) {
681    switch (String[i]) {
682    case '[':
683    case ']':
684    case '*':
685    case '!':
686    case ' ':
687    case '\t':
688    case ',':
689      if (InTok) {
690        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
691        InTok = false;
692      }
693      if (!isspace(String[i]) && String[i] != ',')
694        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
695      Prev = i + 1;
696      break;
697
698    case '\\':
699      if (InTok) {
700        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
701        InTok = false;
702      }
703      ++i;
704      assert(i != String.size() && "Invalid quoted character");
705      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
706      Prev = i + 1;
707      break;
708
709    case '$': {
710      if (InTok) {
711        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
712        InTok = false;
713      }
714
715      // If this isn't "${", treat like a normal token.
716      if (i + 1 == String.size() || String[i + 1] != '{') {
717        Prev = i;
718        break;
719      }
720
721      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
722      assert(End != String.end() && "Missing brace in operand reference!");
723      size_t EndPos = End - String.begin();
724      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
725      Prev = EndPos + 1;
726      i = EndPos;
727      break;
728    }
729
730    case '.':
731      if (InTok)
732        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
733      Prev = i;
734      InTok = true;
735      break;
736
737    default:
738      InTok = true;
739    }
740  }
741  if (InTok && Prev != String.size())
742    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
743
744  // The first token of the instruction is the mnemonic, which must be a
745  // simple string, not a $foo variable or a singleton register.
746  if (AsmOperands.empty())
747    throw TGError(TheDef->getLoc(),
748                  "Instruction '" + TheDef->getName() + "' has no tokens");
749  Mnemonic = AsmOperands[0].Token;
750  // FIXME : Check and raise an error if it is a register.
751  if (Mnemonic[0] == '$')
752    throw TGError(TheDef->getLoc(),
753                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
754
755  // Remove the first operand, it is tracked in the mnemonic field.
756  AsmOperands.erase(AsmOperands.begin());
757}
758
759bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
760  // Reject matchables with no .s string.
761  if (AsmString.empty())
762    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
763
764  // Reject any matchables with a newline in them, they should be marked
765  // isCodeGenOnly if they are pseudo instructions.
766  if (AsmString.find('\n') != std::string::npos)
767    throw TGError(TheDef->getLoc(),
768                  "multiline instruction is not valid for the asmparser, "
769                  "mark it isCodeGenOnly");
770
771  // Remove comments from the asm string.  We know that the asmstring only
772  // has one line.
773  if (!CommentDelimiter.empty() &&
774      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
775    throw TGError(TheDef->getLoc(),
776                  "asmstring for instruction has comment character in it, "
777                  "mark it isCodeGenOnly");
778
779  // Reject matchables with operand modifiers, these aren't something we can
780  // handle, the target should be refactored to use operands instead of
781  // modifiers.
782  //
783  // Also, check for instructions which reference the operand multiple times;
784  // this implies a constraint we would not honor.
785  std::set<std::string> OperandNames;
786  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
787    StringRef Tok = AsmOperands[i].Token;
788    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
789      throw TGError(TheDef->getLoc(),
790                    "matchable with operand modifier '" + Tok.str() +
791                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
792
793    // Verify that any operand is only mentioned once.
794    // We reject aliases and ignore instructions for now.
795    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
796      if (!Hack)
797        throw TGError(TheDef->getLoc(),
798                      "ERROR: matchable with tied operand '" + Tok.str() +
799                      "' can never be matched!");
800      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
801      // bunch of instructions.  It is unclear what the right answer is.
802      DEBUG({
803        errs() << "warning: '" << TheDef->getName() << "': "
804               << "ignoring instruction with tied operand '"
805               << Tok.str() << "'\n";
806      });
807      return false;
808    }
809  }
810
811  return true;
812}
813
814/// extractSingletonRegisterForAsmOperand - Extract singleton register,
815/// if present, from specified token.
816void MatchableInfo::
817extractSingletonRegisterForAsmOperand(unsigned OperandNo,
818                                      const AsmMatcherInfo &Info,
819				      std::string &RegisterPrefix) {
820  StringRef Tok = AsmOperands[OperandNo].Token;
821  if (RegisterPrefix.empty()) {
822    std::string LoweredTok = Tok.lower();
823    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
824      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
825    return;
826  }
827
828  if (!Tok.startswith(RegisterPrefix))
829    return;
830
831  StringRef RegName = Tok.substr(RegisterPrefix.size());
832  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
833    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
834
835  // If there is no register prefix (i.e. "%" in "%eax"), then this may
836  // be some random non-register token, just ignore it.
837  return;
838}
839
840static std::string getEnumNameForToken(StringRef Str) {
841  std::string Res;
842
843  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
844    switch (*it) {
845    case '*': Res += "_STAR_"; break;
846    case '%': Res += "_PCT_"; break;
847    case ':': Res += "_COLON_"; break;
848    case '!': Res += "_EXCLAIM_"; break;
849    case '.': Res += "_DOT_"; break;
850    default:
851      if (isalnum(*it))
852        Res += *it;
853      else
854        Res += "_" + utostr((unsigned) *it) + "_";
855    }
856  }
857
858  return Res;
859}
860
861ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
862  ClassInfo *&Entry = TokenClasses[Token];
863
864  if (!Entry) {
865    Entry = new ClassInfo();
866    Entry->Kind = ClassInfo::Token;
867    Entry->ClassName = "Token";
868    Entry->Name = "MCK_" + getEnumNameForToken(Token);
869    Entry->ValueName = Token;
870    Entry->PredicateMethod = "<invalid>";
871    Entry->RenderMethod = "<invalid>";
872    Entry->ParserMethod = "";
873    Classes.push_back(Entry);
874  }
875
876  return Entry;
877}
878
879ClassInfo *
880AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
881                                int SubOpIdx) {
882  Record *Rec = OI.Rec;
883  if (SubOpIdx != -1)
884    Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
885  return getOperandClass(Rec, SubOpIdx);
886}
887
888ClassInfo *
889AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
890  if (Rec->isSubClassOf("RegisterOperand")) {
891    // RegisterOperand may have an associated ParserMatchClass. If it does,
892    // use it, else just fall back to the underlying register class.
893    const RecordVal *R = Rec->getValue("ParserMatchClass");
894    if (R == 0 || R->getValue() == 0)
895      throw "Record `" + Rec->getName() +
896        "' does not have a ParserMatchClass!\n";
897
898    if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
899      Record *MatchClass = DI->getDef();
900      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
901        return CI;
902    }
903
904    // No custom match class. Just use the register class.
905    Record *ClassRec = Rec->getValueAsDef("RegClass");
906    if (!ClassRec)
907      throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
908                    "' has no associated register class!\n");
909    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
910      return CI;
911    throw TGError(Rec->getLoc(), "register class has no class info!");
912  }
913
914
915  if (Rec->isSubClassOf("RegisterClass")) {
916    if (ClassInfo *CI = RegisterClassClasses[Rec])
917      return CI;
918    throw TGError(Rec->getLoc(), "register class has no class info!");
919  }
920
921  assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
922  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
923  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
924    return CI;
925
926  throw TGError(Rec->getLoc(), "operand has no match class!");
927}
928
929void AsmMatcherInfo::
930BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
931  const std::vector<CodeGenRegister*> &Registers =
932    Target.getRegBank().getRegisters();
933  ArrayRef<CodeGenRegisterClass*> RegClassList =
934    Target.getRegBank().getRegClasses();
935
936  // The register sets used for matching.
937  std::set< std::set<Record*> > RegisterSets;
938
939  // Gather the defined sets.
940  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
941       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
942    RegisterSets.insert(std::set<Record*>(
943        (*it)->getOrder().begin(), (*it)->getOrder().end()));
944
945  // Add any required singleton sets.
946  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
947       ie = SingletonRegisters.end(); it != ie; ++it) {
948    Record *Rec = *it;
949    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
950  }
951
952  // Introduce derived sets where necessary (when a register does not determine
953  // a unique register set class), and build the mapping of registers to the set
954  // they should classify to.
955  std::map<Record*, std::set<Record*> > RegisterMap;
956  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
957         ie = Registers.end(); it != ie; ++it) {
958    const CodeGenRegister &CGR = **it;
959    // Compute the intersection of all sets containing this register.
960    std::set<Record*> ContainingSet;
961
962    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
963           ie = RegisterSets.end(); it != ie; ++it) {
964      if (!it->count(CGR.TheDef))
965        continue;
966
967      if (ContainingSet.empty()) {
968        ContainingSet = *it;
969        continue;
970      }
971
972      std::set<Record*> Tmp;
973      std::swap(Tmp, ContainingSet);
974      std::insert_iterator< std::set<Record*> > II(ContainingSet,
975                                                   ContainingSet.begin());
976      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
977    }
978
979    if (!ContainingSet.empty()) {
980      RegisterSets.insert(ContainingSet);
981      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
982    }
983  }
984
985  // Construct the register classes.
986  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
987  unsigned Index = 0;
988  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
989         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
990    ClassInfo *CI = new ClassInfo();
991    CI->Kind = ClassInfo::RegisterClass0 + Index;
992    CI->ClassName = "Reg" + utostr(Index);
993    CI->Name = "MCK_Reg" + utostr(Index);
994    CI->ValueName = "";
995    CI->PredicateMethod = ""; // unused
996    CI->RenderMethod = "addRegOperands";
997    CI->Registers = *it;
998    Classes.push_back(CI);
999    RegisterSetClasses.insert(std::make_pair(*it, CI));
1000  }
1001
1002  // Find the superclasses; we could compute only the subgroup lattice edges,
1003  // but there isn't really a point.
1004  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1005         ie = RegisterSets.end(); it != ie; ++it) {
1006    ClassInfo *CI = RegisterSetClasses[*it];
1007    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1008           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1009      if (*it != *it2 &&
1010          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1011        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1012  }
1013
1014  // Name the register classes which correspond to a user defined RegisterClass.
1015  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1016       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1017    const CodeGenRegisterClass &RC = **it;
1018    // Def will be NULL for non-user defined register classes.
1019    Record *Def = RC.getDef();
1020    if (!Def)
1021      continue;
1022    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1023                                                         RC.getOrder().end())];
1024    if (CI->ValueName.empty()) {
1025      CI->ClassName = RC.getName();
1026      CI->Name = "MCK_" + RC.getName();
1027      CI->ValueName = RC.getName();
1028    } else
1029      CI->ValueName = CI->ValueName + "," + RC.getName();
1030
1031    RegisterClassClasses.insert(std::make_pair(Def, CI));
1032  }
1033
1034  // Populate the map for individual registers.
1035  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1036         ie = RegisterMap.end(); it != ie; ++it)
1037    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1038
1039  // Name the register classes which correspond to singleton registers.
1040  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1041         ie = SingletonRegisters.end(); it != ie; ++it) {
1042    Record *Rec = *it;
1043    ClassInfo *CI = RegisterClasses[Rec];
1044    assert(CI && "Missing singleton register class info!");
1045
1046    if (CI->ValueName.empty()) {
1047      CI->ClassName = Rec->getName();
1048      CI->Name = "MCK_" + Rec->getName();
1049      CI->ValueName = Rec->getName();
1050    } else
1051      CI->ValueName = CI->ValueName + "," + Rec->getName();
1052  }
1053}
1054
1055void AsmMatcherInfo::BuildOperandClasses() {
1056  std::vector<Record*> AsmOperands =
1057    Records.getAllDerivedDefinitions("AsmOperandClass");
1058
1059  // Pre-populate AsmOperandClasses map.
1060  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1061         ie = AsmOperands.end(); it != ie; ++it)
1062    AsmOperandClasses[*it] = new ClassInfo();
1063
1064  unsigned Index = 0;
1065  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1066         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1067    ClassInfo *CI = AsmOperandClasses[*it];
1068    CI->Kind = ClassInfo::UserClass0 + Index;
1069
1070    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1071    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1072      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1073      if (!DI) {
1074        PrintError((*it)->getLoc(), "Invalid super class reference!");
1075        continue;
1076      }
1077
1078      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1079      if (!SC)
1080        PrintError((*it)->getLoc(), "Invalid super class reference!");
1081      else
1082        CI->SuperClasses.push_back(SC);
1083    }
1084    CI->ClassName = (*it)->getValueAsString("Name");
1085    CI->Name = "MCK_" + CI->ClassName;
1086    CI->ValueName = (*it)->getName();
1087
1088    // Get or construct the predicate method name.
1089    Init *PMName = (*it)->getValueInit("PredicateMethod");
1090    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1091      CI->PredicateMethod = SI->getValue();
1092    } else {
1093      assert(dynamic_cast<UnsetInit*>(PMName) &&
1094             "Unexpected PredicateMethod field!");
1095      CI->PredicateMethod = "is" + CI->ClassName;
1096    }
1097
1098    // Get or construct the render method name.
1099    Init *RMName = (*it)->getValueInit("RenderMethod");
1100    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1101      CI->RenderMethod = SI->getValue();
1102    } else {
1103      assert(dynamic_cast<UnsetInit*>(RMName) &&
1104             "Unexpected RenderMethod field!");
1105      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1106    }
1107
1108    // Get the parse method name or leave it as empty.
1109    Init *PRMName = (*it)->getValueInit("ParserMethod");
1110    if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1111      CI->ParserMethod = SI->getValue();
1112
1113    AsmOperandClasses[*it] = CI;
1114    Classes.push_back(CI);
1115  }
1116}
1117
1118AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1119                               CodeGenTarget &target,
1120                               RecordKeeper &records)
1121  : Records(records), AsmParser(asmParser), Target(target) {
1122}
1123
1124/// BuildOperandMatchInfo - Build the necessary information to handle user
1125/// defined operand parsing methods.
1126void AsmMatcherInfo::BuildOperandMatchInfo() {
1127
1128  /// Map containing a mask with all operands indicies that can be found for
1129  /// that class inside a instruction.
1130  std::map<ClassInfo*, unsigned> OpClassMask;
1131
1132  for (std::vector<MatchableInfo*>::const_iterator it =
1133       Matchables.begin(), ie = Matchables.end();
1134       it != ie; ++it) {
1135    MatchableInfo &II = **it;
1136    OpClassMask.clear();
1137
1138    // Keep track of all operands of this instructions which belong to the
1139    // same class.
1140    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1141      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1142      if (Op.Class->ParserMethod.empty())
1143        continue;
1144      unsigned &OperandMask = OpClassMask[Op.Class];
1145      OperandMask |= (1 << i);
1146    }
1147
1148    // Generate operand match info for each mnemonic/operand class pair.
1149    for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
1150         iie = OpClassMask.end(); iit != iie; ++iit) {
1151      unsigned OpMask = iit->second;
1152      ClassInfo *CI = iit->first;
1153      OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask));
1154    }
1155  }
1156}
1157
1158void AsmMatcherInfo::BuildInfo() {
1159  // Build information about all of the AssemblerPredicates.
1160  std::vector<Record*> AllPredicates =
1161    Records.getAllDerivedDefinitions("Predicate");
1162  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1163    Record *Pred = AllPredicates[i];
1164    // Ignore predicates that are not intended for the assembler.
1165    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1166      continue;
1167
1168    if (Pred->getName().empty())
1169      throw TGError(Pred->getLoc(), "Predicate has no name!");
1170
1171    unsigned FeatureNo = SubtargetFeatures.size();
1172    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1173    assert(FeatureNo < 32 && "Too many subtarget features!");
1174  }
1175
1176  // Parse the instructions; we need to do this first so that we can gather the
1177  // singleton register classes.
1178  SmallPtrSet<Record*, 16> SingletonRegisters;
1179  unsigned VariantCount = Target.getAsmParserVariantCount();
1180  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1181    Record *AsmVariant = Target.getAsmParserVariant(VC);
1182    std::string CommentDelimiter = AsmVariant->getValueAsString("CommentDelimiter");
1183    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1184    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1185
1186    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1187	   E = Target.inst_end(); I != E; ++I) {
1188      const CodeGenInstruction &CGI = **I;
1189
1190      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1191      // filter the set of instructions we consider.
1192      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1193	continue;
1194
1195      // Ignore "codegen only" instructions.
1196      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1197	continue;
1198
1199      // Validate the operand list to ensure we can handle this instruction.
1200      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1201	const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1202
1203	// Validate tied operands.
1204	if (OI.getTiedRegister() != -1) {
1205	  // If we have a tied operand that consists of multiple MCOperands,
1206	  // reject it.  We reject aliases and ignore instructions for now.
1207	  if (OI.MINumOperands != 1) {
1208	    // FIXME: Should reject these.  The ARM backend hits this with $lane
1209	    // in a bunch of instructions. It is unclear what the right answer is.
1210	    DEBUG({
1211		errs() << "warning: '" << CGI.TheDef->getName() << "': "
1212		       << "ignoring instruction with multi-operand tied operand '"
1213		       << OI.Name << "'\n";
1214	      });
1215	    continue;
1216	  }
1217	}
1218      }
1219
1220      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1221
1222      II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1223
1224      // Ignore instructions which shouldn't be matched and diagnose invalid
1225      // instruction definitions with an error.
1226      if (!II->Validate(CommentDelimiter, true))
1227	continue;
1228
1229      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1230      //
1231      // FIXME: This is a total hack.
1232      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1233	  StringRef(II->TheDef->getName()).endswith("_Int"))
1234	continue;
1235
1236      Matchables.push_back(II.take());
1237    }
1238
1239    // Parse all of the InstAlias definitions and stick them in the list of
1240    // matchables.
1241    std::vector<Record*> AllInstAliases =
1242      Records.getAllDerivedDefinitions("InstAlias");
1243    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1244      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1245
1246      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1247      // filter the set of instruction aliases we consider, based on the target
1248      // instruction.
1249      if (!StringRef(Alias->ResultInst->TheDef->getName()).startswith(
1250								      MatchPrefix))
1251	continue;
1252
1253      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1254
1255      II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1256
1257      // Validate the alias definitions.
1258      II->Validate(CommentDelimiter, false);
1259
1260      Matchables.push_back(II.take());
1261    }
1262  }
1263
1264  // Build info for the register classes.
1265  BuildRegisterClasses(SingletonRegisters);
1266
1267  // Build info for the user defined assembly operand classes.
1268  BuildOperandClasses();
1269
1270  // Build the information about matchables, now that we have fully formed
1271  // classes.
1272  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1273         ie = Matchables.end(); it != ie; ++it) {
1274    MatchableInfo *II = *it;
1275
1276    // Parse the tokens after the mnemonic.
1277    // Note: BuildInstructionOperandReference may insert new AsmOperands, so
1278    // don't precompute the loop bound.
1279    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1280      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1281      StringRef Token = Op.Token;
1282
1283      // Check for singleton registers.
1284      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1285        Op.Class = RegisterClasses[RegRecord];
1286        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1287               "Unexpected class for singleton register");
1288        continue;
1289      }
1290
1291      // Check for simple tokens.
1292      if (Token[0] != '$') {
1293        Op.Class = getTokenClass(Token);
1294        continue;
1295      }
1296
1297      if (Token.size() > 1 && isdigit(Token[1])) {
1298        Op.Class = getTokenClass(Token);
1299        continue;
1300      }
1301
1302      // Otherwise this is an operand reference.
1303      StringRef OperandName;
1304      if (Token[1] == '{')
1305        OperandName = Token.substr(2, Token.size() - 3);
1306      else
1307        OperandName = Token.substr(1);
1308
1309      if (II->DefRec.is<const CodeGenInstruction*>())
1310        BuildInstructionOperandReference(II, OperandName, i);
1311      else
1312        BuildAliasOperandReference(II, OperandName, Op);
1313    }
1314
1315    if (II->DefRec.is<const CodeGenInstruction*>())
1316      II->BuildInstructionResultOperands();
1317    else
1318      II->BuildAliasResultOperands();
1319  }
1320
1321  // Process token alias definitions and set up the associated superclass
1322  // information.
1323  std::vector<Record*> AllTokenAliases =
1324    Records.getAllDerivedDefinitions("TokenAlias");
1325  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1326    Record *Rec = AllTokenAliases[i];
1327    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1328    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1329    FromClass->SuperClasses.push_back(ToClass);
1330  }
1331
1332  // Reorder classes so that classes precede super classes.
1333  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1334}
1335
1336/// BuildInstructionOperandReference - The specified operand is a reference to a
1337/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1338void AsmMatcherInfo::
1339BuildInstructionOperandReference(MatchableInfo *II,
1340                                 StringRef OperandName,
1341                                 unsigned AsmOpIdx) {
1342  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1343  const CGIOperandList &Operands = CGI.Operands;
1344  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1345
1346  // Map this token to an operand.
1347  unsigned Idx;
1348  if (!Operands.hasOperandNamed(OperandName, Idx))
1349    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1350                  OperandName.str() + "'");
1351
1352  // If the instruction operand has multiple suboperands, but the parser
1353  // match class for the asm operand is still the default "ImmAsmOperand",
1354  // then handle each suboperand separately.
1355  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1356    Record *Rec = Operands[Idx].Rec;
1357    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1358    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1359    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1360      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1361      StringRef Token = Op->Token; // save this in case Op gets moved
1362      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1363        MatchableInfo::AsmOperand NewAsmOp(Token);
1364        NewAsmOp.SubOpIdx = SI;
1365        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1366      }
1367      // Replace Op with first suboperand.
1368      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1369      Op->SubOpIdx = 0;
1370    }
1371  }
1372
1373  // Set up the operand class.
1374  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1375
1376  // If the named operand is tied, canonicalize it to the untied operand.
1377  // For example, something like:
1378  //   (outs GPR:$dst), (ins GPR:$src)
1379  // with an asmstring of
1380  //   "inc $src"
1381  // we want to canonicalize to:
1382  //   "inc $dst"
1383  // so that we know how to provide the $dst operand when filling in the result.
1384  int OITied = Operands[Idx].getTiedRegister();
1385  if (OITied != -1) {
1386    // The tied operand index is an MIOperand index, find the operand that
1387    // contains it.
1388    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1389    OperandName = Operands[Idx.first].Name;
1390    Op->SubOpIdx = Idx.second;
1391  }
1392
1393  Op->SrcOpName = OperandName;
1394}
1395
1396/// BuildAliasOperandReference - When parsing an operand reference out of the
1397/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1398/// operand reference is by looking it up in the result pattern definition.
1399void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
1400                                                StringRef OperandName,
1401                                                MatchableInfo::AsmOperand &Op) {
1402  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1403
1404  // Set up the operand class.
1405  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1406    if (CGA.ResultOperands[i].isRecord() &&
1407        CGA.ResultOperands[i].getName() == OperandName) {
1408      // It's safe to go with the first one we find, because CodeGenInstAlias
1409      // validates that all operands with the same name have the same record.
1410      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1411      // Use the match class from the Alias definition, not the
1412      // destination instruction, as we may have an immediate that's
1413      // being munged by the match class.
1414      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1415                                 Op.SubOpIdx);
1416      Op.SrcOpName = OperandName;
1417      return;
1418    }
1419
1420  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1421                OperandName.str() + "'");
1422}
1423
1424void MatchableInfo::BuildInstructionResultOperands() {
1425  const CodeGenInstruction *ResultInst = getResultInst();
1426
1427  // Loop over all operands of the result instruction, determining how to
1428  // populate them.
1429  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1430    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1431
1432    // If this is a tied operand, just copy from the previously handled operand.
1433    int TiedOp = OpInfo.getTiedRegister();
1434    if (TiedOp != -1) {
1435      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1436      continue;
1437    }
1438
1439    // Find out what operand from the asmparser this MCInst operand comes from.
1440    int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
1441    if (OpInfo.Name.empty() || SrcOperand == -1)
1442      throw TGError(TheDef->getLoc(), "Instruction '" +
1443                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1444                    "' that doesn't appear in asm string!");
1445
1446    // Check if the one AsmOperand populates the entire operand.
1447    unsigned NumOperands = OpInfo.MINumOperands;
1448    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1449      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1450      continue;
1451    }
1452
1453    // Add a separate ResOperand for each suboperand.
1454    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1455      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1456             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1457             "unexpected AsmOperands for suboperands");
1458      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1459    }
1460  }
1461}
1462
1463void MatchableInfo::BuildAliasResultOperands() {
1464  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1465  const CodeGenInstruction *ResultInst = getResultInst();
1466
1467  // Loop over all operands of the result instruction, determining how to
1468  // populate them.
1469  unsigned AliasOpNo = 0;
1470  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1471  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1472    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1473
1474    // If this is a tied operand, just copy from the previously handled operand.
1475    int TiedOp = OpInfo->getTiedRegister();
1476    if (TiedOp != -1) {
1477      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1478      continue;
1479    }
1480
1481    // Handle all the suboperands for this operand.
1482    const std::string &OpName = OpInfo->Name;
1483    for ( ; AliasOpNo <  LastOpNo &&
1484            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1485      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1486
1487      // Find out what operand from the asmparser that this MCInst operand
1488      // comes from.
1489      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1490      case CodeGenInstAlias::ResultOperand::K_Record: {
1491        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1492        int SrcOperand = FindAsmOperand(Name, SubIdx);
1493        if (SrcOperand == -1)
1494          throw TGError(TheDef->getLoc(), "Instruction '" +
1495                        TheDef->getName() + "' has operand '" + OpName +
1496                        "' that doesn't appear in asm string!");
1497        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1498        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1499                                                        NumOperands));
1500        break;
1501      }
1502      case CodeGenInstAlias::ResultOperand::K_Imm: {
1503        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1504        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1505        break;
1506      }
1507      case CodeGenInstAlias::ResultOperand::K_Reg: {
1508        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1509        ResOperands.push_back(ResOperand::getRegOp(Reg));
1510        break;
1511      }
1512      }
1513    }
1514  }
1515}
1516
1517static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
1518                                std::vector<MatchableInfo*> &Infos,
1519                                raw_ostream &OS) {
1520  // Write the convert function to a separate stream, so we can drop it after
1521  // the enum.
1522  std::string ConvertFnBody;
1523  raw_string_ostream CvtOS(ConvertFnBody);
1524
1525  // Function we have already generated.
1526  std::set<std::string> GeneratedFns;
1527
1528  // Start the unified conversion function.
1529  CvtOS << "bool " << Target.getName() << ClassName << "::\n";
1530  CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
1531        << "unsigned Opcode,\n"
1532        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
1533        << "> &Operands) {\n";
1534  CvtOS << "  Inst.setOpcode(Opcode);\n";
1535  CvtOS << "  switch (Kind) {\n";
1536  CvtOS << "  default:\n";
1537
1538  // Start the enum, which we will generate inline.
1539
1540  OS << "// Unified function for converting operands to MCInst instances.\n\n";
1541  OS << "enum ConversionKind {\n";
1542
1543  // TargetOperandClass - This is the target's operand class, like X86Operand.
1544  std::string TargetOperandClass = Target.getName() + "Operand";
1545
1546  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1547         ie = Infos.end(); it != ie; ++it) {
1548    MatchableInfo &II = **it;
1549
1550    // Check if we have a custom match function.
1551    std::string AsmMatchConverter =
1552      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1553    if (!AsmMatchConverter.empty()) {
1554      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1555      II.ConversionFnKind = Signature;
1556
1557      // Check if we have already generated this signature.
1558      if (!GeneratedFns.insert(Signature).second)
1559        continue;
1560
1561      // If not, emit it now.  Add to the enum list.
1562      OS << "  " << Signature << ",\n";
1563
1564      CvtOS << "  case " << Signature << ":\n";
1565      CvtOS << "    return " << AsmMatchConverter
1566            << "(Inst, Opcode, Operands);\n";
1567      continue;
1568    }
1569
1570    // Build the conversion function signature.
1571    std::string Signature = "Convert";
1572    std::string CaseBody;
1573    raw_string_ostream CaseOS(CaseBody);
1574
1575    // Compute the convert enum and the case body.
1576    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1577      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1578
1579      // Generate code to populate each result operand.
1580      switch (OpInfo.Kind) {
1581      case MatchableInfo::ResOperand::RenderAsmOperand: {
1582        // This comes from something we parsed.
1583        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1584
1585        // Registers are always converted the same, don't duplicate the
1586        // conversion function based on them.
1587        Signature += "__";
1588        if (Op.Class->isRegisterClass())
1589          Signature += "Reg";
1590        else
1591          Signature += Op.Class->ClassName;
1592        Signature += utostr(OpInfo.MINumOperands);
1593        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1594
1595        CaseOS << "    ((" << TargetOperandClass << "*)Operands["
1596               << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
1597               << "(Inst, " << OpInfo.MINumOperands << ");\n";
1598        break;
1599      }
1600
1601      case MatchableInfo::ResOperand::TiedOperand: {
1602        // If this operand is tied to a previous one, just copy the MCInst
1603        // operand from the earlier one.We can only tie single MCOperand values.
1604        //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1605        unsigned TiedOp = OpInfo.TiedOperandNum;
1606        assert(i > TiedOp && "Tied operand precedes its target!");
1607        CaseOS << "    Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
1608        Signature += "__Tie" + utostr(TiedOp);
1609        break;
1610      }
1611      case MatchableInfo::ResOperand::ImmOperand: {
1612        int64_t Val = OpInfo.ImmVal;
1613        CaseOS << "    Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
1614        Signature += "__imm" + itostr(Val);
1615        break;
1616      }
1617      case MatchableInfo::ResOperand::RegOperand: {
1618        if (OpInfo.Register == 0) {
1619          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1620          Signature += "__reg0";
1621        } else {
1622          std::string N = getQualifiedName(OpInfo.Register);
1623          CaseOS << "    Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
1624          Signature += "__reg" + OpInfo.Register->getName();
1625        }
1626      }
1627      }
1628    }
1629
1630    II.ConversionFnKind = Signature;
1631
1632    // Check if we have already generated this signature.
1633    if (!GeneratedFns.insert(Signature).second)
1634      continue;
1635
1636    // If not, emit it now.  Add to the enum list.
1637    OS << "  " << Signature << ",\n";
1638
1639    CvtOS << "  case " << Signature << ":\n";
1640    CvtOS << CaseOS.str();
1641    CvtOS << "    return true;\n";
1642  }
1643
1644  // Finish the convert function.
1645
1646  CvtOS << "  }\n";
1647  CvtOS << "  return false;\n";
1648  CvtOS << "}\n\n";
1649
1650  // Finish the enum, and drop the convert function after it.
1651
1652  OS << "  NumConversionVariants\n";
1653  OS << "};\n\n";
1654
1655  OS << CvtOS.str();
1656}
1657
1658/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1659static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1660                                      std::vector<ClassInfo*> &Infos,
1661                                      raw_ostream &OS) {
1662  OS << "namespace {\n\n";
1663
1664  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1665     << "/// instruction matching.\n";
1666  OS << "enum MatchClassKind {\n";
1667  OS << "  InvalidMatchClass = 0,\n";
1668  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1669         ie = Infos.end(); it != ie; ++it) {
1670    ClassInfo &CI = **it;
1671    OS << "  " << CI.Name << ", // ";
1672    if (CI.Kind == ClassInfo::Token) {
1673      OS << "'" << CI.ValueName << "'\n";
1674    } else if (CI.isRegisterClass()) {
1675      if (!CI.ValueName.empty())
1676        OS << "register class '" << CI.ValueName << "'\n";
1677      else
1678        OS << "derived register class\n";
1679    } else {
1680      OS << "user defined class '" << CI.ValueName << "'\n";
1681    }
1682  }
1683  OS << "  NumMatchClassKinds\n";
1684  OS << "};\n\n";
1685
1686  OS << "}\n\n";
1687}
1688
1689/// EmitValidateOperandClass - Emit the function to validate an operand class.
1690static void EmitValidateOperandClass(AsmMatcherInfo &Info,
1691                                     raw_ostream &OS) {
1692  OS << "static bool validateOperandClass(MCParsedAsmOperand *GOp, "
1693     << "MatchClassKind Kind) {\n";
1694  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
1695     << Info.Target.getName() << "Operand*)GOp;\n";
1696
1697  // The InvalidMatchClass is not to match any operand.
1698  OS << "  if (Kind == InvalidMatchClass)\n";
1699  OS << "    return false;\n\n";
1700
1701  // Check for Token operands first.
1702  OS << "  if (Operand.isToken())\n";
1703  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind);"
1704     << "\n\n";
1705
1706  // Check for register operands, including sub-classes.
1707  OS << "  if (Operand.isReg()) {\n";
1708  OS << "    MatchClassKind OpKind;\n";
1709  OS << "    switch (Operand.getReg()) {\n";
1710  OS << "    default: OpKind = InvalidMatchClass; break;\n";
1711  for (std::map<Record*, ClassInfo*>::iterator
1712         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1713       it != ie; ++it)
1714    OS << "    case " << Info.Target.getName() << "::"
1715       << it->first->getName() << ": OpKind = " << it->second->Name
1716       << "; break;\n";
1717  OS << "    }\n";
1718  OS << "    return isSubclass(OpKind, Kind);\n";
1719  OS << "  }\n\n";
1720
1721  // Check the user classes. We don't care what order since we're only
1722  // actually matching against one of them.
1723  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1724         ie = Info.Classes.end(); it != ie; ++it) {
1725    ClassInfo &CI = **it;
1726
1727    if (!CI.isUserClass())
1728      continue;
1729
1730    OS << "  // '" << CI.ClassName << "' class\n";
1731    OS << "  if (Kind == " << CI.Name
1732       << " && Operand." << CI.PredicateMethod << "()) {\n";
1733    OS << "    return true;\n";
1734    OS << "  }\n\n";
1735  }
1736
1737  OS << "  return false;\n";
1738  OS << "}\n\n";
1739}
1740
1741/// EmitIsSubclass - Emit the subclass predicate function.
1742static void EmitIsSubclass(CodeGenTarget &Target,
1743                           std::vector<ClassInfo*> &Infos,
1744                           raw_ostream &OS) {
1745  OS << "/// isSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1746  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
1747  OS << "  if (A == B)\n";
1748  OS << "    return true;\n\n";
1749
1750  OS << "  switch (A) {\n";
1751  OS << "  default:\n";
1752  OS << "    return false;\n";
1753  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1754         ie = Infos.end(); it != ie; ++it) {
1755    ClassInfo &A = **it;
1756
1757    std::vector<StringRef> SuperClasses;
1758    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1759         ie = Infos.end(); it != ie; ++it) {
1760      ClassInfo &B = **it;
1761
1762      if (&A != &B && A.isSubsetOf(B))
1763        SuperClasses.push_back(B.Name);
1764    }
1765
1766    if (SuperClasses.empty())
1767      continue;
1768
1769    OS << "\n  case " << A.Name << ":\n";
1770
1771    if (SuperClasses.size() == 1) {
1772      OS << "    return B == " << SuperClasses.back() << ";\n";
1773      continue;
1774    }
1775
1776    OS << "    switch (B) {\n";
1777    OS << "    default: return false;\n";
1778    for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1779      OS << "    case " << SuperClasses[i] << ": return true;\n";
1780    OS << "    }\n";
1781  }
1782  OS << "  }\n";
1783  OS << "}\n\n";
1784}
1785
1786/// EmitMatchTokenString - Emit the function to match a token string to the
1787/// appropriate match class value.
1788static void EmitMatchTokenString(CodeGenTarget &Target,
1789                                 std::vector<ClassInfo*> &Infos,
1790                                 raw_ostream &OS) {
1791  // Construct the match list.
1792  std::vector<StringMatcher::StringPair> Matches;
1793  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1794         ie = Infos.end(); it != ie; ++it) {
1795    ClassInfo &CI = **it;
1796
1797    if (CI.Kind == ClassInfo::Token)
1798      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
1799                                                  "return " + CI.Name + ";"));
1800  }
1801
1802  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
1803
1804  StringMatcher("Name", Matches, OS).Emit();
1805
1806  OS << "  return InvalidMatchClass;\n";
1807  OS << "}\n\n";
1808}
1809
1810/// EmitMatchRegisterName - Emit the function to match a string to the target
1811/// specific register enum.
1812static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1813                                  raw_ostream &OS) {
1814  // Construct the match list.
1815  std::vector<StringMatcher::StringPair> Matches;
1816  const std::vector<CodeGenRegister*> &Regs =
1817    Target.getRegBank().getRegisters();
1818  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1819    const CodeGenRegister *Reg = Regs[i];
1820    if (Reg->TheDef->getValueAsString("AsmName").empty())
1821      continue;
1822
1823    Matches.push_back(StringMatcher::StringPair(
1824                                     Reg->TheDef->getValueAsString("AsmName"),
1825                                     "return " + utostr(Reg->EnumValue) + ";"));
1826  }
1827
1828  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
1829
1830  StringMatcher("Name", Matches, OS).Emit();
1831
1832  OS << "  return 0;\n";
1833  OS << "}\n\n";
1834}
1835
1836/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
1837/// definitions.
1838static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
1839                                                raw_ostream &OS) {
1840  OS << "// Flags for subtarget features that participate in "
1841     << "instruction matching.\n";
1842  OS << "enum SubtargetFeatureFlag {\n";
1843  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1844         it = Info.SubtargetFeatures.begin(),
1845         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1846    SubtargetFeatureInfo &SFI = *it->second;
1847    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
1848  }
1849  OS << "  Feature_None = 0\n";
1850  OS << "};\n\n";
1851}
1852
1853/// EmitComputeAvailableFeatures - Emit the function to compute the list of
1854/// available features given a subtarget.
1855static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
1856                                         raw_ostream &OS) {
1857  std::string ClassName =
1858    Info.AsmParser->getValueAsString("AsmParserClassName");
1859
1860  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
1861     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
1862  OS << "  unsigned Features = 0;\n";
1863  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
1864         it = Info.SubtargetFeatures.begin(),
1865         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
1866    SubtargetFeatureInfo &SFI = *it->second;
1867
1868    OS << "  if (";
1869    std::string CondStorage = SFI.TheDef->getValueAsString("AssemblerCondString");
1870    StringRef Conds = CondStorage;
1871    std::pair<StringRef,StringRef> Comma = Conds.split(',');
1872    bool First = true;
1873    do {
1874      if (!First)
1875        OS << " && ";
1876
1877      bool Neg = false;
1878      StringRef Cond = Comma.first;
1879      if (Cond[0] == '!') {
1880        Neg = true;
1881        Cond = Cond.substr(1);
1882      }
1883
1884      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
1885      if (Neg)
1886        OS << " == 0";
1887      else
1888        OS << " != 0";
1889      OS << ")";
1890
1891      if (Comma.second.empty())
1892        break;
1893
1894      First = false;
1895      Comma = Comma.second.split(',');
1896    } while (true);
1897
1898    OS << ")\n";
1899    OS << "    Features |= " << SFI.getEnumName() << ";\n";
1900  }
1901  OS << "  return Features;\n";
1902  OS << "}\n\n";
1903}
1904
1905static std::string GetAliasRequiredFeatures(Record *R,
1906                                            const AsmMatcherInfo &Info) {
1907  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
1908  std::string Result;
1909  unsigned NumFeatures = 0;
1910  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
1911    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
1912
1913    if (F == 0)
1914      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
1915                    "' is not marked as an AssemblerPredicate!");
1916
1917    if (NumFeatures)
1918      Result += '|';
1919
1920    Result += F->getEnumName();
1921    ++NumFeatures;
1922  }
1923
1924  if (NumFeatures > 1)
1925    Result = '(' + Result + ')';
1926  return Result;
1927}
1928
1929/// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
1930/// emit a function for them and return true, otherwise return false.
1931static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
1932  // Ignore aliases when match-prefix is set.
1933  if (!MatchPrefix.empty())
1934    return false;
1935
1936  std::vector<Record*> Aliases =
1937    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
1938  if (Aliases.empty()) return false;
1939
1940  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
1941        "unsigned Features) {\n";
1942
1943  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
1944  // iteration order of the map is stable.
1945  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
1946
1947  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
1948    Record *R = Aliases[i];
1949    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
1950  }
1951
1952  // Process each alias a "from" mnemonic at a time, building the code executed
1953  // by the string remapper.
1954  std::vector<StringMatcher::StringPair> Cases;
1955  for (std::map<std::string, std::vector<Record*> >::iterator
1956       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
1957       I != E; ++I) {
1958    const std::vector<Record*> &ToVec = I->second;
1959
1960    // Loop through each alias and emit code that handles each case.  If there
1961    // are two instructions without predicates, emit an error.  If there is one,
1962    // emit it last.
1963    std::string MatchCode;
1964    int AliasWithNoPredicate = -1;
1965
1966    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
1967      Record *R = ToVec[i];
1968      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
1969
1970      // If this unconditionally matches, remember it for later and diagnose
1971      // duplicates.
1972      if (FeatureMask.empty()) {
1973        if (AliasWithNoPredicate != -1) {
1974          // We can't have two aliases from the same mnemonic with no predicate.
1975          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
1976                     "two MnemonicAliases with the same 'from' mnemonic!");
1977          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
1978        }
1979
1980        AliasWithNoPredicate = i;
1981        continue;
1982      }
1983      if (R->getValueAsString("ToMnemonic") == I->first)
1984        throw TGError(R->getLoc(), "MnemonicAlias to the same string");
1985
1986      if (!MatchCode.empty())
1987        MatchCode += "else ";
1988      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
1989      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
1990    }
1991
1992    if (AliasWithNoPredicate != -1) {
1993      Record *R = ToVec[AliasWithNoPredicate];
1994      if (!MatchCode.empty())
1995        MatchCode += "else\n  ";
1996      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
1997    }
1998
1999    MatchCode += "return;";
2000
2001    Cases.push_back(std::make_pair(I->first, MatchCode));
2002  }
2003
2004  StringMatcher("Mnemonic", Cases, OS).Emit();
2005  OS << "}\n\n";
2006
2007  return true;
2008}
2009
2010static const char *getMinimalTypeForRange(uint64_t Range) {
2011  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2012  if (Range > 0xFFFF)
2013    return "uint32_t";
2014  if (Range > 0xFF)
2015    return "uint16_t";
2016  return "uint8_t";
2017}
2018
2019static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2020                              const AsmMatcherInfo &Info, StringRef ClassName) {
2021  // Emit the static custom operand parsing table;
2022  OS << "namespace {\n";
2023  OS << "  struct OperandMatchEntry {\n";
2024  OS << "    const char *Mnemonic;\n";
2025  OS << "    unsigned OperandMask;\n";
2026  OS << "    MatchClassKind Class;\n";
2027  OS << "    unsigned RequiredFeatures;\n";
2028  OS << "  };\n\n";
2029
2030  OS << "  // Predicate for searching for an opcode.\n";
2031  OS << "  struct LessOpcodeOperand {\n";
2032  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2033  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
2034  OS << "    }\n";
2035  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2036  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
2037  OS << "    }\n";
2038  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2039  OS << " const OperandMatchEntry &RHS) {\n";
2040  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
2041  OS << "    }\n";
2042  OS << "  };\n";
2043
2044  OS << "} // end anonymous namespace.\n\n";
2045
2046  OS << "static const OperandMatchEntry OperandMatchTable["
2047     << Info.OperandMatchInfo.size() << "] = {\n";
2048
2049  OS << "  /* Mnemonic, Operand List Mask, Operand Class, Features */\n";
2050  for (std::vector<OperandMatchEntry>::const_iterator it =
2051       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2052       it != ie; ++it) {
2053    const OperandMatchEntry &OMI = *it;
2054    const MatchableInfo &II = *OMI.MI;
2055
2056    OS << "  { \"" << II.Mnemonic << "\""
2057       << ", " << OMI.OperandMask;
2058
2059    OS << " /* ";
2060    bool printComma = false;
2061    for (int i = 0, e = 31; i !=e; ++i)
2062      if (OMI.OperandMask & (1 << i)) {
2063        if (printComma)
2064          OS << ", ";
2065        OS << i;
2066        printComma = true;
2067      }
2068    OS << " */";
2069
2070    OS << ", " << OMI.CI->Name
2071       << ", ";
2072
2073    // Write the required features mask.
2074    if (!II.RequiredFeatures.empty()) {
2075      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2076        if (i) OS << "|";
2077        OS << II.RequiredFeatures[i]->getEnumName();
2078      }
2079    } else
2080      OS << "0";
2081    OS << " },\n";
2082  }
2083  OS << "};\n\n";
2084
2085  // Emit the operand class switch to call the correct custom parser for
2086  // the found operand class.
2087  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2088     << Target.getName() << ClassName << "::\n"
2089     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2090     << " &Operands,\n                      unsigned MCK) {\n\n"
2091     << "  switch(MCK) {\n";
2092
2093  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2094       ie = Info.Classes.end(); it != ie; ++it) {
2095    ClassInfo *CI = *it;
2096    if (CI->ParserMethod.empty())
2097      continue;
2098    OS << "  case " << CI->Name << ":\n"
2099       << "    return " << CI->ParserMethod << "(Operands);\n";
2100  }
2101
2102  OS << "  default:\n";
2103  OS << "    return MatchOperand_NoMatch;\n";
2104  OS << "  }\n";
2105  OS << "  return MatchOperand_NoMatch;\n";
2106  OS << "}\n\n";
2107
2108  // Emit the static custom operand parser. This code is very similar with
2109  // the other matcher. Also use MatchResultTy here just in case we go for
2110  // a better error handling.
2111  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2112     << Target.getName() << ClassName << "::\n"
2113     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2114     << " &Operands,\n                       StringRef Mnemonic) {\n";
2115
2116  // Emit code to get the available features.
2117  OS << "  // Get the current feature set.\n";
2118  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2119
2120  OS << "  // Get the next operand index.\n";
2121  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2122
2123  // Emit code to search the table.
2124  OS << "  // Search the table.\n";
2125  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2126  OS << " MnemonicRange =\n";
2127  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2128     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2129     << "                     LessOpcodeOperand());\n\n";
2130
2131  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2132  OS << "    return MatchOperand_NoMatch;\n\n";
2133
2134  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2135     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2136
2137  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2138  OS << "    assert(Mnemonic == it->Mnemonic);\n\n";
2139
2140  // Emit check that the required features are available.
2141  OS << "    // check if the available features match\n";
2142  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2143     << "!= it->RequiredFeatures) {\n";
2144  OS << "      continue;\n";
2145  OS << "    }\n\n";
2146
2147  // Emit check to ensure the operand number matches.
2148  OS << "    // check if the operand in question has a custom parser.\n";
2149  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2150  OS << "      continue;\n\n";
2151
2152  // Emit call to the custom parser method
2153  OS << "    // call custom parse method to handle the operand\n";
2154  OS << "    OperandMatchResultTy Result = ";
2155  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2156  OS << "    if (Result != MatchOperand_NoMatch)\n";
2157  OS << "      return Result;\n";
2158  OS << "  }\n\n";
2159
2160  OS << "  // Okay, we had no match.\n";
2161  OS << "  return MatchOperand_NoMatch;\n";
2162  OS << "}\n\n";
2163}
2164
2165void AsmMatcherEmitter::run(raw_ostream &OS) {
2166  CodeGenTarget Target(Records);
2167  Record *AsmParser = Target.getAsmParser();
2168  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2169
2170  // Compute the information on the instructions to match.
2171  AsmMatcherInfo Info(AsmParser, Target, Records);
2172  Info.BuildInfo();
2173
2174  // Sort the instruction table using the partial order on classes. We use
2175  // stable_sort to ensure that ambiguous instructions are still
2176  // deterministically ordered.
2177  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2178                   less_ptr<MatchableInfo>());
2179
2180  DEBUG_WITH_TYPE("instruction_info", {
2181      for (std::vector<MatchableInfo*>::iterator
2182             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2183           it != ie; ++it)
2184        (*it)->dump();
2185    });
2186
2187  // Check for ambiguous matchables.
2188  DEBUG_WITH_TYPE("ambiguous_instrs", {
2189    unsigned NumAmbiguous = 0;
2190    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2191      for (unsigned j = i + 1; j != e; ++j) {
2192        MatchableInfo &A = *Info.Matchables[i];
2193        MatchableInfo &B = *Info.Matchables[j];
2194
2195        if (A.CouldMatchAmbiguouslyWith(B)) {
2196          errs() << "warning: ambiguous matchables:\n";
2197          A.dump();
2198          errs() << "\nis incomparable with:\n";
2199          B.dump();
2200          errs() << "\n\n";
2201          ++NumAmbiguous;
2202        }
2203      }
2204    }
2205    if (NumAmbiguous)
2206      errs() << "warning: " << NumAmbiguous
2207             << " ambiguous matchables!\n";
2208  });
2209
2210  // Compute the information on the custom operand parsing.
2211  Info.BuildOperandMatchInfo();
2212
2213  // Write the output.
2214
2215  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2216
2217  // Information for the class declaration.
2218  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2219  OS << "#undef GET_ASSEMBLER_HEADER\n";
2220  OS << "  // This should be included into the middle of the declaration of\n";
2221  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2222  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2223  OS << "  bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
2224     << "unsigned Opcode,\n"
2225     << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
2226     << "&Operands);\n";
2227  OS << "  bool MnemonicIsValid(StringRef Mnemonic);\n";
2228  OS << "  unsigned MatchInstructionImpl(\n";
2229  OS << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2230  OS << "    MCInst &Inst, unsigned &ErrorInfo, unsigned VariantID = 0);\n";
2231
2232  if (Info.OperandMatchInfo.size()) {
2233    OS << "\n  enum OperandMatchResultTy {\n";
2234    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2235    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2236    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2237    OS << "  };\n";
2238    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2239    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2240    OS << "    StringRef Mnemonic);\n";
2241
2242    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2243    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2244    OS << "    unsigned MCK);\n\n";
2245  }
2246
2247  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2248
2249  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2250  OS << "#undef GET_REGISTER_MATCHER\n\n";
2251
2252  // Emit the subtarget feature enumeration.
2253  EmitSubtargetFeatureFlagEnumeration(Info, OS);
2254
2255  // Emit the function to match a register name to number.
2256  EmitMatchRegisterName(Target, AsmParser, OS);
2257
2258  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2259
2260
2261  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2262  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2263
2264  // Generate the function that remaps for mnemonic aliases.
2265  bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
2266
2267  // Generate the unified function to convert operands into an MCInst.
2268  EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
2269
2270  // Emit the enumeration for classes which participate in matching.
2271  EmitMatchClassEnumeration(Target, Info.Classes, OS);
2272
2273  // Emit the routine to match token strings to their match class.
2274  EmitMatchTokenString(Target, Info.Classes, OS);
2275
2276  // Emit the subclass predicate routine.
2277  EmitIsSubclass(Target, Info.Classes, OS);
2278
2279  // Emit the routine to validate an operand against a match class.
2280  EmitValidateOperandClass(Info, OS);
2281
2282  // Emit the available features compute function.
2283  EmitComputeAvailableFeatures(Info, OS);
2284
2285
2286  size_t MaxNumOperands = 0;
2287  for (std::vector<MatchableInfo*>::const_iterator it =
2288         Info.Matchables.begin(), ie = Info.Matchables.end();
2289       it != ie; ++it)
2290    MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
2291
2292  // Emit the static match table; unused classes get initalized to 0 which is
2293  // guaranteed to be InvalidMatchClass.
2294  //
2295  // FIXME: We can reduce the size of this table very easily. First, we change
2296  // it so that store the kinds in separate bit-fields for each index, which
2297  // only needs to be the max width used for classes at that index (we also need
2298  // to reject based on this during classification). If we then make sure to
2299  // order the match kinds appropriately (putting mnemonics last), then we
2300  // should only end up using a few bits for each class, especially the ones
2301  // following the mnemonic.
2302  OS << "namespace {\n";
2303  OS << "  struct MatchEntry {\n";
2304  OS << "    unsigned Opcode;\n";
2305  OS << "    const char *Mnemonic;\n";
2306  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2307               << " ConvertFn;\n";
2308  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2309               << " Classes[" << MaxNumOperands << "];\n";
2310  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2311               << " RequiredFeatures;\n";
2312  OS << "    unsigned AsmVariantID;\n";
2313  OS << "  };\n\n";
2314
2315  OS << "  // Predicate for searching for an opcode.\n";
2316  OS << "  struct LessOpcode {\n";
2317  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2318  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
2319  OS << "    }\n";
2320  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2321  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
2322  OS << "    }\n";
2323  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2324  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
2325  OS << "    }\n";
2326  OS << "  };\n";
2327
2328  OS << "} // end anonymous namespace.\n\n";
2329
2330  OS << "static const MatchEntry MatchTable["
2331     << Info.Matchables.size() << "] = {\n";
2332
2333  for (std::vector<MatchableInfo*>::const_iterator it =
2334       Info.Matchables.begin(), ie = Info.Matchables.end();
2335       it != ie; ++it) {
2336    MatchableInfo &II = **it;
2337
2338    OS << "  { " << Target.getName() << "::"
2339       << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\""
2340       << ", " << II.ConversionFnKind << ", { ";
2341    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2342      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2343
2344      if (i) OS << ", ";
2345      OS << Op.Class->Name;
2346    }
2347    OS << " }, ";
2348
2349    // Write the required features mask.
2350    if (!II.RequiredFeatures.empty()) {
2351      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2352        if (i) OS << "|";
2353        OS << II.RequiredFeatures[i]->getEnumName();
2354      }
2355    } else
2356      OS << "0";
2357    OS << ", " << II.AsmVariantID;
2358    OS << "},\n";
2359  }
2360
2361  OS << "};\n\n";
2362
2363  // A method to determine if a mnemonic is in the list.
2364  OS << "bool " << Target.getName() << ClassName << "::\n"
2365     << "MnemonicIsValid(StringRef Mnemonic) {\n";
2366  OS << "  // Search the table.\n";
2367  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2368  OS << "    std::equal_range(MatchTable, MatchTable+"
2369     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2370  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2371  OS << "}\n\n";
2372
2373  // Finally, build the match function.
2374  OS << "unsigned "
2375     << Target.getName() << ClassName << "::\n"
2376     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2377     << " &Operands,\n";
2378  OS << "                     MCInst &Inst, unsigned &ErrorInfo,\n";
2379  OS << "                     unsigned VariantID) {\n";
2380
2381  // Emit code to get the available features.
2382  OS << "  // Get the current feature set.\n";
2383  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2384
2385  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2386  OS << "  StringRef Mnemonic = ((" << Target.getName()
2387     << "Operand*)Operands[0])->getToken();\n\n";
2388
2389  if (HasMnemonicAliases) {
2390    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2391    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2392  }
2393
2394  // Emit code to compute the class list for this operand vector.
2395  OS << "  // Eliminate obvious mismatches.\n";
2396  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2397  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2398  OS << "    return Match_InvalidOperand;\n";
2399  OS << "  }\n\n";
2400
2401  OS << "  // Some state to try to produce better error messages.\n";
2402  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2403  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2404  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2405  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2406  OS << "  // wrong for all instances of the instruction.\n";
2407  OS << "  ErrorInfo = ~0U;\n";
2408
2409  // Emit code to search the table.
2410  OS << "  // Search the table.\n";
2411  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2412  OS << "    std::equal_range(MatchTable, MatchTable+"
2413     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2414
2415  OS << "  // Return a more specific error code if no mnemonics match.\n";
2416  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2417  OS << "    return Match_MnemonicFail;\n\n";
2418
2419  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2420     << "*ie = MnemonicRange.second;\n";
2421  OS << "       it != ie; ++it) {\n";
2422
2423  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2424  OS << "    assert(Mnemonic == it->Mnemonic);\n";
2425
2426  // Emit check that the subclasses match.
2427  OS << "    if (VariantID != it->AsmVariantID) continue;\n";
2428  OS << "    bool OperandsValid = true;\n";
2429  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2430  OS << "      if (i + 1 >= Operands.size()) {\n";
2431  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2432  OS << "        break;\n";
2433  OS << "      }\n";
2434  OS << "      if (validateOperandClass(Operands[i+1], "
2435                                       "(MatchClassKind)it->Classes[i]))\n";
2436  OS << "        continue;\n";
2437  OS << "      // If this operand is broken for all of the instances of this\n";
2438  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2439  OS << "      if (it == MnemonicRange.first || ErrorInfo <= i+1)\n";
2440  OS << "        ErrorInfo = i+1;\n";
2441  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2442  OS << "      OperandsValid = false;\n";
2443  OS << "      break;\n";
2444  OS << "    }\n\n";
2445
2446  OS << "    if (!OperandsValid) continue;\n";
2447
2448  // Emit check that the required features are available.
2449  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2450     << "!= it->RequiredFeatures) {\n";
2451  OS << "      HadMatchOtherThanFeatures = true;\n";
2452  OS << "      continue;\n";
2453  OS << "    }\n";
2454  OS << "\n";
2455  OS << "    // We have selected a definite instruction, convert the parsed\n"
2456     << "    // operands into the appropriate MCInst.\n";
2457  OS << "    if (!ConvertToMCInst(it->ConvertFn, Inst,\n"
2458     << "                         it->Opcode, Operands))\n";
2459  OS << "      return Match_ConversionFail;\n";
2460  OS << "\n";
2461
2462  // Verify the instruction with the target-specific match predicate function.
2463  OS << "    // We have a potential match. Check the target predicate to\n"
2464     << "    // handle any context sensitive constraints.\n"
2465     << "    unsigned MatchResult;\n"
2466     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2467     << " Match_Success) {\n"
2468     << "      Inst.clear();\n"
2469     << "      RetCode = MatchResult;\n"
2470     << "      HadMatchOtherThanPredicate = true;\n"
2471     << "      continue;\n"
2472     << "    }\n\n";
2473
2474  // Call the post-processing function, if used.
2475  std::string InsnCleanupFn =
2476    AsmParser->getValueAsString("AsmParserInstCleanup");
2477  if (!InsnCleanupFn.empty())
2478    OS << "    " << InsnCleanupFn << "(Inst);\n";
2479
2480  OS << "    return Match_Success;\n";
2481  OS << "  }\n\n";
2482
2483  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2484  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)";
2485  OS << " return RetCode;\n";
2486  OS << "  return Match_MissingFeature;\n";
2487  OS << "}\n\n";
2488
2489  if (Info.OperandMatchInfo.size())
2490    EmitCustomOperandParsing(OS, Target, Info, ClassName);
2491
2492  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2493}
2494