sparse_set.h revision 2ee91b4af4353b9e6a9d591c32fedfc58fd4ef35
1// Copyright 2006 The RE2 Authors.  All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// DESCRIPTION
6//
7// SparseSet<T>(m) is a set of integers in [0, m).
8// It requires sizeof(int)*m memory, but it provides
9// fast iteration through the elements in the set and fast clearing
10// of the set.
11//
12// Insertion and deletion are constant time operations.
13//
14// Allocating the set is a constant time operation
15// when memory allocation is a constant time operation.
16//
17// Clearing the set is a constant time operation (unusual!).
18//
19// Iterating through the set is an O(n) operation, where n
20// is the number of items in the set (not O(m)).
21//
22// The set iterator visits entries in the order they were first
23// inserted into the array.  It is safe to add items to the set while
24// using an iterator: the iterator will visit indices added to the set
25// during the iteration, but will not re-visit indices whose values
26// change after visiting.  Thus SparseSet can be a convenient
27// implementation of a work queue.
28//
29// The SparseSet implementation is NOT thread-safe.  It is up to the
30// caller to make sure only one thread is accessing the set.  (Typically
31// these sets are temporary values and used in situations where speed is
32// important.)
33//
34// The SparseSet interface does not present all the usual STL bells and
35// whistles.
36//
37// Implemented with reference to Briggs & Torczon, An Efficient
38// Representation for Sparse Sets, ACM Letters on Programming Languages
39// and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
40//
41// For a generalization to sparse array, see sparse_array.h.
42
43// IMPLEMENTATION
44//
45// See sparse_array.h for implementation details
46
47#ifndef RE2_UTIL_SPARSE_SET_H__
48#define RE2_UTIL_SPARSE_SET_H__
49
50#include "util/util.h"
51
52namespace re2 {
53
54class SparseSet {
55 public:
56  SparseSet()
57    : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL) {}
58
59  SparseSet(int max_size) {
60    max_size_ = max_size;
61    sparse_to_dense_ = new int[max_size];
62    dense_ = new int[max_size];
63    // Don't need to zero the memory, but do so anyway
64    // to appease Valgrind.
65    if (RunningOnValgrind()) {
66      for (int i = 0; i < max_size; i++) {
67        dense_[i] = 0xababababU;
68        sparse_to_dense_[i] = 0xababababU;
69      }
70    }
71    size_ = 0;
72  }
73
74  ~SparseSet() {
75    delete[] sparse_to_dense_;
76    delete[] dense_;
77  }
78
79  typedef int* iterator;
80  typedef const int* const_iterator;
81
82  int size() const { return size_; }
83  iterator begin() { return dense_; }
84  iterator end() { return dense_ + size_; }
85  const_iterator begin() const { return dense_; }
86  const_iterator end() const { return dense_ + size_; }
87
88  // Change the maximum size of the array.
89  // Invalidates all iterators.
90  void resize(int new_max_size) {
91    if (size_ > new_max_size)
92      size_ = new_max_size;
93    if (new_max_size > max_size_) {
94      int* a = new int[new_max_size];
95      if (sparse_to_dense_) {
96        memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
97        if (RunningOnValgrind()) {
98          for (int i = max_size_; i < new_max_size; i++)
99            a[i] = 0xababababU;
100        }
101        delete[] sparse_to_dense_;
102      }
103      sparse_to_dense_ = a;
104
105      a = new int[new_max_size];
106      if (dense_) {
107        memmove(a, dense_, size_*sizeof a[0]);
108        if (RunningOnValgrind()) {
109          for (int i = size_; i < new_max_size; i++)
110            a[i] = 0xababababU;
111        }
112        delete[] dense_;
113      }
114      dense_ = a;
115    }
116    max_size_ = new_max_size;
117  }
118
119  // Return the maximum size of the array.
120  // Indices can be in the range [0, max_size).
121  int max_size() const { return max_size_; }
122
123  // Clear the array.
124  void clear() { size_ = 0; }
125
126  // Check whether i is in the array.
127  bool contains(int i) const {
128    DCHECK_GE(i, 0);
129    DCHECK_LT(i, max_size_);
130    if (static_cast<uint>(i) >= max_size_) {
131      return false;
132    }
133    // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
134    return (uint)sparse_to_dense_[i] < (uint)size_ &&
135      dense_[sparse_to_dense_[i]] == i;
136  }
137
138  // Adds i to the set.
139  void insert(int i) {
140    if (!contains(i))
141      insert_new(i);
142  }
143
144  // Set the value at the new index i to v.
145  // Fast but unsafe: only use if contains(i) is false.
146  void insert_new(int i) {
147    if (static_cast<uint>(i) >= max_size_) {
148      // Semantically, end() would be better here, but we already know
149      // the user did something stupid, so begin() insulates them from
150      // dereferencing an invalid pointer.
151      return;
152    }
153    DCHECK(!contains(i));
154    DCHECK_LT(size_, max_size_);
155    sparse_to_dense_[i] = size_;
156    dense_[size_] = i;
157    size_++;
158  }
159
160  // Comparison function for sorting.
161  // Can sort the sparse array so that future iterations
162  // will visit indices in increasing order using
163  // sort(arr.begin(), arr.end(), arr.less);
164  static bool less(int a, int b) { return a < b; }
165
166 private:
167  int size_;
168  int max_size_;
169  int* sparse_to_dense_;
170  int* dense_;
171
172  DISALLOW_EVIL_CONSTRUCTORS(SparseSet);
173};
174
175}  // namespace re2
176
177#endif  // RE2_UTIL_SPARSE_SET_H__
178