v3_addr.c revision e45f106cb6b47af1f21efe76e933bdea2f5dd1ca
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
90  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
95  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100			IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111#define ADDR_RAW_BUF_LEN	16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118  switch (afi) {
119  case IANA_AFI_IPV4:
120    return 4;
121  case IANA_AFI_IPV6:
122    return 16;
123  default:
124    return 0;
125  }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133  return ((f != NULL &&
134	   f->addressFamily != NULL &&
135	   f->addressFamily->data != NULL)
136	  ? ((f->addressFamily->data[0] << 8) |
137	     (f->addressFamily->data[1]))
138	  : 0);
139}
140
141/*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145static void addr_expand(unsigned char *addr,
146			const ASN1_BIT_STRING *bs,
147			const int length,
148			const unsigned char fill)
149{
150  OPENSSL_assert(bs->length >= 0 && bs->length <= length);
151  if (bs->length > 0) {
152    memcpy(addr, bs->data, bs->length);
153    if ((bs->flags & 7) != 0) {
154      unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
155      if (fill == 0)
156	addr[bs->length - 1] &= ~mask;
157      else
158	addr[bs->length - 1] |= mask;
159    }
160  }
161  memset(addr + bs->length, fill, length - bs->length);
162}
163
164/*
165 * Extract the prefix length from a bitstring.
166 */
167#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
168
169/*
170 * i2r handler for one address bitstring.
171 */
172static int i2r_address(BIO *out,
173		       const unsigned afi,
174		       const unsigned char fill,
175		       const ASN1_BIT_STRING *bs)
176{
177  unsigned char addr[ADDR_RAW_BUF_LEN];
178  int i, n;
179
180  switch (afi) {
181  case IANA_AFI_IPV4:
182    addr_expand(addr, bs, 4, fill);
183    BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
184    break;
185  case IANA_AFI_IPV6:
186    addr_expand(addr, bs, 16, fill);
187    for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
188      ;
189    for (i = 0; i < n; i += 2)
190      BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
191    if (i < 16)
192      BIO_puts(out, ":");
193    if (i == 0)
194      BIO_puts(out, ":");
195    break;
196  default:
197    for (i = 0; i < bs->length; i++)
198      BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
199    BIO_printf(out, "[%d]", (int) (bs->flags & 7));
200    break;
201  }
202  return 1;
203}
204
205/*
206 * i2r handler for a sequence of addresses and ranges.
207 */
208static int i2r_IPAddressOrRanges(BIO *out,
209				 const int indent,
210				 const IPAddressOrRanges *aors,
211				 const unsigned afi)
212{
213  int i;
214  for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
215    const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
216    BIO_printf(out, "%*s", indent, "");
217    switch (aor->type) {
218    case IPAddressOrRange_addressPrefix:
219      if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
220	return 0;
221      BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
222      continue;
223    case IPAddressOrRange_addressRange:
224      if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
225	return 0;
226      BIO_puts(out, "-");
227      if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
228	return 0;
229      BIO_puts(out, "\n");
230      continue;
231    }
232  }
233  return 1;
234}
235
236/*
237 * i2r handler for an IPAddrBlocks extension.
238 */
239static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
240			    void *ext,
241			    BIO *out,
242			    int indent)
243{
244  const IPAddrBlocks *addr = ext;
245  int i;
246  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
247    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
248    const unsigned int afi = v3_addr_get_afi(f);
249    switch (afi) {
250    case IANA_AFI_IPV4:
251      BIO_printf(out, "%*sIPv4", indent, "");
252      break;
253    case IANA_AFI_IPV6:
254      BIO_printf(out, "%*sIPv6", indent, "");
255      break;
256    default:
257      BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
258      break;
259    }
260    if (f->addressFamily->length > 2) {
261      switch (f->addressFamily->data[2]) {
262      case   1:
263	BIO_puts(out, " (Unicast)");
264	break;
265      case   2:
266	BIO_puts(out, " (Multicast)");
267	break;
268      case   3:
269	BIO_puts(out, " (Unicast/Multicast)");
270	break;
271      case   4:
272	BIO_puts(out, " (MPLS)");
273	break;
274      case  64:
275	BIO_puts(out, " (Tunnel)");
276	break;
277      case  65:
278	BIO_puts(out, " (VPLS)");
279	break;
280      case  66:
281	BIO_puts(out, " (BGP MDT)");
282	break;
283      case 128:
284	BIO_puts(out, " (MPLS-labeled VPN)");
285	break;
286      default:
287	BIO_printf(out, " (Unknown SAFI %u)",
288		   (unsigned) f->addressFamily->data[2]);
289	break;
290      }
291    }
292    switch (f->ipAddressChoice->type) {
293    case IPAddressChoice_inherit:
294      BIO_puts(out, ": inherit\n");
295      break;
296    case IPAddressChoice_addressesOrRanges:
297      BIO_puts(out, ":\n");
298      if (!i2r_IPAddressOrRanges(out,
299				 indent + 2,
300				 f->ipAddressChoice->u.addressesOrRanges,
301				 afi))
302	return 0;
303      break;
304    }
305  }
306  return 1;
307}
308
309/*
310 * Sort comparison function for a sequence of IPAddressOrRange
311 * elements.
312 */
313static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
314				const IPAddressOrRange *b,
315				const int length)
316{
317  unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
318  int prefixlen_a = 0;
319  int prefixlen_b = 0;
320  int r;
321
322  switch (a->type) {
323  case IPAddressOrRange_addressPrefix:
324    addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
325    prefixlen_a = addr_prefixlen(a->u.addressPrefix);
326    break;
327  case IPAddressOrRange_addressRange:
328    addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
329    prefixlen_a = length * 8;
330    break;
331  }
332
333  switch (b->type) {
334  case IPAddressOrRange_addressPrefix:
335    addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
336    prefixlen_b = addr_prefixlen(b->u.addressPrefix);
337    break;
338  case IPAddressOrRange_addressRange:
339    addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
340    prefixlen_b = length * 8;
341    break;
342  }
343
344  if ((r = memcmp(addr_a, addr_b, length)) != 0)
345    return r;
346  else
347    return prefixlen_a - prefixlen_b;
348}
349
350/*
351 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
352 * comparision routines are only allowed two arguments.
353 */
354static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
355				  const IPAddressOrRange * const *b)
356{
357  return IPAddressOrRange_cmp(*a, *b, 4);
358}
359
360/*
361 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
362 * comparision routines are only allowed two arguments.
363 */
364static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
365				  const IPAddressOrRange * const *b)
366{
367  return IPAddressOrRange_cmp(*a, *b, 16);
368}
369
370/*
371 * Calculate whether a range collapses to a prefix.
372 * See last paragraph of RFC 3779 2.2.3.7.
373 */
374static int range_should_be_prefix(const unsigned char *min,
375				  const unsigned char *max,
376				  const int length)
377{
378  unsigned char mask;
379  int i, j;
380
381  for (i = 0; i < length && min[i] == max[i]; i++)
382    ;
383  for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
384    ;
385  if (i < j)
386    return -1;
387  if (i > j)
388    return i * 8;
389  mask = min[i] ^ max[i];
390  switch (mask) {
391  case 0x01: j = 7; break;
392  case 0x03: j = 6; break;
393  case 0x07: j = 5; break;
394  case 0x0F: j = 4; break;
395  case 0x1F: j = 3; break;
396  case 0x3F: j = 2; break;
397  case 0x7F: j = 1; break;
398  default:   return -1;
399  }
400  if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
401    return -1;
402  else
403    return i * 8 + j;
404}
405
406/*
407 * Construct a prefix.
408 */
409static int make_addressPrefix(IPAddressOrRange **result,
410			      unsigned char *addr,
411			      const int prefixlen)
412{
413  int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
414  IPAddressOrRange *aor = IPAddressOrRange_new();
415
416  if (aor == NULL)
417    return 0;
418  aor->type = IPAddressOrRange_addressPrefix;
419  if (aor->u.addressPrefix == NULL &&
420      (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
421    goto err;
422  if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
423    goto err;
424  aor->u.addressPrefix->flags &= ~7;
425  aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
426  if (bitlen > 0) {
427    aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
428    aor->u.addressPrefix->flags |= 8 - bitlen;
429  }
430
431  *result = aor;
432  return 1;
433
434 err:
435  IPAddressOrRange_free(aor);
436  return 0;
437}
438
439/*
440 * Construct a range.  If it can be expressed as a prefix,
441 * return a prefix instead.  Doing this here simplifies
442 * the rest of the code considerably.
443 */
444static int make_addressRange(IPAddressOrRange **result,
445			     unsigned char *min,
446			     unsigned char *max,
447			     const int length)
448{
449  IPAddressOrRange *aor;
450  int i, prefixlen;
451
452  if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
453    return make_addressPrefix(result, min, prefixlen);
454
455  if ((aor = IPAddressOrRange_new()) == NULL)
456    return 0;
457  aor->type = IPAddressOrRange_addressRange;
458  OPENSSL_assert(aor->u.addressRange == NULL);
459  if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
460    goto err;
461  if (aor->u.addressRange->min == NULL &&
462      (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
463    goto err;
464  if (aor->u.addressRange->max == NULL &&
465      (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
466    goto err;
467
468  for (i = length; i > 0 && min[i - 1] == 0x00; --i)
469    ;
470  if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
471    goto err;
472  aor->u.addressRange->min->flags &= ~7;
473  aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
474  if (i > 0) {
475    unsigned char b = min[i - 1];
476    int j = 1;
477    while ((b & (0xFFU >> j)) != 0)
478      ++j;
479    aor->u.addressRange->min->flags |= 8 - j;
480  }
481
482  for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
483    ;
484  if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
485    goto err;
486  aor->u.addressRange->max->flags &= ~7;
487  aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
488  if (i > 0) {
489    unsigned char b = max[i - 1];
490    int j = 1;
491    while ((b & (0xFFU >> j)) != (0xFFU >> j))
492      ++j;
493    aor->u.addressRange->max->flags |= 8 - j;
494  }
495
496  *result = aor;
497  return 1;
498
499 err:
500  IPAddressOrRange_free(aor);
501  return 0;
502}
503
504/*
505 * Construct a new address family or find an existing one.
506 */
507static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
508					     const unsigned afi,
509					     const unsigned *safi)
510{
511  IPAddressFamily *f;
512  unsigned char key[3];
513  unsigned keylen;
514  int i;
515
516  key[0] = (afi >> 8) & 0xFF;
517  key[1] = afi & 0xFF;
518  if (safi != NULL) {
519    key[2] = *safi & 0xFF;
520    keylen = 3;
521  } else {
522    keylen = 2;
523  }
524
525  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
526    f = sk_IPAddressFamily_value(addr, i);
527    OPENSSL_assert(f->addressFamily->data != NULL);
528    if (f->addressFamily->length == keylen &&
529	!memcmp(f->addressFamily->data, key, keylen))
530      return f;
531  }
532
533  if ((f = IPAddressFamily_new()) == NULL)
534    goto err;
535  if (f->ipAddressChoice == NULL &&
536      (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
537    goto err;
538  if (f->addressFamily == NULL &&
539      (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
540    goto err;
541  if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
542    goto err;
543  if (!sk_IPAddressFamily_push(addr, f))
544    goto err;
545
546  return f;
547
548 err:
549  IPAddressFamily_free(f);
550  return NULL;
551}
552
553/*
554 * Add an inheritance element.
555 */
556int v3_addr_add_inherit(IPAddrBlocks *addr,
557			const unsigned afi,
558			const unsigned *safi)
559{
560  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
561  if (f == NULL ||
562      f->ipAddressChoice == NULL ||
563      (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
564       f->ipAddressChoice->u.addressesOrRanges != NULL))
565    return 0;
566  if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
567      f->ipAddressChoice->u.inherit != NULL)
568    return 1;
569  if (f->ipAddressChoice->u.inherit == NULL &&
570      (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
571    return 0;
572  f->ipAddressChoice->type = IPAddressChoice_inherit;
573  return 1;
574}
575
576/*
577 * Construct an IPAddressOrRange sequence, or return an existing one.
578 */
579static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
580					       const unsigned afi,
581					       const unsigned *safi)
582{
583  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
584  IPAddressOrRanges *aors = NULL;
585
586  if (f == NULL ||
587      f->ipAddressChoice == NULL ||
588      (f->ipAddressChoice->type == IPAddressChoice_inherit &&
589       f->ipAddressChoice->u.inherit != NULL))
590    return NULL;
591  if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
592    aors = f->ipAddressChoice->u.addressesOrRanges;
593  if (aors != NULL)
594    return aors;
595  if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
596    return NULL;
597  switch (afi) {
598  case IANA_AFI_IPV4:
599    (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
600    break;
601  case IANA_AFI_IPV6:
602    (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
603    break;
604  }
605  f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
606  f->ipAddressChoice->u.addressesOrRanges = aors;
607  return aors;
608}
609
610/*
611 * Add a prefix.
612 */
613int v3_addr_add_prefix(IPAddrBlocks *addr,
614		       const unsigned afi,
615		       const unsigned *safi,
616		       unsigned char *a,
617		       const int prefixlen)
618{
619  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
620  IPAddressOrRange *aor;
621  if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
622    return 0;
623  if (sk_IPAddressOrRange_push(aors, aor))
624    return 1;
625  IPAddressOrRange_free(aor);
626  return 0;
627}
628
629/*
630 * Add a range.
631 */
632int v3_addr_add_range(IPAddrBlocks *addr,
633		      const unsigned afi,
634		      const unsigned *safi,
635		      unsigned char *min,
636		      unsigned char *max)
637{
638  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
639  IPAddressOrRange *aor;
640  int length = length_from_afi(afi);
641  if (aors == NULL)
642    return 0;
643  if (!make_addressRange(&aor, min, max, length))
644    return 0;
645  if (sk_IPAddressOrRange_push(aors, aor))
646    return 1;
647  IPAddressOrRange_free(aor);
648  return 0;
649}
650
651/*
652 * Extract min and max values from an IPAddressOrRange.
653 */
654static void extract_min_max(IPAddressOrRange *aor,
655			    unsigned char *min,
656			    unsigned char *max,
657			    int length)
658{
659  OPENSSL_assert(aor != NULL && min != NULL && max != NULL);
660  switch (aor->type) {
661  case IPAddressOrRange_addressPrefix:
662    addr_expand(min, aor->u.addressPrefix, length, 0x00);
663    addr_expand(max, aor->u.addressPrefix, length, 0xFF);
664    return;
665  case IPAddressOrRange_addressRange:
666    addr_expand(min, aor->u.addressRange->min, length, 0x00);
667    addr_expand(max, aor->u.addressRange->max, length, 0xFF);
668    return;
669  }
670}
671
672/*
673 * Public wrapper for extract_min_max().
674 */
675int v3_addr_get_range(IPAddressOrRange *aor,
676		      const unsigned afi,
677		      unsigned char *min,
678		      unsigned char *max,
679		      const int length)
680{
681  int afi_length = length_from_afi(afi);
682  if (aor == NULL || min == NULL || max == NULL ||
683      afi_length == 0 || length < afi_length ||
684      (aor->type != IPAddressOrRange_addressPrefix &&
685       aor->type != IPAddressOrRange_addressRange))
686    return 0;
687  extract_min_max(aor, min, max, afi_length);
688  return afi_length;
689}
690
691/*
692 * Sort comparision function for a sequence of IPAddressFamily.
693 *
694 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
695 * the ordering: I can read it as meaning that IPv6 without a SAFI
696 * comes before IPv4 with a SAFI, which seems pretty weird.  The
697 * examples in appendix B suggest that the author intended the
698 * null-SAFI rule to apply only within a single AFI, which is what I
699 * would have expected and is what the following code implements.
700 */
701static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
702			       const IPAddressFamily * const *b_)
703{
704  const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
705  const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
706  int len = ((a->length <= b->length) ? a->length : b->length);
707  int cmp = memcmp(a->data, b->data, len);
708  return cmp ? cmp : a->length - b->length;
709}
710
711/*
712 * Check whether an IPAddrBLocks is in canonical form.
713 */
714int v3_addr_is_canonical(IPAddrBlocks *addr)
715{
716  unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
717  unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
718  IPAddressOrRanges *aors;
719  int i, j, k;
720
721  /*
722   * Empty extension is cannonical.
723   */
724  if (addr == NULL)
725    return 1;
726
727  /*
728   * Check whether the top-level list is in order.
729   */
730  for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
731    const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
732    const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
733    if (IPAddressFamily_cmp(&a, &b) >= 0)
734      return 0;
735  }
736
737  /*
738   * Top level's ok, now check each address family.
739   */
740  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
741    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
742    int length = length_from_afi(v3_addr_get_afi(f));
743
744    /*
745     * Inheritance is canonical.  Anything other than inheritance or
746     * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
747     */
748    if (f == NULL || f->ipAddressChoice == NULL)
749      return 0;
750    switch (f->ipAddressChoice->type) {
751    case IPAddressChoice_inherit:
752      continue;
753    case IPAddressChoice_addressesOrRanges:
754      break;
755    default:
756      return 0;
757    }
758
759    /*
760     * It's an IPAddressOrRanges sequence, check it.
761     */
762    aors = f->ipAddressChoice->u.addressesOrRanges;
763    if (sk_IPAddressOrRange_num(aors) == 0)
764      return 0;
765    for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
766      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
767      IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
768
769      extract_min_max(a, a_min, a_max, length);
770      extract_min_max(b, b_min, b_max, length);
771
772      /*
773       * Punt misordered list, overlapping start, or inverted range.
774       */
775      if (memcmp(a_min, b_min, length) >= 0 ||
776	  memcmp(a_min, a_max, length) > 0 ||
777	  memcmp(b_min, b_max, length) > 0)
778	return 0;
779
780      /*
781       * Punt if adjacent or overlapping.  Check for adjacency by
782       * subtracting one from b_min first.
783       */
784      for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
785	;
786      if (memcmp(a_max, b_min, length) >= 0)
787	return 0;
788
789      /*
790       * Check for range that should be expressed as a prefix.
791       */
792      if (a->type == IPAddressOrRange_addressRange &&
793	  range_should_be_prefix(a_min, a_max, length) >= 0)
794	return 0;
795    }
796
797    /*
798     * Check final range to see if it should be a prefix.
799     */
800    j = sk_IPAddressOrRange_num(aors) - 1;
801    {
802      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
803      if (a->type == IPAddressOrRange_addressRange) {
804	extract_min_max(a, a_min, a_max, length);
805	if (range_should_be_prefix(a_min, a_max, length) >= 0)
806	  return 0;
807      }
808    }
809  }
810
811  /*
812   * If we made it through all that, we're happy.
813   */
814  return 1;
815}
816
817/*
818 * Whack an IPAddressOrRanges into canonical form.
819 */
820static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
821				      const unsigned afi)
822{
823  int i, j, length = length_from_afi(afi);
824
825  /*
826   * Sort the IPAddressOrRanges sequence.
827   */
828  sk_IPAddressOrRange_sort(aors);
829
830  /*
831   * Clean up representation issues, punt on duplicates or overlaps.
832   */
833  for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
834    IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
835    IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
836    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
837    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
838
839    extract_min_max(a, a_min, a_max, length);
840    extract_min_max(b, b_min, b_max, length);
841
842    /*
843     * Punt overlaps.
844     */
845    if (memcmp(a_max, b_min, length) >= 0)
846      return 0;
847
848    /*
849     * Merge if a and b are adjacent.  We check for
850     * adjacency by subtracting one from b_min first.
851     */
852    for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
853      ;
854    if (memcmp(a_max, b_min, length) == 0) {
855      IPAddressOrRange *merged;
856      if (!make_addressRange(&merged, a_min, b_max, length))
857	return 0;
858      sk_IPAddressOrRange_set(aors, i, merged);
859      (void)sk_IPAddressOrRange_delete(aors, i + 1);
860      IPAddressOrRange_free(a);
861      IPAddressOrRange_free(b);
862      --i;
863      continue;
864    }
865  }
866
867  return 1;
868}
869
870/*
871 * Whack an IPAddrBlocks extension into canonical form.
872 */
873int v3_addr_canonize(IPAddrBlocks *addr)
874{
875  int i;
876  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
877    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
878    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
879	!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
880				    v3_addr_get_afi(f)))
881      return 0;
882  }
883  (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
884  sk_IPAddressFamily_sort(addr);
885  OPENSSL_assert(v3_addr_is_canonical(addr));
886  return 1;
887}
888
889/*
890 * v2i handler for the IPAddrBlocks extension.
891 */
892static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
893			      struct v3_ext_ctx *ctx,
894			      STACK_OF(CONF_VALUE) *values)
895{
896  static const char v4addr_chars[] = "0123456789.";
897  static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
898  IPAddrBlocks *addr = NULL;
899  char *s = NULL, *t;
900  int i;
901
902  if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
903    X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
904    return NULL;
905  }
906
907  for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
908    CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
909    unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
910    unsigned afi, *safi = NULL, safi_;
911    const char *addr_chars;
912    int prefixlen, i1, i2, delim, length;
913
914    if (       !name_cmp(val->name, "IPv4")) {
915      afi = IANA_AFI_IPV4;
916    } else if (!name_cmp(val->name, "IPv6")) {
917      afi = IANA_AFI_IPV6;
918    } else if (!name_cmp(val->name, "IPv4-SAFI")) {
919      afi = IANA_AFI_IPV4;
920      safi = &safi_;
921    } else if (!name_cmp(val->name, "IPv6-SAFI")) {
922      afi = IANA_AFI_IPV6;
923      safi = &safi_;
924    } else {
925      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
926      X509V3_conf_err(val);
927      goto err;
928    }
929
930    switch (afi) {
931    case IANA_AFI_IPV4:
932      addr_chars = v4addr_chars;
933      break;
934    case IANA_AFI_IPV6:
935      addr_chars = v6addr_chars;
936      break;
937    }
938
939    length = length_from_afi(afi);
940
941    /*
942     * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
943     * the other input values.
944     */
945    if (safi != NULL) {
946      *safi = strtoul(val->value, &t, 0);
947      t += strspn(t, " \t");
948      if (*safi > 0xFF || *t++ != ':') {
949	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
950	X509V3_conf_err(val);
951	goto err;
952      }
953      t += strspn(t, " \t");
954      s = BUF_strdup(t);
955    } else {
956      s = BUF_strdup(val->value);
957    }
958    if (s == NULL) {
959      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
960      goto err;
961    }
962
963    /*
964     * Check for inheritance.  Not worth additional complexity to
965     * optimize this (seldom-used) case.
966     */
967    if (!strcmp(s, "inherit")) {
968      if (!v3_addr_add_inherit(addr, afi, safi)) {
969	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
970	X509V3_conf_err(val);
971	goto err;
972      }
973      OPENSSL_free(s);
974      s = NULL;
975      continue;
976    }
977
978    i1 = strspn(s, addr_chars);
979    i2 = i1 + strspn(s + i1, " \t");
980    delim = s[i2++];
981    s[i1] = '\0';
982
983    if (a2i_ipadd(min, s) != length) {
984      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
985      X509V3_conf_err(val);
986      goto err;
987    }
988
989    switch (delim) {
990    case '/':
991      prefixlen = (int) strtoul(s + i2, &t, 10);
992      if (t == s + i2 || *t != '\0') {
993	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
994	X509V3_conf_err(val);
995	goto err;
996      }
997      if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
998	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
999	goto err;
1000      }
1001      break;
1002    case '-':
1003      i1 = i2 + strspn(s + i2, " \t");
1004      i2 = i1 + strspn(s + i1, addr_chars);
1005      if (i1 == i2 || s[i2] != '\0') {
1006	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1007	X509V3_conf_err(val);
1008	goto err;
1009      }
1010      if (a2i_ipadd(max, s + i1) != length) {
1011	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1012	X509V3_conf_err(val);
1013	goto err;
1014      }
1015      if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1016	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1017	goto err;
1018      }
1019      break;
1020    case '\0':
1021      if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1022	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1023	goto err;
1024      }
1025      break;
1026    default:
1027      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1028      X509V3_conf_err(val);
1029      goto err;
1030    }
1031
1032    OPENSSL_free(s);
1033    s = NULL;
1034  }
1035
1036  /*
1037   * Canonize the result, then we're done.
1038   */
1039  if (!v3_addr_canonize(addr))
1040    goto err;
1041  return addr;
1042
1043 err:
1044  OPENSSL_free(s);
1045  sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1046  return NULL;
1047}
1048
1049/*
1050 * OpenSSL dispatch
1051 */
1052const X509V3_EXT_METHOD v3_addr = {
1053  NID_sbgp_ipAddrBlock,		/* nid */
1054  0,				/* flags */
1055  ASN1_ITEM_ref(IPAddrBlocks),	/* template */
1056  0, 0, 0, 0,			/* old functions, ignored */
1057  0,				/* i2s */
1058  0,				/* s2i */
1059  0,				/* i2v */
1060  v2i_IPAddrBlocks,		/* v2i */
1061  i2r_IPAddrBlocks,		/* i2r */
1062  0,				/* r2i */
1063  NULL				/* extension-specific data */
1064};
1065
1066/*
1067 * Figure out whether extension sues inheritance.
1068 */
1069int v3_addr_inherits(IPAddrBlocks *addr)
1070{
1071  int i;
1072  if (addr == NULL)
1073    return 0;
1074  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1075    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1076    if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1077      return 1;
1078  }
1079  return 0;
1080}
1081
1082/*
1083 * Figure out whether parent contains child.
1084 */
1085static int addr_contains(IPAddressOrRanges *parent,
1086			 IPAddressOrRanges *child,
1087			 int length)
1088{
1089  unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1090  unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1091  int p, c;
1092
1093  if (child == NULL || parent == child)
1094    return 1;
1095  if (parent == NULL)
1096    return 0;
1097
1098  p = 0;
1099  for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1100    extract_min_max(sk_IPAddressOrRange_value(child, c),
1101		    c_min, c_max, length);
1102    for (;; p++) {
1103      if (p >= sk_IPAddressOrRange_num(parent))
1104	return 0;
1105      extract_min_max(sk_IPAddressOrRange_value(parent, p),
1106		      p_min, p_max, length);
1107      if (memcmp(p_max, c_max, length) < 0)
1108	continue;
1109      if (memcmp(p_min, c_min, length) > 0)
1110	return 0;
1111      break;
1112    }
1113  }
1114
1115  return 1;
1116}
1117
1118/*
1119 * Test whether a is a subset of b.
1120 */
1121int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1122{
1123  int i;
1124  if (a == NULL || a == b)
1125    return 1;
1126  if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1127    return 0;
1128  (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1129  for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1130    IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1131    int j = sk_IPAddressFamily_find(b, fa);
1132    IPAddressFamily *fb;
1133    fb = sk_IPAddressFamily_value(b, j);
1134    if (fb == NULL)
1135       return 0;
1136    if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1137		       fa->ipAddressChoice->u.addressesOrRanges,
1138		       length_from_afi(v3_addr_get_afi(fb))))
1139      return 0;
1140  }
1141  return 1;
1142}
1143
1144/*
1145 * Validation error handling via callback.
1146 */
1147#define validation_err(_err_)		\
1148  do {					\
1149    if (ctx != NULL) {			\
1150      ctx->error = _err_;		\
1151      ctx->error_depth = i;		\
1152      ctx->current_cert = x;		\
1153      ret = ctx->verify_cb(0, ctx);	\
1154    } else {				\
1155      ret = 0;				\
1156    }					\
1157    if (!ret)				\
1158      goto done;			\
1159  } while (0)
1160
1161/*
1162 * Core code for RFC 3779 2.3 path validation.
1163 */
1164static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1165					  STACK_OF(X509) *chain,
1166					  IPAddrBlocks *ext)
1167{
1168  IPAddrBlocks *child = NULL;
1169  int i, j, ret = 1;
1170  X509 *x = NULL;
1171
1172  OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1173  OPENSSL_assert(ctx != NULL || ext != NULL);
1174  OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1175
1176  /*
1177   * Figure out where to start.  If we don't have an extension to
1178   * check, we're done.  Otherwise, check canonical form and
1179   * set up for walking up the chain.
1180   */
1181  if (ext != NULL) {
1182    i = -1;
1183  } else {
1184    i = 0;
1185    x = sk_X509_value(chain, i);
1186    OPENSSL_assert(x != NULL);
1187    if ((ext = x->rfc3779_addr) == NULL)
1188      goto done;
1189  }
1190  if (!v3_addr_is_canonical(ext))
1191    validation_err(X509_V_ERR_INVALID_EXTENSION);
1192  (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1193  if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1194    X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1195    ret = 0;
1196    goto done;
1197  }
1198
1199  /*
1200   * Now walk up the chain.  No cert may list resources that its
1201   * parent doesn't list.
1202   */
1203  for (i++; i < sk_X509_num(chain); i++) {
1204    x = sk_X509_value(chain, i);
1205    OPENSSL_assert(x != NULL);
1206    if (!v3_addr_is_canonical(x->rfc3779_addr))
1207      validation_err(X509_V_ERR_INVALID_EXTENSION);
1208    if (x->rfc3779_addr == NULL) {
1209      for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1210	IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1211	if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1212	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1213	  break;
1214	}
1215      }
1216      continue;
1217    }
1218    (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1219    for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1220      IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1221      int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1222      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1223      if (fp == NULL) {
1224	if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1225	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1226	  break;
1227	}
1228	continue;
1229      }
1230      if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1231	if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1232	    addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1233			  fc->ipAddressChoice->u.addressesOrRanges,
1234			  length_from_afi(v3_addr_get_afi(fc))))
1235	  sk_IPAddressFamily_set(child, j, fp);
1236	else
1237	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1238      }
1239    }
1240  }
1241
1242  /*
1243   * Trust anchor can't inherit.
1244   */
1245  if (x->rfc3779_addr != NULL) {
1246    for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1247      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1248      if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1249	  sk_IPAddressFamily_find(child, fp) >= 0)
1250	validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1251    }
1252  }
1253
1254 done:
1255  sk_IPAddressFamily_free(child);
1256  return ret;
1257}
1258
1259#undef validation_err
1260
1261/*
1262 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1263 */
1264int v3_addr_validate_path(X509_STORE_CTX *ctx)
1265{
1266  return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1267}
1268
1269/*
1270 * RFC 3779 2.3 path validation of an extension.
1271 * Test whether chain covers extension.
1272 */
1273int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1274				  IPAddrBlocks *ext,
1275				  int allow_inheritance)
1276{
1277  if (ext == NULL)
1278    return 1;
1279  if (chain == NULL || sk_X509_num(chain) == 0)
1280    return 0;
1281  if (!allow_inheritance && v3_addr_inherits(ext))
1282    return 0;
1283  return v3_addr_validate_path_internal(NULL, chain, ext);
1284}
1285
1286#endif /* OPENSSL_NO_RFC3779 */
1287