1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser.  This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704.  Funding was partially provided by the
15National Science Foundation under grant MIP-9311980.  The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42#include <sunmath.h>
43#endif
44
45#include <inttypes.h>
46#include "config.h"
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified.  For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
56typedef uint8_t flag;
57typedef uint8_t uint8;
58typedef int8_t int8;
59#ifndef _AIX
60typedef int16_t uint16;
61typedef int int16;
62#endif
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
71#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
72#define SNAN_BIT_IS_ONE		1
73#else
74#define SNAN_BIT_IS_ONE		0
75#endif
76
77/*----------------------------------------------------------------------------
78| The macro `FLOATX80' must be defined to enable the extended double-precision
79| floating-point format `floatx80'.  If this macro is not defined, the
80| `floatx80' type will not be defined, and none of the functions that either
81| input or output the `floatx80' type will be defined.  The same applies to
82| the `FLOAT128' macro and the quadruple-precision format `float128'.
83*----------------------------------------------------------------------------*/
84#ifdef CONFIG_SOFTFLOAT
85/* bit exact soft float support */
86#define FLOATX80
87#define FLOAT128
88#else
89/* native float support */
90#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
91#define FLOATX80
92#endif
93#endif /* !CONFIG_SOFTFLOAT */
94
95#define STATUS_PARAM , float_status *status
96#define STATUS(field) status->field
97#define STATUS_VAR , status
98
99/*----------------------------------------------------------------------------
100| Software IEC/IEEE floating-point ordering relations
101*----------------------------------------------------------------------------*/
102enum {
103    float_relation_less      = -1,
104    float_relation_equal     =  0,
105    float_relation_greater   =  1,
106    float_relation_unordered =  2
107};
108
109#ifdef CONFIG_SOFTFLOAT
110/*----------------------------------------------------------------------------
111| Software IEC/IEEE floating-point types.
112*----------------------------------------------------------------------------*/
113/* Use structures for soft-float types.  This prevents accidentally mixing
114   them with native int/float types.  A sufficiently clever compiler and
115   sane ABI should be able to see though these structs.  However
116   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
117//#define USE_SOFTFLOAT_STRUCT_TYPES
118#ifdef USE_SOFTFLOAT_STRUCT_TYPES
119typedef struct {
120    uint16_t v;
121} float16;
122#define float16_val(x) (((float16)(x)).v)
123#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
124#define const_float16(x) { x }
125typedef struct {
126    uint32_t v;
127} float32;
128/* The cast ensures an error if the wrong type is passed.  */
129#define float32_val(x) (((float32)(x)).v)
130#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
131#define const_float32(x) { x }
132typedef struct {
133    uint64_t v;
134} float64;
135#define float64_val(x) (((float64)(x)).v)
136#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
137#define const_float64(x) { x }
138#else
139typedef uint16_t float16;
140typedef uint32_t float32;
141typedef uint64_t float64;
142#define float16_val(x) (x)
143#define float32_val(x) (x)
144#define float64_val(x) (x)
145#define make_float16(x) (x)
146#define make_float32(x) (x)
147#define make_float64(x) (x)
148#define const_float16(x) (x)
149#define const_float32(x) (x)
150#define const_float64(x) (x)
151#endif
152#ifdef FLOATX80
153typedef struct {
154    uint64_t low;
155    uint16_t high;
156} floatx80;
157#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158#endif
159#ifdef FLOAT128
160typedef struct {
161#ifdef HOST_WORDS_BIGENDIAN
162    uint64_t high, low;
163#else
164    uint64_t low, high;
165#endif
166} float128;
167#endif
168
169/*----------------------------------------------------------------------------
170| Software IEC/IEEE floating-point underflow tininess-detection mode.
171*----------------------------------------------------------------------------*/
172enum {
173    float_tininess_after_rounding  = 0,
174    float_tininess_before_rounding = 1
175};
176
177/*----------------------------------------------------------------------------
178| Software IEC/IEEE floating-point rounding mode.
179*----------------------------------------------------------------------------*/
180enum {
181    float_round_nearest_even = 0,
182    float_round_down         = 1,
183    float_round_up           = 2,
184    float_round_to_zero      = 3
185};
186
187/*----------------------------------------------------------------------------
188| Software IEC/IEEE floating-point exception flags.
189*----------------------------------------------------------------------------*/
190enum {
191    float_flag_invalid   =  1,
192    float_flag_divbyzero =  4,
193    float_flag_overflow  =  8,
194    float_flag_underflow = 16,
195    float_flag_inexact   = 32,
196    float_flag_input_denormal = 64,
197    float_flag_output_denormal = 128
198};
199
200typedef struct float_status {
201    signed char float_detect_tininess;
202    signed char float_rounding_mode;
203    signed char float_exception_flags;
204#ifdef FLOATX80
205    signed char floatx80_rounding_precision;
206#endif
207    /* should denormalised results go to zero and set the inexact flag? */
208    flag flush_to_zero;
209    /* should denormalised inputs go to zero and set the input_denormal flag? */
210    flag flush_inputs_to_zero;
211    flag default_nan_mode;
212} float_status;
213
214void set_float_rounding_mode(int val STATUS_PARAM);
215void set_float_exception_flags(int val STATUS_PARAM);
216INLINE void set_float_detect_tininess(int val STATUS_PARAM)
217{
218    STATUS(float_detect_tininess) = val;
219}
220INLINE void set_flush_to_zero(flag val STATUS_PARAM)
221{
222    STATUS(flush_to_zero) = val;
223}
224INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
225{
226    STATUS(flush_inputs_to_zero) = val;
227}
228INLINE void set_default_nan_mode(flag val STATUS_PARAM)
229{
230    STATUS(default_nan_mode) = val;
231}
232INLINE int get_float_exception_flags(float_status *status)
233{
234    return STATUS(float_exception_flags);
235}
236#ifdef FLOATX80
237void set_floatx80_rounding_precision(int val STATUS_PARAM);
238#endif
239
240/*----------------------------------------------------------------------------
241| Routine to raise any or all of the software IEC/IEEE floating-point
242| exception flags.
243*----------------------------------------------------------------------------*/
244void float_raise( int8 flags STATUS_PARAM);
245
246/*----------------------------------------------------------------------------
247| Software IEC/IEEE integer-to-floating-point conversion routines.
248*----------------------------------------------------------------------------*/
249float32 int32_to_float32( int32 STATUS_PARAM );
250float64 int32_to_float64( int32 STATUS_PARAM );
251float32 uint32_to_float32( unsigned int STATUS_PARAM );
252float64 uint32_to_float64( unsigned int STATUS_PARAM );
253#ifdef FLOATX80
254floatx80 int32_to_floatx80( int32 STATUS_PARAM );
255#endif
256#ifdef FLOAT128
257float128 int32_to_float128( int32 STATUS_PARAM );
258#endif
259float32 int64_to_float32( int64 STATUS_PARAM );
260float32 uint64_to_float32( uint64 STATUS_PARAM );
261float64 int64_to_float64( int64 STATUS_PARAM );
262float64 uint64_to_float64( uint64 STATUS_PARAM );
263#ifdef FLOATX80
264floatx80 int64_to_floatx80( int64 STATUS_PARAM );
265#endif
266#ifdef FLOAT128
267float128 int64_to_float128( int64 STATUS_PARAM );
268#endif
269
270/*----------------------------------------------------------------------------
271| Software half-precision conversion routines.
272*----------------------------------------------------------------------------*/
273float16 float32_to_float16( float32, flag STATUS_PARAM );
274float32 float16_to_float32( float16, flag STATUS_PARAM );
275
276/*----------------------------------------------------------------------------
277| Software half-precision operations.
278*----------------------------------------------------------------------------*/
279int float16_is_quiet_nan( float16 );
280int float16_is_signaling_nan( float16 );
281float16 float16_maybe_silence_nan( float16 );
282
283/*----------------------------------------------------------------------------
284| The pattern for a default generated half-precision NaN.
285*----------------------------------------------------------------------------*/
286#if defined(TARGET_ARM)
287#define float16_default_nan make_float16(0x7E00)
288#elif SNAN_BIT_IS_ONE
289#define float16_default_nan make_float16(0x7DFF)
290#else
291#define float16_default_nan make_float16(0xFE00)
292#endif
293
294/*----------------------------------------------------------------------------
295| Software IEC/IEEE single-precision conversion routines.
296*----------------------------------------------------------------------------*/
297int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
298unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
299int32 float32_to_int32( float32 STATUS_PARAM );
300int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
301uint32 float32_to_uint32( float32 STATUS_PARAM );
302uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
303int64 float32_to_int64( float32 STATUS_PARAM );
304int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
305float64 float32_to_float64( float32 STATUS_PARAM );
306#ifdef FLOATX80
307floatx80 float32_to_floatx80( float32 STATUS_PARAM );
308#endif
309#ifdef FLOAT128
310float128 float32_to_float128( float32 STATUS_PARAM );
311#endif
312
313/*----------------------------------------------------------------------------
314| Software IEC/IEEE single-precision operations.
315*----------------------------------------------------------------------------*/
316float32 float32_round_to_int( float32 STATUS_PARAM );
317float32 float32_add( float32, float32 STATUS_PARAM );
318float32 float32_sub( float32, float32 STATUS_PARAM );
319float32 float32_mul( float32, float32 STATUS_PARAM );
320float32 float32_div( float32, float32 STATUS_PARAM );
321float32 float32_rem( float32, float32 STATUS_PARAM );
322float32 float32_sqrt( float32 STATUS_PARAM );
323float32 float32_exp2( float32 STATUS_PARAM );
324float32 float32_log2( float32 STATUS_PARAM );
325int float32_eq( float32, float32 STATUS_PARAM );
326int float32_le( float32, float32 STATUS_PARAM );
327int float32_lt( float32, float32 STATUS_PARAM );
328int float32_unordered( float32, float32 STATUS_PARAM );
329int float32_eq_quiet( float32, float32 STATUS_PARAM );
330int float32_le_quiet( float32, float32 STATUS_PARAM );
331int float32_lt_quiet( float32, float32 STATUS_PARAM );
332int float32_unordered_quiet( float32, float32 STATUS_PARAM );
333int float32_compare( float32, float32 STATUS_PARAM );
334int float32_compare_quiet( float32, float32 STATUS_PARAM );
335float32 float32_min(float32, float32 STATUS_PARAM);
336float32 float32_max(float32, float32 STATUS_PARAM);
337int float32_is_quiet_nan( float32 );
338int float32_is_signaling_nan( float32 );
339float32 float32_maybe_silence_nan( float32 );
340float32 float32_scalbn( float32, int STATUS_PARAM );
341
342INLINE float32 float32_abs(float32 a)
343{
344    /* Note that abs does *not* handle NaN specially, nor does
345     * it flush denormal inputs to zero.
346     */
347    return make_float32(float32_val(a) & 0x7fffffff);
348}
349
350INLINE float32 float32_chs(float32 a)
351{
352    /* Note that chs does *not* handle NaN specially, nor does
353     * it flush denormal inputs to zero.
354     */
355    return make_float32(float32_val(a) ^ 0x80000000);
356}
357
358INLINE int float32_is_infinity(float32 a)
359{
360    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
361}
362
363INLINE int float32_is_neg(float32 a)
364{
365    return float32_val(a) >> 31;
366}
367
368INLINE int float32_is_zero(float32 a)
369{
370    return (float32_val(a) & 0x7fffffff) == 0;
371}
372
373INLINE int float32_is_any_nan(float32 a)
374{
375    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
376}
377
378INLINE int float32_is_zero_or_denormal(float32 a)
379{
380    return (float32_val(a) & 0x7f800000) == 0;
381}
382
383INLINE float32 float32_set_sign(float32 a, int sign)
384{
385    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
386}
387
388#define float32_zero make_float32(0)
389#define float32_one make_float32(0x3f800000)
390#define float32_ln2 make_float32(0x3f317218)
391#define float32_pi make_float32(0x40490fdb)
392#define float32_half make_float32(0x3f000000)
393#define float32_infinity make_float32(0x7f800000)
394
395
396/*----------------------------------------------------------------------------
397| The pattern for a default generated single-precision NaN.
398*----------------------------------------------------------------------------*/
399#if defined(TARGET_SPARC)
400#define float32_default_nan make_float32(0x7FFFFFFF)
401#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
402#define float32_default_nan make_float32(0x7FC00000)
403#elif SNAN_BIT_IS_ONE
404#define float32_default_nan make_float32(0x7FBFFFFF)
405#else
406#define float32_default_nan make_float32(0xFFC00000)
407#endif
408
409/*----------------------------------------------------------------------------
410| Software IEC/IEEE double-precision conversion routines.
411*----------------------------------------------------------------------------*/
412int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
413unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
414int32 float64_to_int32( float64 STATUS_PARAM );
415int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
416uint32 float64_to_uint32( float64 STATUS_PARAM );
417uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
418int64 float64_to_int64( float64 STATUS_PARAM );
419int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
420uint64 float64_to_uint64 (float64 a STATUS_PARAM);
421uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
422float32 float64_to_float32( float64 STATUS_PARAM );
423#ifdef FLOATX80
424floatx80 float64_to_floatx80( float64 STATUS_PARAM );
425#endif
426#ifdef FLOAT128
427float128 float64_to_float128( float64 STATUS_PARAM );
428#endif
429
430/*----------------------------------------------------------------------------
431| Software IEC/IEEE double-precision operations.
432*----------------------------------------------------------------------------*/
433float64 float64_round_to_int( float64 STATUS_PARAM );
434float64 float64_trunc_to_int( float64 STATUS_PARAM );
435float64 float64_add( float64, float64 STATUS_PARAM );
436float64 float64_sub( float64, float64 STATUS_PARAM );
437float64 float64_mul( float64, float64 STATUS_PARAM );
438float64 float64_div( float64, float64 STATUS_PARAM );
439float64 float64_rem( float64, float64 STATUS_PARAM );
440float64 float64_sqrt( float64 STATUS_PARAM );
441float64 float64_log2( float64 STATUS_PARAM );
442int float64_eq( float64, float64 STATUS_PARAM );
443int float64_le( float64, float64 STATUS_PARAM );
444int float64_lt( float64, float64 STATUS_PARAM );
445int float64_unordered( float64, float64 STATUS_PARAM );
446int float64_eq_quiet( float64, float64 STATUS_PARAM );
447int float64_le_quiet( float64, float64 STATUS_PARAM );
448int float64_lt_quiet( float64, float64 STATUS_PARAM );
449int float64_unordered_quiet( float64, float64 STATUS_PARAM );
450int float64_compare( float64, float64 STATUS_PARAM );
451int float64_compare_quiet( float64, float64 STATUS_PARAM );
452float64 float64_min(float64, float64 STATUS_PARAM);
453float64 float64_max(float64, float64 STATUS_PARAM);
454int float64_is_quiet_nan( float64 a );
455int float64_is_signaling_nan( float64 );
456float64 float64_maybe_silence_nan( float64 );
457float64 float64_scalbn( float64, int STATUS_PARAM );
458
459INLINE float64 float64_abs(float64 a)
460{
461    /* Note that abs does *not* handle NaN specially, nor does
462     * it flush denormal inputs to zero.
463     */
464    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
465}
466
467INLINE float64 float64_chs(float64 a)
468{
469    /* Note that chs does *not* handle NaN specially, nor does
470     * it flush denormal inputs to zero.
471     */
472    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
473}
474
475INLINE int float64_is_infinity(float64 a)
476{
477    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
478}
479
480INLINE int float64_is_neg(float64 a)
481{
482    return float64_val(a) >> 63;
483}
484
485INLINE int float64_is_zero(float64 a)
486{
487    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
488}
489
490INLINE int float64_is_any_nan(float64 a)
491{
492    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
493}
494
495INLINE float64 float64_set_sign(float64 a, int sign)
496{
497    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
498                        | ((int64_t)sign << 63));
499}
500
501#define float64_zero make_float64(0)
502#define float64_one make_float64(0x3ff0000000000000LL)
503#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
504#define float64_pi make_float64(0x400921fb54442d18LL)
505#define float64_half make_float64(0x3fe0000000000000LL)
506#define float64_infinity make_float64(0x7ff0000000000000LL)
507
508/*----------------------------------------------------------------------------
509| The pattern for a default generated double-precision NaN.
510*----------------------------------------------------------------------------*/
511#if defined(TARGET_SPARC)
512#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
513#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
514#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
515#elif SNAN_BIT_IS_ONE
516#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
517#else
518#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
519#endif
520
521#ifdef FLOATX80
522
523/*----------------------------------------------------------------------------
524| Software IEC/IEEE extended double-precision conversion routines.
525*----------------------------------------------------------------------------*/
526int32 floatx80_to_int32( floatx80 STATUS_PARAM );
527int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
528int64 floatx80_to_int64( floatx80 STATUS_PARAM );
529int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
530float32 floatx80_to_float32( floatx80 STATUS_PARAM );
531float64 floatx80_to_float64( floatx80 STATUS_PARAM );
532#ifdef FLOAT128
533float128 floatx80_to_float128( floatx80 STATUS_PARAM );
534#endif
535
536/*----------------------------------------------------------------------------
537| Software IEC/IEEE extended double-precision operations.
538*----------------------------------------------------------------------------*/
539floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
540floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
541floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
542floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
543floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
544floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
545floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
546int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
547int floatx80_le( floatx80, floatx80 STATUS_PARAM );
548int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
549int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
550int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
551int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
552int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
553int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
554int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
555int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
556int floatx80_is_quiet_nan( floatx80 );
557int floatx80_is_signaling_nan( floatx80 );
558floatx80 floatx80_maybe_silence_nan( floatx80 );
559floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
560
561INLINE floatx80 floatx80_abs(floatx80 a)
562{
563    a.high &= 0x7fff;
564    return a;
565}
566
567INLINE floatx80 floatx80_chs(floatx80 a)
568{
569    a.high ^= 0x8000;
570    return a;
571}
572
573INLINE int floatx80_is_infinity(floatx80 a)
574{
575    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
576}
577
578INLINE int floatx80_is_neg(floatx80 a)
579{
580    return a.high >> 15;
581}
582
583INLINE int floatx80_is_zero(floatx80 a)
584{
585    return (a.high & 0x7fff) == 0 && a.low == 0;
586}
587
588INLINE int floatx80_is_any_nan(floatx80 a)
589{
590    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
591}
592
593#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
594#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
595#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
596#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
597#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
598#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
599
600/*----------------------------------------------------------------------------
601| The pattern for a default generated extended double-precision NaN.  The
602| `high' and `low' values hold the most- and least-significant bits,
603| respectively.
604*----------------------------------------------------------------------------*/
605#if SNAN_BIT_IS_ONE
606#define floatx80_default_nan_high 0x7FFF
607#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
608#else
609#define floatx80_default_nan_high 0xFFFF
610#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
611#endif
612
613#endif
614
615#ifdef FLOAT128
616
617/*----------------------------------------------------------------------------
618| Software IEC/IEEE quadruple-precision conversion routines.
619*----------------------------------------------------------------------------*/
620int32 float128_to_int32( float128 STATUS_PARAM );
621int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
622int64 float128_to_int64( float128 STATUS_PARAM );
623int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
624float32 float128_to_float32( float128 STATUS_PARAM );
625float64 float128_to_float64( float128 STATUS_PARAM );
626#ifdef FLOATX80
627floatx80 float128_to_floatx80( float128 STATUS_PARAM );
628#endif
629
630/*----------------------------------------------------------------------------
631| Software IEC/IEEE quadruple-precision operations.
632*----------------------------------------------------------------------------*/
633float128 float128_round_to_int( float128 STATUS_PARAM );
634float128 float128_add( float128, float128 STATUS_PARAM );
635float128 float128_sub( float128, float128 STATUS_PARAM );
636float128 float128_mul( float128, float128 STATUS_PARAM );
637float128 float128_div( float128, float128 STATUS_PARAM );
638float128 float128_rem( float128, float128 STATUS_PARAM );
639float128 float128_sqrt( float128 STATUS_PARAM );
640int float128_eq( float128, float128 STATUS_PARAM );
641int float128_le( float128, float128 STATUS_PARAM );
642int float128_lt( float128, float128 STATUS_PARAM );
643int float128_unordered( float128, float128 STATUS_PARAM );
644int float128_eq_quiet( float128, float128 STATUS_PARAM );
645int float128_le_quiet( float128, float128 STATUS_PARAM );
646int float128_lt_quiet( float128, float128 STATUS_PARAM );
647int float128_unordered_quiet( float128, float128 STATUS_PARAM );
648int float128_compare( float128, float128 STATUS_PARAM );
649int float128_compare_quiet( float128, float128 STATUS_PARAM );
650int float128_is_quiet_nan( float128 );
651int float128_is_signaling_nan( float128 );
652float128 float128_maybe_silence_nan( float128 );
653float128 float128_scalbn( float128, int STATUS_PARAM );
654
655INLINE float128 float128_abs(float128 a)
656{
657    a.high &= 0x7fffffffffffffffLL;
658    return a;
659}
660
661INLINE float128 float128_chs(float128 a)
662{
663    a.high ^= 0x8000000000000000LL;
664    return a;
665}
666
667INLINE int float128_is_infinity(float128 a)
668{
669    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
670}
671
672INLINE int float128_is_neg(float128 a)
673{
674    return a.high >> 63;
675}
676
677INLINE int float128_is_zero(float128 a)
678{
679    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
680}
681
682INLINE int float128_is_any_nan(float128 a)
683{
684    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
685        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
686}
687
688/*----------------------------------------------------------------------------
689| The pattern for a default generated quadruple-precision NaN.  The `high' and
690| `low' values hold the most- and least-significant bits, respectively.
691*----------------------------------------------------------------------------*/
692#if SNAN_BIT_IS_ONE
693#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
694#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
695#else
696#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
697#define float128_default_nan_low  LIT64( 0x0000000000000000 )
698#endif
699
700#endif
701
702#else /* CONFIG_SOFTFLOAT */
703
704#include "softfloat-native.h"
705
706#endif /* !CONFIG_SOFTFLOAT */
707
708#endif /* !SOFTFLOAT_H */
709