11cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger/*
21cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** License Applicability. Except to the extent portions of this file are
31cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** made subject to an alternative license as permitted in the SGI Free
41cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Software License B, Version 1.1 (the "License"), the contents of this
51cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** file are subject only to the provisions of the License. You may not use
61cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** this file except in compliance with the License. You may obtain a copy
71cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
81cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
91cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger**
101cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** http://oss.sgi.com/projects/FreeB
111cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger**
121cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Note that, as provided in the License, the Software is distributed on an
131cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
141cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
151cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
161cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
171cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger**
181cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Original Code. The Original Code is: OpenGL Sample Implementation,
191cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
201cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
211cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Copyright in any portions created by third parties is as indicated
221cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** elsewhere herein. All Rights Reserved.
231cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger**
241cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Additional Notice Provisions: The application programming interfaces
251cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** established by SGI in conjunction with the Original Code are The
261cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
271cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
281cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
291cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Window System(R) (Version 1.3), released October 19, 1998. This software
301cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** was created using the OpenGL(R) version 1.2.1 Sample Implementation
311cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** published by SGI, but has not been independently verified as being
321cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** compliant with the OpenGL(R) version 1.2.1 Specification.
331cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger**
341cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger*/
351cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger/*
361cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** Author: Eric Veach, July 1994.
371cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger**
381cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** $Date$ $Revision$
391cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger** $Header: //depot/main/gfx/lib/glu/libtess/geom.c#5 $
401cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger*/
411cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
421cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#include "gluos.h"
431cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#include <assert.h>
441cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#include "mesh.h"
451cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#include "geom.h"
461cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
471cab2921ab279367f8206cdadc9259d12e603548Derek Sollenbergerint __gl_vertLeq( GLUvertex *u, GLUvertex *v )
481cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
491cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* Returns TRUE if u is lexicographically <= v. */
501cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
511cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return VertLeq( u, v );
521cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
531cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
541cab2921ab279367f8206cdadc9259d12e603548Derek SollenbergerGLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
551cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
561cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
571cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
581cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
591cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * If uw is vertical (and thus passes thru v), the result is zero.
601cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   *
611cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * The calculation is extremely accurate and stable, even when v
621cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * is very close to u or w.  In particular if we set v->t = 0 and
631cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * let r be the negated result (this evaluates (uw)(v->s)), then
641cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
651cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   */
661cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  GLdouble gapL, gapR;
671cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
681cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  assert( VertLeq( u, v ) && VertLeq( v, w ));
691cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
701cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapL = v->s - u->s;
711cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapR = w->s - v->s;
721cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
731cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( gapL + gapR > 0 ) {
741cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    if( gapL < gapR ) {
751cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger      return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
761cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    } else {
771cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger      return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
781cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    }
791cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
801cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* vertical line */
811cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return 0;
821cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
831cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
841cab2921ab279367f8206cdadc9259d12e603548Derek SollenbergerGLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
851cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
861cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* Returns a number whose sign matches EdgeEval(u,v,w) but which
871cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
881cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * as v is above, on, or below the edge uw.
891cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   */
901cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  GLdouble gapL, gapR;
911cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
921cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  assert( VertLeq( u, v ) && VertLeq( v, w ));
931cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
941cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapL = v->s - u->s;
951cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapR = w->s - v->s;
961cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
971cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( gapL + gapR > 0 ) {
981cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
991cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
1001cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* vertical line */
1011cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return 0;
1021cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
1031cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1041cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1051cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger/***********************************************************************
1061cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * Define versions of EdgeSign, EdgeEval with s and t transposed.
1071cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger */
1081cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1091cab2921ab279367f8206cdadc9259d12e603548Derek SollenbergerGLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
1101cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
1111cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
1121cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
1131cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
1141cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * If uw is vertical (and thus passes thru v), the result is zero.
1151cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   *
1161cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * The calculation is extremely accurate and stable, even when v
1171cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * is very close to u or w.  In particular if we set v->s = 0 and
1181cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * let r be the negated result (this evaluates (uw)(v->t)), then
1191cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
1201cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   */
1211cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  GLdouble gapL, gapR;
1221cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1231cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  assert( TransLeq( u, v ) && TransLeq( v, w ));
1241cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1251cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapL = v->t - u->t;
1261cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapR = w->t - v->t;
1271cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1281cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( gapL + gapR > 0 ) {
1291cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    if( gapL < gapR ) {
1301cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger      return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
1311cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    } else {
1321cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger      return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
1331cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    }
1341cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
1351cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* vertical line */
1361cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return 0;
1371cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
1381cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1391cab2921ab279367f8206cdadc9259d12e603548Derek SollenbergerGLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
1401cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
1411cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* Returns a number whose sign matches TransEval(u,v,w) but which
1421cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
1431cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * as v is above, on, or below the edge uw.
1441cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   */
1451cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  GLdouble gapL, gapR;
1461cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1471cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  assert( TransLeq( u, v ) && TransLeq( v, w ));
1481cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1491cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapL = v->t - u->t;
1501cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  gapR = w->t - v->t;
1511cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1521cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( gapL + gapR > 0 ) {
1531cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
1541cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
1551cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* vertical line */
1561cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return 0;
1571cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
1581cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1591cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1601cab2921ab279367f8206cdadc9259d12e603548Derek Sollenbergerint __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
1611cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
1621cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* For almost-degenerate situations, the results are not reliable.
1631cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * Unless the floating-point arithmetic can be performed without
1641cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * rounding errors, *any* implementation will give incorrect results
1651cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * on some degenerate inputs, so the client must have some way to
1661cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * handle this situation.
1671cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   */
1681cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
1691cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
1701cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1711cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
1721cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * or (x+y)/2 if a==b==0.  It requires that a,b >= 0, and enforces
1731cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * this in the rare case that one argument is slightly negative.
1741cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * The implementation is extremely stable numerically.
1751cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * In particular it guarantees that the result r satisfies
1761cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
1771cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * even when a and b differ greatly in magnitude.
1781cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger */
1791cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#define RealInterpolate(a,x,b,y)			\
1801cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b,		\
1811cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  ((a <= b) ? ((b == 0) ? ((x+y) / 2)			\
1821cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger                        : (x + (y-x) * (a/(a+b))))	\
1831cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger            : (y + (x-y) * (b/(a+b)))))
1841cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1851cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#ifndef FOR_TRITE_TEST_PROGRAM
1861cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#define Interpolate(a,x,b,y)	RealInterpolate(a,x,b,y)
1871cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#else
1881cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1891cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger/* Claim: the ONLY property the sweep algorithm relies on is that
1901cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * MIN(x,y) <= r <= MAX(x,y).  This is a nasty way to test that.
1911cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger */
1921cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#include <stdlib.h>
1931cab2921ab279367f8206cdadc9259d12e603548Derek Sollenbergerextern int RandomInterpolate;
1941cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
1951cab2921ab279367f8206cdadc9259d12e603548Derek SollenbergerGLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
1961cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
1971cab2921ab279367f8206cdadc9259d12e603548Derek Sollenbergerprintf("*********************%d\n",RandomInterpolate);
1981cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( RandomInterpolate ) {
1991cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    a = 1.2 * drand48() - 0.1;
2001cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
2011cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    b = 1.0 - a;
2021cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
2031cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  return RealInterpolate(a,x,b,y);
2041cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
2051cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2061cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#endif
2071cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2081cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger#define Swap(a,b)	do { GLUvertex *t = a; a = b; b = t; } while(0)
2091cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2101cab2921ab279367f8206cdadc9259d12e603548Derek Sollenbergervoid __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
2111cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger			 GLUvertex *o2, GLUvertex *d2,
2121cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger			 GLUvertex *v )
2131cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
2141cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * The computed point is guaranteed to lie in the intersection of the
2151cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger * bounding rectangles defined by each edge.
2161cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger */
2171cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger{
2181cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  GLdouble z1, z2;
2191cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2201cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* This is certainly not the most efficient way to find the intersection
2211cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * of two line segments, but it is very numerically stable.
2221cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   *
2231cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * Strategy: find the two middle vertices in the VertLeq ordering,
2241cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * and interpolate the intersection s-value from these.  Then repeat
2251cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   * using the TransLeq ordering to find the intersection t-value.
2261cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger   */
2271cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2281cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
2291cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
2301cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
2311cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2321cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! VertLeq( o2, d1 )) {
2331cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    /* Technically, no intersection -- do our best */
2341cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    v->s = (o2->s + d1->s) / 2;
2351cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  } else if( VertLeq( d1, d2 )) {
2361cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    /* Interpolate between o2 and d1 */
2371cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z1 = EdgeEval( o1, o2, d1 );
2381cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z2 = EdgeEval( o2, d1, d2 );
2391cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
2401cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    v->s = Interpolate( z1, o2->s, z2, d1->s );
2411cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  } else {
2421cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    /* Interpolate between o2 and d2 */
2431cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z1 = EdgeSign( o1, o2, d1 );
2441cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z2 = -EdgeSign( o1, d2, d1 );
2451cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
2461cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    v->s = Interpolate( z1, o2->s, z2, d2->s );
2471cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
2481cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2491cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  /* Now repeat the process for t */
2501cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2511cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
2521cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
2531cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
2541cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger
2551cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  if( ! TransLeq( o2, d1 )) {
2561cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    /* Technically, no intersection -- do our best */
2571cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    v->t = (o2->t + d1->t) / 2;
2581cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  } else if( TransLeq( d1, d2 )) {
2591cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    /* Interpolate between o2 and d1 */
2601cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z1 = TransEval( o1, o2, d1 );
2611cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z2 = TransEval( o2, d1, d2 );
2621cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
2631cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    v->t = Interpolate( z1, o2->t, z2, d1->t );
2641cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  } else {
2651cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    /* Interpolate between o2 and d2 */
2661cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z1 = TransSign( o1, o2, d1 );
2671cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    z2 = -TransSign( o1, d2, d1 );
2681cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
2691cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger    v->t = Interpolate( z1, o2->t, z2, d2->t );
2701cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger  }
2711cab2921ab279367f8206cdadc9259d12e603548Derek Sollenberger}
272