AsmMatcherEmitter.cpp revision e9b466d4f09de3b46c0d0d1e71cabddc7cc9021b
1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures.
12//
13// The input to the target specific matcher is a list of literal tokens and
14// operands. The target specific parser should generally eliminate any syntax
15// which is not relevant for matching; for example, comma tokens should have
16// already been consumed and eliminated by the parser. Most instructions will
17// end up with a single literal token (the instruction name) and some number of
18// operands.
19//
20// Some example inputs, for X86:
21//   'addl' (immediate ...) (register ...)
22//   'add' (immediate ...) (memory ...)
23//   'call' '*' %epc
24//
25// The assembly matcher is responsible for converting this input into a precise
26// machine instruction (i.e., an instruction with a well defined encoding). This
27// mapping has several properties which complicate matching:
28//
29//  - It may be ambiguous; many architectures can legally encode particular
30//    variants of an instruction in different ways (for example, using a smaller
31//    encoding for small immediates). Such ambiguities should never be
32//    arbitrarily resolved by the assembler, the assembler is always responsible
33//    for choosing the "best" available instruction.
34//
35//  - It may depend on the subtarget or the assembler context. Instructions
36//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
37//    an SSE instruction in a file being assembled for i486) should be accepted
38//    and rejected by the assembler front end. However, if the proper encoding
39//    for an instruction is dependent on the assembler context then the matcher
40//    is responsible for selecting the correct machine instruction for the
41//    current mode.
42//
43// The core matching algorithm attempts to exploit the regularity in most
44// instruction sets to quickly determine the set of possibly matching
45// instructions, and the simplify the generated code. Additionally, this helps
46// to ensure that the ambiguities are intentionally resolved by the user.
47//
48// The matching is divided into two distinct phases:
49//
50//   1. Classification: Each operand is mapped to the unique set which (a)
51//      contains it, and (b) is the largest such subset for which a single
52//      instruction could match all members.
53//
54//      For register classes, we can generate these subgroups automatically. For
55//      arbitrary operands, we expect the user to define the classes and their
56//      relations to one another (for example, 8-bit signed immediates as a
57//      subset of 32-bit immediates).
58//
59//      By partitioning the operands in this way, we guarantee that for any
60//      tuple of classes, any single instruction must match either all or none
61//      of the sets of operands which could classify to that tuple.
62//
63//      In addition, the subset relation amongst classes induces a partial order
64//      on such tuples, which we use to resolve ambiguities.
65//
66//      FIXME: What do we do if a crazy case shows up where this is the wrong
67//      resolution?
68//
69//   2. The input can now be treated as a tuple of classes (static tokens are
70//      simple singleton sets). Each such tuple should generally map to a single
71//      instruction (we currently ignore cases where this isn't true, whee!!!),
72//      which we can emit a simple matcher for.
73//
74//===----------------------------------------------------------------------===//
75
76#include "AsmMatcherEmitter.h"
77#include "CodeGenTarget.h"
78#include "Record.h"
79#include "llvm/ADT/OwningPtr.h"
80#include "llvm/ADT/SmallVector.h"
81#include "llvm/ADT/STLExtras.h"
82#include "llvm/ADT/StringExtras.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/Debug.h"
85#include <list>
86#include <map>
87#include <set>
88using namespace llvm;
89
90static cl::opt<std::string>
91MatchPrefix("match-prefix", cl::init(""),
92            cl::desc("Only match instructions with the given prefix"));
93
94/// FlattenVariants - Flatten an .td file assembly string by selecting the
95/// variant at index \arg N.
96static std::string FlattenVariants(const std::string &AsmString,
97                                   unsigned N) {
98  StringRef Cur = AsmString;
99  std::string Res = "";
100
101  for (;;) {
102    // Find the start of the next variant string.
103    size_t VariantsStart = 0;
104    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
105      if (Cur[VariantsStart] == '{' &&
106          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
107                                  Cur[VariantsStart-1] != '\\')))
108        break;
109
110    // Add the prefix to the result.
111    Res += Cur.slice(0, VariantsStart);
112    if (VariantsStart == Cur.size())
113      break;
114
115    ++VariantsStart; // Skip the '{'.
116
117    // Scan to the end of the variants string.
118    size_t VariantsEnd = VariantsStart;
119    unsigned NestedBraces = 1;
120    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
121      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
122        if (--NestedBraces == 0)
123          break;
124      } else if (Cur[VariantsEnd] == '{')
125        ++NestedBraces;
126    }
127
128    // Select the Nth variant (or empty).
129    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
130    for (unsigned i = 0; i != N; ++i)
131      Selection = Selection.split('|').second;
132    Res += Selection.split('|').first;
133
134    assert(VariantsEnd != Cur.size() &&
135           "Unterminated variants in assembly string!");
136    Cur = Cur.substr(VariantsEnd + 1);
137  }
138
139  return Res;
140}
141
142/// TokenizeAsmString - Tokenize a simplified assembly string.
143static void TokenizeAsmString(const StringRef &AsmString,
144                              SmallVectorImpl<StringRef> &Tokens) {
145  unsigned Prev = 0;
146  bool InTok = true;
147  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
148    switch (AsmString[i]) {
149    case '[':
150    case ']':
151    case '*':
152    case '!':
153    case ' ':
154    case '\t':
155    case ',':
156      if (InTok) {
157        Tokens.push_back(AsmString.slice(Prev, i));
158        InTok = false;
159      }
160      if (!isspace(AsmString[i]) && AsmString[i] != ',')
161        Tokens.push_back(AsmString.substr(i, 1));
162      Prev = i + 1;
163      break;
164
165    case '\\':
166      if (InTok) {
167        Tokens.push_back(AsmString.slice(Prev, i));
168        InTok = false;
169      }
170      ++i;
171      assert(i != AsmString.size() && "Invalid quoted character");
172      Tokens.push_back(AsmString.substr(i, 1));
173      Prev = i + 1;
174      break;
175
176    case '$': {
177      // If this isn't "${", treat like a normal token.
178      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
179        if (InTok) {
180          Tokens.push_back(AsmString.slice(Prev, i));
181          InTok = false;
182        }
183        Prev = i;
184        break;
185      }
186
187      if (InTok) {
188        Tokens.push_back(AsmString.slice(Prev, i));
189        InTok = false;
190      }
191
192      StringRef::iterator End =
193        std::find(AsmString.begin() + i, AsmString.end(), '}');
194      assert(End != AsmString.end() && "Missing brace in operand reference!");
195      size_t EndPos = End - AsmString.begin();
196      Tokens.push_back(AsmString.slice(i, EndPos+1));
197      Prev = EndPos + 1;
198      i = EndPos;
199      break;
200    }
201
202    default:
203      InTok = true;
204    }
205  }
206  if (InTok && Prev != AsmString.size())
207    Tokens.push_back(AsmString.substr(Prev));
208}
209
210static bool IsAssemblerInstruction(const StringRef &Name,
211                                   const CodeGenInstruction &CGI,
212                                   const SmallVectorImpl<StringRef> &Tokens) {
213  // Ignore "codegen only" instructions.
214  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
215    return false;
216
217  // Ignore pseudo ops.
218  //
219  // FIXME: This is a hack; can we convert these instructions to set the
220  // "codegen only" bit instead?
221  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
222    if (Form->getValue()->getAsString() == "Pseudo")
223      return false;
224
225  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
226  //
227  // FIXME: This is a total hack.
228  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
229    return false;
230
231  // Ignore instructions with no .s string.
232  //
233  // FIXME: What are these?
234  if (CGI.AsmString.empty())
235    return false;
236
237  // FIXME: Hack; ignore any instructions with a newline in them.
238  if (std::find(CGI.AsmString.begin(),
239                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
240    return false;
241
242  // Ignore instructions with attributes, these are always fake instructions for
243  // simplifying codegen.
244  //
245  // FIXME: Is this true?
246  //
247  // Also, check for instructions which reference the operand multiple times;
248  // this implies a constraint we would not honor.
249  std::set<std::string> OperandNames;
250  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
251    if (Tokens[i][0] == '$' &&
252        std::find(Tokens[i].begin(),
253                  Tokens[i].end(), ':') != Tokens[i].end()) {
254      DEBUG({
255          errs() << "warning: '" << Name << "': "
256                 << "ignoring instruction; operand with attribute '"
257                 << Tokens[i] << "'\n";
258        });
259      return false;
260    }
261
262    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
263      std::string Err = "'" + Name.str() + "': " +
264        "invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
265      throw TGError(CGI.TheDef->getLoc(), Err);
266    }
267  }
268
269  return true;
270}
271
272namespace {
273
274/// ClassInfo - Helper class for storing the information about a particular
275/// class of operands which can be matched.
276struct ClassInfo {
277  enum ClassInfoKind {
278    /// Invalid kind, for use as a sentinel value.
279    Invalid = 0,
280
281    /// The class for a particular token.
282    Token,
283
284    /// The (first) register class, subsequent register classes are
285    /// RegisterClass0+1, and so on.
286    RegisterClass0,
287
288    /// The (first) user defined class, subsequent user defined classes are
289    /// UserClass0+1, and so on.
290    UserClass0 = 1<<16
291  };
292
293  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
294  /// N) for the Nth user defined class.
295  unsigned Kind;
296
297  /// SuperClasses - The super classes of this class. Note that for simplicities
298  /// sake user operands only record their immediate super class, while register
299  /// operands include all superclasses.
300  std::vector<ClassInfo*> SuperClasses;
301
302  /// Name - The full class name, suitable for use in an enum.
303  std::string Name;
304
305  /// ClassName - The unadorned generic name for this class (e.g., Token).
306  std::string ClassName;
307
308  /// ValueName - The name of the value this class represents; for a token this
309  /// is the literal token string, for an operand it is the TableGen class (or
310  /// empty if this is a derived class).
311  std::string ValueName;
312
313  /// PredicateMethod - The name of the operand method to test whether the
314  /// operand matches this class; this is not valid for Token or register kinds.
315  std::string PredicateMethod;
316
317  /// RenderMethod - The name of the operand method to add this operand to an
318  /// MCInst; this is not valid for Token or register kinds.
319  std::string RenderMethod;
320
321  /// For register classes, the records for all the registers in this class.
322  std::set<Record*> Registers;
323
324public:
325  /// isRegisterClass() - Check if this is a register class.
326  bool isRegisterClass() const {
327    return Kind >= RegisterClass0 && Kind < UserClass0;
328  }
329
330  /// isUserClass() - Check if this is a user defined class.
331  bool isUserClass() const {
332    return Kind >= UserClass0;
333  }
334
335  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
336  /// are related if they are in the same class hierarchy.
337  bool isRelatedTo(const ClassInfo &RHS) const {
338    // Tokens are only related to tokens.
339    if (Kind == Token || RHS.Kind == Token)
340      return Kind == Token && RHS.Kind == Token;
341
342    // Registers classes are only related to registers classes, and only if
343    // their intersection is non-empty.
344    if (isRegisterClass() || RHS.isRegisterClass()) {
345      if (!isRegisterClass() || !RHS.isRegisterClass())
346        return false;
347
348      std::set<Record*> Tmp;
349      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
350      std::set_intersection(Registers.begin(), Registers.end(),
351                            RHS.Registers.begin(), RHS.Registers.end(),
352                            II);
353
354      return !Tmp.empty();
355    }
356
357    // Otherwise we have two users operands; they are related if they are in the
358    // same class hierarchy.
359    //
360    // FIXME: This is an oversimplification, they should only be related if they
361    // intersect, however we don't have that information.
362    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
363    const ClassInfo *Root = this;
364    while (!Root->SuperClasses.empty())
365      Root = Root->SuperClasses.front();
366
367    const ClassInfo *RHSRoot = &RHS;
368    while (!RHSRoot->SuperClasses.empty())
369      RHSRoot = RHSRoot->SuperClasses.front();
370
371    return Root == RHSRoot;
372  }
373
374  /// isSubsetOf - Test whether this class is a subset of \arg RHS;
375  bool isSubsetOf(const ClassInfo &RHS) const {
376    // This is a subset of RHS if it is the same class...
377    if (this == &RHS)
378      return true;
379
380    // ... or if any of its super classes are a subset of RHS.
381    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
382           ie = SuperClasses.end(); it != ie; ++it)
383      if ((*it)->isSubsetOf(RHS))
384        return true;
385
386    return false;
387  }
388
389  /// operator< - Compare two classes.
390  bool operator<(const ClassInfo &RHS) const {
391    // Unrelated classes can be ordered by kind.
392    if (!isRelatedTo(RHS))
393      return Kind < RHS.Kind;
394
395    switch (Kind) {
396    case Invalid:
397      assert(0 && "Invalid kind!");
398    case Token:
399      // Tokens are comparable by value.
400      //
401      // FIXME: Compare by enum value.
402      return ValueName < RHS.ValueName;
403
404    default:
405      // This class preceeds the RHS if it is a proper subset of the RHS.
406      return this != &RHS && isSubsetOf(RHS);
407    }
408  }
409};
410
411/// InstructionInfo - Helper class for storing the necessary information for an
412/// instruction which is capable of being matched.
413struct InstructionInfo {
414  struct Operand {
415    /// The unique class instance this operand should match.
416    ClassInfo *Class;
417
418    /// The original operand this corresponds to, if any.
419    const CodeGenInstruction::OperandInfo *OperandInfo;
420  };
421
422  /// InstrName - The target name for this instruction.
423  std::string InstrName;
424
425  /// Instr - The instruction this matches.
426  const CodeGenInstruction *Instr;
427
428  /// AsmString - The assembly string for this instruction (with variants
429  /// removed).
430  std::string AsmString;
431
432  /// Tokens - The tokenized assembly pattern that this instruction matches.
433  SmallVector<StringRef, 4> Tokens;
434
435  /// Operands - The operands that this instruction matches.
436  SmallVector<Operand, 4> Operands;
437
438  /// ConversionFnKind - The enum value which is passed to the generated
439  /// ConvertToMCInst to convert parsed operands into an MCInst for this
440  /// function.
441  std::string ConversionFnKind;
442
443  /// operator< - Compare two instructions.
444  bool operator<(const InstructionInfo &RHS) const {
445    if (Operands.size() != RHS.Operands.size())
446      return Operands.size() < RHS.Operands.size();
447
448    // Compare lexicographically by operand. The matcher validates that other
449    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
450    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
451      if (*Operands[i].Class < *RHS.Operands[i].Class)
452        return true;
453      if (*RHS.Operands[i].Class < *Operands[i].Class)
454        return false;
455    }
456
457    return false;
458  }
459
460  /// CouldMatchAmiguouslyWith - Check whether this instruction could
461  /// ambiguously match the same set of operands as \arg RHS (without being a
462  /// strictly superior match).
463  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
464    // The number of operands is unambiguous.
465    if (Operands.size() != RHS.Operands.size())
466      return false;
467
468    // Otherwise, make sure the ordering of the two instructions is unambiguous
469    // by checking that either (a) a token or operand kind discriminates them,
470    // or (b) the ordering among equivalent kinds is consistent.
471
472    // Tokens and operand kinds are unambiguous (assuming a correct target
473    // specific parser).
474    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
475      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
476          Operands[i].Class->Kind == ClassInfo::Token)
477        if (*Operands[i].Class < *RHS.Operands[i].Class ||
478            *RHS.Operands[i].Class < *Operands[i].Class)
479          return false;
480
481    // Otherwise, this operand could commute if all operands are equivalent, or
482    // there is a pair of operands that compare less than and a pair that
483    // compare greater than.
484    bool HasLT = false, HasGT = false;
485    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
486      if (*Operands[i].Class < *RHS.Operands[i].Class)
487        HasLT = true;
488      if (*RHS.Operands[i].Class < *Operands[i].Class)
489        HasGT = true;
490    }
491
492    return !(HasLT ^ HasGT);
493  }
494
495public:
496  void dump();
497};
498
499class AsmMatcherInfo {
500public:
501  /// The tablegen AsmParser record.
502  Record *AsmParser;
503
504  /// The AsmParser "CommentDelimiter" value.
505  std::string CommentDelimiter;
506
507  /// The AsmParser "RegisterPrefix" value.
508  std::string RegisterPrefix;
509
510  /// The classes which are needed for matching.
511  std::vector<ClassInfo*> Classes;
512
513  /// The information on the instruction to match.
514  std::vector<InstructionInfo*> Instructions;
515
516  /// Map of Register records to their class information.
517  std::map<Record*, ClassInfo*> RegisterClasses;
518
519private:
520  /// Map of token to class information which has already been constructed.
521  std::map<std::string, ClassInfo*> TokenClasses;
522
523  /// Map of RegisterClass records to their class information.
524  std::map<Record*, ClassInfo*> RegisterClassClasses;
525
526  /// Map of AsmOperandClass records to their class information.
527  std::map<Record*, ClassInfo*> AsmOperandClasses;
528
529private:
530  /// getTokenClass - Lookup or create the class for the given token.
531  ClassInfo *getTokenClass(const StringRef &Token);
532
533  /// getOperandClass - Lookup or create the class for the given operand.
534  ClassInfo *getOperandClass(const StringRef &Token,
535                             const CodeGenInstruction::OperandInfo &OI);
536
537  /// BuildRegisterClasses - Build the ClassInfo* instances for register
538  /// classes.
539  void BuildRegisterClasses(CodeGenTarget &Target,
540                            std::set<std::string> &SingletonRegisterNames);
541
542  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
543  /// operand classes.
544  void BuildOperandClasses(CodeGenTarget &Target);
545
546public:
547  AsmMatcherInfo(Record *_AsmParser);
548
549  /// BuildInfo - Construct the various tables used during matching.
550  void BuildInfo(CodeGenTarget &Target);
551};
552
553}
554
555void InstructionInfo::dump() {
556  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
557         << ", tokens:[";
558  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
559    errs() << Tokens[i];
560    if (i + 1 != e)
561      errs() << ", ";
562  }
563  errs() << "]\n";
564
565  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
566    Operand &Op = Operands[i];
567    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
568    if (Op.Class->Kind == ClassInfo::Token) {
569      errs() << '\"' << Tokens[i] << "\"\n";
570      continue;
571    }
572
573    if (!Op.OperandInfo) {
574      errs() << "(singleton register)\n";
575      continue;
576    }
577
578    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
579    errs() << OI.Name << " " << OI.Rec->getName()
580           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
581  }
582}
583
584static std::string getEnumNameForToken(const StringRef &Str) {
585  std::string Res;
586
587  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
588    switch (*it) {
589    case '*': Res += "_STAR_"; break;
590    case '%': Res += "_PCT_"; break;
591    case ':': Res += "_COLON_"; break;
592
593    default:
594      if (isalnum(*it))  {
595        Res += *it;
596      } else {
597        Res += "_" + utostr((unsigned) *it) + "_";
598      }
599    }
600  }
601
602  return Res;
603}
604
605/// getRegisterRecord - Get the register record for \arg name, or 0.
606static Record *getRegisterRecord(CodeGenTarget &Target, const StringRef &Name) {
607  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
608    const CodeGenRegister &Reg = Target.getRegisters()[i];
609    if (Name == Reg.TheDef->getValueAsString("AsmName"))
610      return Reg.TheDef;
611  }
612
613  return 0;
614}
615
616ClassInfo *AsmMatcherInfo::getTokenClass(const StringRef &Token) {
617  ClassInfo *&Entry = TokenClasses[Token];
618
619  if (!Entry) {
620    Entry = new ClassInfo();
621    Entry->Kind = ClassInfo::Token;
622    Entry->ClassName = "Token";
623    Entry->Name = "MCK_" + getEnumNameForToken(Token);
624    Entry->ValueName = Token;
625    Entry->PredicateMethod = "<invalid>";
626    Entry->RenderMethod = "<invalid>";
627    Classes.push_back(Entry);
628  }
629
630  return Entry;
631}
632
633ClassInfo *
634AsmMatcherInfo::getOperandClass(const StringRef &Token,
635                                const CodeGenInstruction::OperandInfo &OI) {
636  if (OI.Rec->isSubClassOf("RegisterClass")) {
637    ClassInfo *CI = RegisterClassClasses[OI.Rec];
638
639    if (!CI) {
640      PrintError(OI.Rec->getLoc(), "register class has no class info!");
641      throw std::string("ERROR: Missing register class!");
642    }
643
644    return CI;
645  }
646
647  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
648  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
649  ClassInfo *CI = AsmOperandClasses[MatchClass];
650
651  if (!CI) {
652    PrintError(OI.Rec->getLoc(), "operand has no match class!");
653    throw std::string("ERROR: Missing match class!");
654  }
655
656  return CI;
657}
658
659void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
660                                          std::set<std::string>
661                                            &SingletonRegisterNames) {
662  std::vector<CodeGenRegisterClass> RegisterClasses;
663  std::vector<CodeGenRegister> Registers;
664
665  RegisterClasses = Target.getRegisterClasses();
666  Registers = Target.getRegisters();
667
668  // The register sets used for matching.
669  std::set< std::set<Record*> > RegisterSets;
670
671  // Gather the defined sets.
672  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
673         ie = RegisterClasses.end(); it != ie; ++it)
674    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
675                                          it->Elements.end()));
676
677  // Add any required singleton sets.
678  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
679         ie = SingletonRegisterNames.end(); it != ie; ++it)
680    if (Record *Rec = getRegisterRecord(Target, *it))
681      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
682
683  // Introduce derived sets where necessary (when a register does not determine
684  // a unique register set class), and build the mapping of registers to the set
685  // they should classify to.
686  std::map<Record*, std::set<Record*> > RegisterMap;
687  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
688         ie = Registers.end(); it != ie; ++it) {
689    CodeGenRegister &CGR = *it;
690    // Compute the intersection of all sets containing this register.
691    std::set<Record*> ContainingSet;
692
693    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
694           ie = RegisterSets.end(); it != ie; ++it) {
695      if (!it->count(CGR.TheDef))
696        continue;
697
698      if (ContainingSet.empty()) {
699        ContainingSet = *it;
700      } else {
701        std::set<Record*> Tmp;
702        std::swap(Tmp, ContainingSet);
703        std::insert_iterator< std::set<Record*> > II(ContainingSet,
704                                                     ContainingSet.begin());
705        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
706                              II);
707      }
708    }
709
710    if (!ContainingSet.empty()) {
711      RegisterSets.insert(ContainingSet);
712      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
713    }
714  }
715
716  // Construct the register classes.
717  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
718  unsigned Index = 0;
719  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
720         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
721    ClassInfo *CI = new ClassInfo();
722    CI->Kind = ClassInfo::RegisterClass0 + Index;
723    CI->ClassName = "Reg" + utostr(Index);
724    CI->Name = "MCK_Reg" + utostr(Index);
725    CI->ValueName = "";
726    CI->PredicateMethod = ""; // unused
727    CI->RenderMethod = "addRegOperands";
728    CI->Registers = *it;
729    Classes.push_back(CI);
730    RegisterSetClasses.insert(std::make_pair(*it, CI));
731  }
732
733  // Find the superclasses; we could compute only the subgroup lattice edges,
734  // but there isn't really a point.
735  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
736         ie = RegisterSets.end(); it != ie; ++it) {
737    ClassInfo *CI = RegisterSetClasses[*it];
738    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
739           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
740      if (*it != *it2 &&
741          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
742        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
743  }
744
745  // Name the register classes which correspond to a user defined RegisterClass.
746  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
747         ie = RegisterClasses.end(); it != ie; ++it) {
748    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
749                                                         it->Elements.end())];
750    if (CI->ValueName.empty()) {
751      CI->ClassName = it->getName();
752      CI->Name = "MCK_" + it->getName();
753      CI->ValueName = it->getName();
754    } else
755      CI->ValueName = CI->ValueName + "," + it->getName();
756
757    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
758  }
759
760  // Populate the map for individual registers.
761  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
762         ie = RegisterMap.end(); it != ie; ++it)
763    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
764
765  // Name the register classes which correspond to singleton registers.
766  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
767         ie = SingletonRegisterNames.end(); it != ie; ++it) {
768    if (Record *Rec = getRegisterRecord(Target, *it)) {
769      ClassInfo *CI = this->RegisterClasses[Rec];
770      assert(CI && "Missing singleton register class info!");
771
772      if (CI->ValueName.empty()) {
773        CI->ClassName = Rec->getName();
774        CI->Name = "MCK_" + Rec->getName();
775        CI->ValueName = Rec->getName();
776      } else
777        CI->ValueName = CI->ValueName + "," + Rec->getName();
778    }
779  }
780}
781
782void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
783  std::vector<Record*> AsmOperands;
784  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
785  unsigned Index = 0;
786  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
787         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
788    ClassInfo *CI = new ClassInfo();
789    CI->Kind = ClassInfo::UserClass0 + Index;
790
791    Init *Super = (*it)->getValueInit("SuperClass");
792    if (DefInit *DI = dynamic_cast<DefInit*>(Super)) {
793      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
794      if (!SC)
795        PrintError((*it)->getLoc(), "Invalid super class reference!");
796      else
797        CI->SuperClasses.push_back(SC);
798    } else {
799      assert(dynamic_cast<UnsetInit*>(Super) && "Unexpected SuperClass field!");
800    }
801    CI->ClassName = (*it)->getValueAsString("Name");
802    CI->Name = "MCK_" + CI->ClassName;
803    CI->ValueName = (*it)->getName();
804
805    // Get or construct the predicate method name.
806    Init *PMName = (*it)->getValueInit("PredicateMethod");
807    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
808      CI->PredicateMethod = SI->getValue();
809    } else {
810      assert(dynamic_cast<UnsetInit*>(PMName) &&
811             "Unexpected PredicateMethod field!");
812      CI->PredicateMethod = "is" + CI->ClassName;
813    }
814
815    // Get or construct the render method name.
816    Init *RMName = (*it)->getValueInit("RenderMethod");
817    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
818      CI->RenderMethod = SI->getValue();
819    } else {
820      assert(dynamic_cast<UnsetInit*>(RMName) &&
821             "Unexpected RenderMethod field!");
822      CI->RenderMethod = "add" + CI->ClassName + "Operands";
823    }
824
825    AsmOperandClasses[*it] = CI;
826    Classes.push_back(CI);
827  }
828}
829
830AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
831  : AsmParser(_AsmParser),
832    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
833    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
834{
835}
836
837void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
838  // Parse the instructions; we need to do this first so that we can gather the
839  // singleton register classes.
840  std::set<std::string> SingletonRegisterNames;
841  for (std::map<std::string, CodeGenInstruction>::const_iterator
842         it = Target.getInstructions().begin(),
843         ie = Target.getInstructions().end();
844       it != ie; ++it) {
845    const CodeGenInstruction &CGI = it->second;
846
847    if (!StringRef(it->first).startswith(MatchPrefix))
848      continue;
849
850    OwningPtr<InstructionInfo> II(new InstructionInfo);
851
852    II->InstrName = it->first;
853    II->Instr = &it->second;
854    II->AsmString = FlattenVariants(CGI.AsmString, 0);
855
856    // Remove comments from the asm string.
857    if (!CommentDelimiter.empty()) {
858      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
859      if (Idx != StringRef::npos)
860        II->AsmString = II->AsmString.substr(0, Idx);
861    }
862
863    TokenizeAsmString(II->AsmString, II->Tokens);
864
865    // Ignore instructions which shouldn't be matched.
866    if (!IsAssemblerInstruction(it->first, CGI, II->Tokens))
867      continue;
868
869    // Collect singleton registers, if used.
870    if (!RegisterPrefix.empty()) {
871      for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
872        if (II->Tokens[i].startswith(RegisterPrefix)) {
873          StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
874          Record *Rec = getRegisterRecord(Target, RegName);
875
876          if (!Rec) {
877            std::string Err = "unable to find register for '" + RegName.str() +
878              "' (which matches register prefix)";
879            throw TGError(CGI.TheDef->getLoc(), Err);
880          }
881
882          SingletonRegisterNames.insert(RegName);
883        }
884      }
885    }
886
887    Instructions.push_back(II.take());
888  }
889
890  // Build info for the register classes.
891  BuildRegisterClasses(Target, SingletonRegisterNames);
892
893  // Build info for the user defined assembly operand classes.
894  BuildOperandClasses(Target);
895
896  // Build the instruction information.
897  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
898         ie = Instructions.end(); it != ie; ++it) {
899    InstructionInfo *II = *it;
900
901    for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
902      StringRef Token = II->Tokens[i];
903
904      // Check for singleton registers.
905      if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
906        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
907        InstructionInfo::Operand Op;
908        Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
909        Op.OperandInfo = 0;
910        assert(Op.Class && Op.Class->Registers.size() == 1 &&
911               "Unexpected class for singleton register");
912        II->Operands.push_back(Op);
913        continue;
914      }
915
916      // Check for simple tokens.
917      if (Token[0] != '$') {
918        InstructionInfo::Operand Op;
919        Op.Class = getTokenClass(Token);
920        Op.OperandInfo = 0;
921        II->Operands.push_back(Op);
922        continue;
923      }
924
925      // Otherwise this is an operand reference.
926      StringRef OperandName;
927      if (Token[1] == '{')
928        OperandName = Token.substr(2, Token.size() - 3);
929      else
930        OperandName = Token.substr(1);
931
932      // Map this token to an operand. FIXME: Move elsewhere.
933      unsigned Idx;
934      try {
935        Idx = II->Instr->getOperandNamed(OperandName);
936      } catch(...) {
937        throw std::string("error: unable to find operand: '" +
938                          OperandName.str() + "'");
939      }
940
941      const CodeGenInstruction::OperandInfo &OI = II->Instr->OperandList[Idx];
942      InstructionInfo::Operand Op;
943      Op.Class = getOperandClass(Token, OI);
944      Op.OperandInfo = &OI;
945      II->Operands.push_back(Op);
946    }
947  }
948
949  // Reorder classes so that classes preceed super classes.
950  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
951}
952
953static void EmitConvertToMCInst(CodeGenTarget &Target,
954                                std::vector<InstructionInfo*> &Infos,
955                                raw_ostream &OS) {
956  // Write the convert function to a separate stream, so we can drop it after
957  // the enum.
958  std::string ConvertFnBody;
959  raw_string_ostream CvtOS(ConvertFnBody);
960
961  // Function we have already generated.
962  std::set<std::string> GeneratedFns;
963
964  // Start the unified conversion function.
965
966  CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
967        << "unsigned Opcode,\n"
968        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
969        << "> &Operands) {\n";
970  CvtOS << "  Inst.setOpcode(Opcode);\n";
971  CvtOS << "  switch (Kind) {\n";
972  CvtOS << "  default:\n";
973
974  // Start the enum, which we will generate inline.
975
976  OS << "// Unified function for converting operants to MCInst instances.\n\n";
977  OS << "enum ConversionKind {\n";
978
979  // TargetOperandClass - This is the target's operand class, like X86Operand.
980  std::string TargetOperandClass = Target.getName() + "Operand";
981
982  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
983         ie = Infos.end(); it != ie; ++it) {
984    InstructionInfo &II = **it;
985
986    // Order the (class) operands by the order to convert them into an MCInst.
987    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
988    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
989      InstructionInfo::Operand &Op = II.Operands[i];
990      if (Op.OperandInfo)
991        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
992    }
993    std::sort(MIOperandList.begin(), MIOperandList.end());
994
995    // Compute the total number of operands.
996    unsigned NumMIOperands = 0;
997    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
998      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
999      NumMIOperands = std::max(NumMIOperands,
1000                               OI.MIOperandNo + OI.MINumOperands);
1001    }
1002
1003    // Build the conversion function signature.
1004    std::string Signature = "Convert";
1005    unsigned CurIndex = 0;
1006    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1007      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1008      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
1009             "Duplicate match for instruction operand!");
1010
1011      Signature += "_";
1012
1013      // Skip operands which weren't matched by anything, this occurs when the
1014      // .td file encodes "implicit" operands as explicit ones.
1015      //
1016      // FIXME: This should be removed from the MCInst structure.
1017      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
1018        Signature += "Imp";
1019
1020      // Registers are always converted the same, don't duplicate the conversion
1021      // function based on them.
1022      //
1023      // FIXME: We could generalize this based on the render method, if it
1024      // mattered.
1025      if (Op.Class->isRegisterClass())
1026        Signature += "Reg";
1027      else
1028        Signature += Op.Class->ClassName;
1029      Signature += utostr(Op.OperandInfo->MINumOperands);
1030      Signature += "_" + utostr(MIOperandList[i].second);
1031
1032      CurIndex += Op.OperandInfo->MINumOperands;
1033    }
1034
1035    // Add any trailing implicit operands.
1036    for (; CurIndex != NumMIOperands; ++CurIndex)
1037      Signature += "Imp";
1038
1039    II.ConversionFnKind = Signature;
1040
1041    // Check if we have already generated this signature.
1042    if (!GeneratedFns.insert(Signature).second)
1043      continue;
1044
1045    // If not, emit it now.
1046
1047    // Add to the enum list.
1048    OS << "  " << Signature << ",\n";
1049
1050    // And to the convert function.
1051    CvtOS << "  case " << Signature << ":\n";
1052    CurIndex = 0;
1053    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
1054      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
1055
1056      // Add the implicit operands.
1057      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
1058        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1059
1060      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
1061         << MIOperandList[i].second
1062         << "])->" << Op.Class->RenderMethod
1063         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
1064      CurIndex += Op.OperandInfo->MINumOperands;
1065    }
1066
1067    // And add trailing implicit operands.
1068    for (; CurIndex != NumMIOperands; ++CurIndex)
1069      CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
1070    CvtOS << "    break;\n";
1071  }
1072
1073  // Finish the convert function.
1074
1075  CvtOS << "  }\n";
1076  CvtOS << "  return false;\n";
1077  CvtOS << "}\n\n";
1078
1079  // Finish the enum, and drop the convert function after it.
1080
1081  OS << "  NumConversionVariants\n";
1082  OS << "};\n\n";
1083
1084  OS << CvtOS.str();
1085}
1086
1087/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
1088static void EmitMatchClassEnumeration(CodeGenTarget &Target,
1089                                      std::vector<ClassInfo*> &Infos,
1090                                      raw_ostream &OS) {
1091  OS << "namespace {\n\n";
1092
1093  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1094     << "/// instruction matching.\n";
1095  OS << "enum MatchClassKind {\n";
1096  OS << "  InvalidMatchClass = 0,\n";
1097  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1098         ie = Infos.end(); it != ie; ++it) {
1099    ClassInfo &CI = **it;
1100    OS << "  " << CI.Name << ", // ";
1101    if (CI.Kind == ClassInfo::Token) {
1102      OS << "'" << CI.ValueName << "'\n";
1103    } else if (CI.isRegisterClass()) {
1104      if (!CI.ValueName.empty())
1105        OS << "register class '" << CI.ValueName << "'\n";
1106      else
1107        OS << "derived register class\n";
1108    } else {
1109      OS << "user defined class '" << CI.ValueName << "'\n";
1110    }
1111  }
1112  OS << "  NumMatchClassKinds\n";
1113  OS << "};\n\n";
1114
1115  OS << "}\n\n";
1116}
1117
1118/// EmitClassifyOperand - Emit the function to classify an operand.
1119static void EmitClassifyOperand(CodeGenTarget &Target,
1120                                AsmMatcherInfo &Info,
1121                                raw_ostream &OS) {
1122  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
1123     << "  " << Target.getName() << "Operand &Operand = *("
1124     << Target.getName() << "Operand*)GOp;\n";
1125
1126  // Classify tokens.
1127  OS << "  if (Operand.isToken())\n";
1128  OS << "    return MatchTokenString(Operand.getToken());\n\n";
1129
1130  // Classify registers.
1131  //
1132  // FIXME: Don't hardcode isReg, getReg.
1133  OS << "  if (Operand.isReg()) {\n";
1134  OS << "    switch (Operand.getReg()) {\n";
1135  OS << "    default: return InvalidMatchClass;\n";
1136  for (std::map<Record*, ClassInfo*>::iterator
1137         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
1138       it != ie; ++it)
1139    OS << "    case " << Target.getName() << "::"
1140       << it->first->getName() << ": return " << it->second->Name << ";\n";
1141  OS << "    }\n";
1142  OS << "  }\n\n";
1143
1144  // Classify user defined operands.
1145  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
1146         ie = Info.Classes.end(); it != ie; ++it) {
1147    ClassInfo &CI = **it;
1148
1149    if (!CI.isUserClass())
1150      continue;
1151
1152    OS << "  // '" << CI.ClassName << "' class";
1153    if (!CI.SuperClasses.empty()) {
1154      OS << ", subclass of ";
1155      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
1156        if (i) OS << ", ";
1157        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
1158        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
1159      }
1160    }
1161    OS << "\n";
1162
1163    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
1164
1165    // Validate subclass relationships.
1166    if (!CI.SuperClasses.empty()) {
1167      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
1168        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
1169           << "() && \"Invalid class relationship!\");\n";
1170    }
1171
1172    OS << "    return " << CI.Name << ";\n";
1173    OS << "  }\n\n";
1174  }
1175  OS << "  return InvalidMatchClass;\n";
1176  OS << "}\n\n";
1177}
1178
1179/// EmitIsSubclass - Emit the subclass predicate function.
1180static void EmitIsSubclass(CodeGenTarget &Target,
1181                           std::vector<ClassInfo*> &Infos,
1182                           raw_ostream &OS) {
1183  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
1184  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
1185  OS << "  if (A == B)\n";
1186  OS << "    return true;\n\n";
1187
1188  OS << "  switch (A) {\n";
1189  OS << "  default:\n";
1190  OS << "    return false;\n";
1191  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1192         ie = Infos.end(); it != ie; ++it) {
1193    ClassInfo &A = **it;
1194
1195    if (A.Kind != ClassInfo::Token) {
1196      std::vector<StringRef> SuperClasses;
1197      for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1198             ie = Infos.end(); it != ie; ++it) {
1199        ClassInfo &B = **it;
1200
1201        if (&A != &B && A.isSubsetOf(B))
1202          SuperClasses.push_back(B.Name);
1203      }
1204
1205      if (SuperClasses.empty())
1206        continue;
1207
1208      OS << "\n  case " << A.Name << ":\n";
1209
1210      if (SuperClasses.size() == 1) {
1211        OS << "    return B == " << SuperClasses.back() << ";\n";
1212        continue;
1213      }
1214
1215      OS << "    switch (B) {\n";
1216      OS << "    default: return false;\n";
1217      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
1218        OS << "    case " << SuperClasses[i] << ": return true;\n";
1219      OS << "    }\n";
1220    }
1221  }
1222  OS << "  }\n";
1223  OS << "}\n\n";
1224}
1225
1226typedef std::pair<std::string, std::string> StringPair;
1227
1228/// FindFirstNonCommonLetter - Find the first character in the keys of the
1229/// string pairs that is not shared across the whole set of strings.  All
1230/// strings are assumed to have the same length.
1231static unsigned
1232FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
1233  assert(!Matches.empty());
1234  for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
1235    // Check to see if letter i is the same across the set.
1236    char Letter = Matches[0]->first[i];
1237
1238    for (unsigned str = 0, e = Matches.size(); str != e; ++str)
1239      if (Matches[str]->first[i] != Letter)
1240        return i;
1241  }
1242
1243  return Matches[0]->first.size();
1244}
1245
1246/// EmitStringMatcherForChar - Given a set of strings that are known to be the
1247/// same length and whose characters leading up to CharNo are the same, emit
1248/// code to verify that CharNo and later are the same.
1249///
1250/// \return - True if control can leave the emitted code fragment.
1251static bool EmitStringMatcherForChar(const std::string &StrVariableName,
1252                                  const std::vector<const StringPair*> &Matches,
1253                                     unsigned CharNo, unsigned IndentCount,
1254                                     raw_ostream &OS) {
1255  assert(!Matches.empty() && "Must have at least one string to match!");
1256  std::string Indent(IndentCount*2+4, ' ');
1257
1258  // If we have verified that the entire string matches, we're done: output the
1259  // matching code.
1260  if (CharNo == Matches[0]->first.size()) {
1261    assert(Matches.size() == 1 && "Had duplicate keys to match on");
1262
1263    // FIXME: If Matches[0].first has embeded \n, this will be bad.
1264    OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
1265       << "\"\n";
1266    return false;
1267  }
1268
1269  // Bucket the matches by the character we are comparing.
1270  std::map<char, std::vector<const StringPair*> > MatchesByLetter;
1271
1272  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1273    MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
1274
1275
1276  // If we have exactly one bucket to match, see how many characters are common
1277  // across the whole set and match all of them at once.
1278  if (MatchesByLetter.size() == 1) {
1279    unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
1280    unsigned NumChars = FirstNonCommonLetter-CharNo;
1281
1282    // Emit code to break out if the prefix doesn't match.
1283    if (NumChars == 1) {
1284      // Do the comparison with if (Str[1] != 'f')
1285      // FIXME: Need to escape general characters.
1286      OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
1287         << Matches[0]->first[CharNo] << "')\n";
1288      OS << Indent << "  break;\n";
1289    } else {
1290      // Do the comparison with if (Str.substr(1,3) != "foo").
1291      // FIXME: Need to escape general strings.
1292      OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
1293         << NumChars << ") != \"";
1294      OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
1295      OS << Indent << "  break;\n";
1296    }
1297
1298    return EmitStringMatcherForChar(StrVariableName, Matches,
1299                                    FirstNonCommonLetter, IndentCount, OS);
1300  }
1301
1302  // Otherwise, we have multiple possible things, emit a switch on the
1303  // character.
1304  OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
1305  OS << Indent << "default: break;\n";
1306
1307  for (std::map<char, std::vector<const StringPair*> >::iterator LI =
1308       MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
1309    // TODO: escape hard stuff (like \n) if we ever care about it.
1310    OS << Indent << "case '" << LI->first << "':\t // "
1311       << LI->second.size() << " strings to match.\n";
1312    if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
1313                                 IndentCount+1, OS))
1314      OS << Indent << "  break;\n";
1315  }
1316
1317  OS << Indent << "}\n";
1318  return true;
1319}
1320
1321
1322/// EmitStringMatcher - Given a list of strings and code to execute when they
1323/// match, output a simple switch tree to classify the input string.
1324///
1325/// If a match is found, the code in Vals[i].second is executed; control must
1326/// not exit this code fragment.  If nothing matches, execution falls through.
1327///
1328/// \param StrVariableName - The name of the variable to test.
1329static void EmitStringMatcher(const std::string &StrVariableName,
1330                              const std::vector<StringPair> &Matches,
1331                              raw_ostream &OS) {
1332  // First level categorization: group strings by length.
1333  std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
1334
1335  for (unsigned i = 0, e = Matches.size(); i != e; ++i)
1336    MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
1337
1338  // Output a switch statement on length and categorize the elements within each
1339  // bin.
1340  OS << "  switch (" << StrVariableName << ".size()) {\n";
1341  OS << "  default: break;\n";
1342
1343  for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
1344       MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
1345    OS << "  case " << LI->first << ":\t // " << LI->second.size()
1346       << " strings to match.\n";
1347    if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
1348      OS << "    break;\n";
1349  }
1350
1351  OS << "  }\n";
1352}
1353
1354
1355/// EmitMatchTokenString - Emit the function to match a token string to the
1356/// appropriate match class value.
1357static void EmitMatchTokenString(CodeGenTarget &Target,
1358                                 std::vector<ClassInfo*> &Infos,
1359                                 raw_ostream &OS) {
1360  // Construct the match list.
1361  std::vector<StringPair> Matches;
1362  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1363         ie = Infos.end(); it != ie; ++it) {
1364    ClassInfo &CI = **it;
1365
1366    if (CI.Kind == ClassInfo::Token)
1367      Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
1368  }
1369
1370  OS << "static MatchClassKind MatchTokenString(const StringRef &Name) {\n";
1371
1372  EmitStringMatcher("Name", Matches, OS);
1373
1374  OS << "  return InvalidMatchClass;\n";
1375  OS << "}\n\n";
1376}
1377
1378/// EmitMatchRegisterName - Emit the function to match a string to the target
1379/// specific register enum.
1380static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
1381                                  raw_ostream &OS) {
1382  // Construct the match list.
1383  std::vector<StringPair> Matches;
1384  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
1385    const CodeGenRegister &Reg = Target.getRegisters()[i];
1386    if (Reg.TheDef->getValueAsString("AsmName").empty())
1387      continue;
1388
1389    Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
1390                                 "return " + utostr(i + 1) + ";"));
1391  }
1392
1393  OS << "static unsigned MatchRegisterName(const StringRef &Name) {\n";
1394
1395  EmitStringMatcher("Name", Matches, OS);
1396
1397  OS << "  return 0;\n";
1398  OS << "}\n\n";
1399}
1400
1401void AsmMatcherEmitter::run(raw_ostream &OS) {
1402  CodeGenTarget Target;
1403  Record *AsmParser = Target.getAsmParser();
1404  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
1405
1406  // Compute the information on the instructions to match.
1407  AsmMatcherInfo Info(AsmParser);
1408  Info.BuildInfo(Target);
1409
1410  // Sort the instruction table using the partial order on classes.
1411  std::sort(Info.Instructions.begin(), Info.Instructions.end(),
1412            less_ptr<InstructionInfo>());
1413
1414  DEBUG_WITH_TYPE("instruction_info", {
1415      for (std::vector<InstructionInfo*>::iterator
1416             it = Info.Instructions.begin(), ie = Info.Instructions.end();
1417           it != ie; ++it)
1418        (*it)->dump();
1419    });
1420
1421  // Check for ambiguous instructions.
1422  unsigned NumAmbiguous = 0;
1423  for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
1424    for (unsigned j = i + 1; j != e; ++j) {
1425      InstructionInfo &A = *Info.Instructions[i];
1426      InstructionInfo &B = *Info.Instructions[j];
1427
1428      if (A.CouldMatchAmiguouslyWith(B)) {
1429        DEBUG_WITH_TYPE("ambiguous_instrs", {
1430            errs() << "warning: ambiguous instruction match:\n";
1431            A.dump();
1432            errs() << "\nis incomparable with:\n";
1433            B.dump();
1434            errs() << "\n\n";
1435          });
1436        ++NumAmbiguous;
1437      }
1438    }
1439  }
1440  if (NumAmbiguous)
1441    DEBUG_WITH_TYPE("ambiguous_instrs", {
1442        errs() << "warning: " << NumAmbiguous
1443               << " ambiguous instructions!\n";
1444      });
1445
1446  // Write the output.
1447
1448  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
1449
1450  // Emit the function to match a register name to number.
1451  EmitMatchRegisterName(Target, AsmParser, OS);
1452
1453  OS << "#ifndef REGISTERS_ONLY\n\n";
1454
1455  // Generate the unified function to convert operands into an MCInst.
1456  EmitConvertToMCInst(Target, Info.Instructions, OS);
1457
1458  // Emit the enumeration for classes which participate in matching.
1459  EmitMatchClassEnumeration(Target, Info.Classes, OS);
1460
1461  // Emit the routine to match token strings to their match class.
1462  EmitMatchTokenString(Target, Info.Classes, OS);
1463
1464  // Emit the routine to classify an operand.
1465  EmitClassifyOperand(Target, Info, OS);
1466
1467  // Emit the subclass predicate routine.
1468  EmitIsSubclass(Target, Info.Classes, OS);
1469
1470  // Finally, build the match function.
1471
1472  size_t MaxNumOperands = 0;
1473  for (std::vector<InstructionInfo*>::const_iterator it =
1474         Info.Instructions.begin(), ie = Info.Instructions.end();
1475       it != ie; ++it)
1476    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
1477
1478  OS << "bool " << Target.getName() << ClassName
1479     << "::\nMatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> "
1480        "&Operands,\n                 MCInst &Inst) {\n";
1481
1482  // Emit the static match table; unused classes get initalized to 0 which is
1483  // guaranteed to be InvalidMatchClass.
1484  //
1485  // FIXME: We can reduce the size of this table very easily. First, we change
1486  // it so that store the kinds in separate bit-fields for each index, which
1487  // only needs to be the max width used for classes at that index (we also need
1488  // to reject based on this during classification). If we then make sure to
1489  // order the match kinds appropriately (putting mnemonics last), then we
1490  // should only end up using a few bits for each class, especially the ones
1491  // following the mnemonic.
1492  OS << "  static const struct MatchEntry {\n";
1493  OS << "    unsigned Opcode;\n";
1494  OS << "    ConversionKind ConvertFn;\n";
1495  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
1496  OS << "  } MatchTable[" << Info.Instructions.size() << "] = {\n";
1497
1498  for (std::vector<InstructionInfo*>::const_iterator it =
1499         Info.Instructions.begin(), ie = Info.Instructions.end();
1500       it != ie; ++it) {
1501    InstructionInfo &II = **it;
1502
1503    OS << "    { " << Target.getName() << "::" << II.InstrName
1504       << ", " << II.ConversionFnKind << ", { ";
1505    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
1506      InstructionInfo::Operand &Op = II.Operands[i];
1507
1508      if (i) OS << ", ";
1509      OS << Op.Class->Name;
1510    }
1511    OS << " } },\n";
1512  }
1513
1514  OS << "  };\n\n";
1515
1516  // Emit code to compute the class list for this operand vector.
1517  OS << "  // Eliminate obvious mismatches.\n";
1518  OS << "  if (Operands.size() > " << MaxNumOperands << ")\n";
1519  OS << "    return true;\n\n";
1520
1521  OS << "  // Compute the class list for this operand vector.\n";
1522  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
1523  OS << "  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
1524  OS << "    Classes[i] = ClassifyOperand(Operands[i]);\n\n";
1525
1526  OS << "    // Check for invalid operands before matching.\n";
1527  OS << "    if (Classes[i] == InvalidMatchClass)\n";
1528  OS << "      return true;\n";
1529  OS << "  }\n\n";
1530
1531  OS << "  // Mark unused classes.\n";
1532  OS << "  for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
1533     << "i != e; ++i)\n";
1534  OS << "    Classes[i] = InvalidMatchClass;\n\n";
1535
1536  // Emit code to search the table.
1537  OS << "  // Search the table.\n";
1538  OS << "  for (const MatchEntry *it = MatchTable, "
1539     << "*ie = MatchTable + " << Info.Instructions.size()
1540     << "; it != ie; ++it) {\n";
1541  for (unsigned i = 0; i != MaxNumOperands; ++i) {
1542    OS << "    if (!IsSubclass(Classes["
1543       << i << "], it->Classes[" << i << "]))\n";
1544    OS << "      continue;\n";
1545  }
1546  OS << "\n";
1547  OS << "    return ConvertToMCInst(it->ConvertFn, Inst, "
1548     << "it->Opcode, Operands);\n";
1549  OS << "  }\n\n";
1550
1551  OS << "  return true;\n";
1552  OS << "}\n\n";
1553
1554  OS << "#endif // REGISTERS_ONLY\n";
1555}
1556