normal.c revision 1cab2921ab279367f8206cdadc9259d12e603548
1/*
2** License Applicability. Except to the extent portions of this file are
3** made subject to an alternative license as permitted in the SGI Free
4** Software License B, Version 1.1 (the "License"), the contents of this
5** file are subject only to the provisions of the License. You may not use
6** this file except in compliance with the License. You may obtain a copy
7** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9**
10** http://oss.sgi.com/projects/FreeB
11**
12** Note that, as provided in the License, the Software is distributed on an
13** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17**
18** Original Code. The Original Code is: OpenGL Sample Implementation,
19** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21** Copyright in any portions created by third parties is as indicated
22** elsewhere herein. All Rights Reserved.
23**
24** Additional Notice Provisions: The application programming interfaces
25** established by SGI in conjunction with the Original Code are The
26** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29** Window System(R) (Version 1.3), released October 19, 1998. This software
30** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31** published by SGI, but has not been independently verified as being
32** compliant with the OpenGL(R) version 1.2.1 Specification.
33**
34*/
35/*
36** Author: Eric Veach, July 1994.
37**
38** $Date$ $Revision$
39** $Header: //depot/main/gfx/lib/glu/libtess/normal.c#5 $
40*/
41
42#include "gluos.h"
43#include "mesh.h"
44#include "tess.h"
45#include "normal.h"
46#include <math.h>
47#include <assert.h>
48
49#define TRUE 1
50#define FALSE 0
51
52#define Dot(u,v)	(u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
53
54#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
55static void Normalize( GLdouble v[3] )
56{
57  GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
58
59  assert( len > 0 );
60  len = sqrt( len );
61  v[0] /= len;
62  v[1] /= len;
63  v[2] /= len;
64}
65#endif
66
67#define ABS(x)	((x) < 0 ? -(x) : (x))
68
69static int LongAxis( GLdouble v[3] )
70{
71  int i = 0;
72
73  if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
74  if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
75  return i;
76}
77
78static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
79{
80  GLUvertex *v, *v1, *v2;
81  GLdouble c, tLen2, maxLen2;
82  GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
83  GLUvertex *maxVert[3], *minVert[3];
84  GLUvertex *vHead = &tess->mesh->vHead;
85  int i;
86
87  maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
88  minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
89
90  for( v = vHead->next; v != vHead; v = v->next ) {
91    for( i = 0; i < 3; ++i ) {
92      c = v->coords[i];
93      if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
94      if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
95    }
96  }
97
98  /* Find two vertices separated by at least 1/sqrt(3) of the maximum
99   * distance between any two vertices
100   */
101  i = 0;
102  if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
103  if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
104  if( minVal[i] >= maxVal[i] ) {
105    /* All vertices are the same -- normal doesn't matter */
106    norm[0] = 0; norm[1] = 0; norm[2] = 1;
107    return;
108  }
109
110  /* Look for a third vertex which forms the triangle with maximum area
111   * (Length of normal == twice the triangle area)
112   */
113  maxLen2 = 0;
114  v1 = minVert[i];
115  v2 = maxVert[i];
116  d1[0] = v1->coords[0] - v2->coords[0];
117  d1[1] = v1->coords[1] - v2->coords[1];
118  d1[2] = v1->coords[2] - v2->coords[2];
119  for( v = vHead->next; v != vHead; v = v->next ) {
120    d2[0] = v->coords[0] - v2->coords[0];
121    d2[1] = v->coords[1] - v2->coords[1];
122    d2[2] = v->coords[2] - v2->coords[2];
123    tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
124    tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
125    tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
126    tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
127    if( tLen2 > maxLen2 ) {
128      maxLen2 = tLen2;
129      norm[0] = tNorm[0];
130      norm[1] = tNorm[1];
131      norm[2] = tNorm[2];
132    }
133  }
134
135  if( maxLen2 <= 0 ) {
136    /* All points lie on a single line -- any decent normal will do */
137    norm[0] = norm[1] = norm[2] = 0;
138    norm[LongAxis(d1)] = 1;
139  }
140}
141
142
143static void CheckOrientation( GLUtesselator *tess )
144{
145  GLdouble area;
146  GLUface *f, *fHead = &tess->mesh->fHead;
147  GLUvertex *v, *vHead = &tess->mesh->vHead;
148  GLUhalfEdge *e;
149
150  /* When we compute the normal automatically, we choose the orientation
151   * so that the the sum of the signed areas of all contours is non-negative.
152   */
153  area = 0;
154  for( f = fHead->next; f != fHead; f = f->next ) {
155    e = f->anEdge;
156    if( e->winding <= 0 ) continue;
157    do {
158      area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
159      e = e->Lnext;
160    } while( e != f->anEdge );
161  }
162  if( area < 0 ) {
163    /* Reverse the orientation by flipping all the t-coordinates */
164    for( v = vHead->next; v != vHead; v = v->next ) {
165      v->t = - v->t;
166    }
167    tess->tUnit[0] = - tess->tUnit[0];
168    tess->tUnit[1] = - tess->tUnit[1];
169    tess->tUnit[2] = - tess->tUnit[2];
170  }
171}
172
173#ifdef FOR_TRITE_TEST_PROGRAM
174#include <stdlib.h>
175extern int RandomSweep;
176#define S_UNIT_X	(RandomSweep ? (2*drand48()-1) : 1.0)
177#define S_UNIT_Y	(RandomSweep ? (2*drand48()-1) : 0.0)
178#else
179#if defined(SLANTED_SWEEP)
180/* The "feature merging" is not intended to be complete.  There are
181 * special cases where edges are nearly parallel to the sweep line
182 * which are not implemented.  The algorithm should still behave
183 * robustly (ie. produce a reasonable tesselation) in the presence
184 * of such edges, however it may miss features which could have been
185 * merged.  We could minimize this effect by choosing the sweep line
186 * direction to be something unusual (ie. not parallel to one of the
187 * coordinate axes).
188 */
189#define S_UNIT_X	0.50941539564955385	/* Pre-normalized */
190#define S_UNIT_Y	0.86052074622010633
191#else
192#define S_UNIT_X	1.0
193#define S_UNIT_Y	0.0
194#endif
195#endif
196
197/* Determine the polygon normal and project vertices onto the plane
198 * of the polygon.
199 */
200void __gl_projectPolygon( GLUtesselator *tess )
201{
202  GLUvertex *v, *vHead = &tess->mesh->vHead;
203  GLdouble norm[3];
204  GLdouble *sUnit, *tUnit;
205  int i, computedNormal = FALSE;
206
207  norm[0] = tess->normal[0];
208  norm[1] = tess->normal[1];
209  norm[2] = tess->normal[2];
210  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
211    ComputeNormal( tess, norm );
212    computedNormal = TRUE;
213  }
214  sUnit = tess->sUnit;
215  tUnit = tess->tUnit;
216  i = LongAxis( norm );
217
218#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
219  /* Choose the initial sUnit vector to be approximately perpendicular
220   * to the normal.
221   */
222  Normalize( norm );
223
224  sUnit[i] = 0;
225  sUnit[(i+1)%3] = S_UNIT_X;
226  sUnit[(i+2)%3] = S_UNIT_Y;
227
228  /* Now make it exactly perpendicular */
229  w = Dot( sUnit, norm );
230  sUnit[0] -= w * norm[0];
231  sUnit[1] -= w * norm[1];
232  sUnit[2] -= w * norm[2];
233  Normalize( sUnit );
234
235  /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
236  tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
237  tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
238  tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
239  Normalize( tUnit );
240#else
241  /* Project perpendicular to a coordinate axis -- better numerically */
242  sUnit[i] = 0;
243  sUnit[(i+1)%3] = S_UNIT_X;
244  sUnit[(i+2)%3] = S_UNIT_Y;
245
246  tUnit[i] = 0;
247  tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
248  tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
249#endif
250
251  /* Project the vertices onto the sweep plane */
252  for( v = vHead->next; v != vHead; v = v->next ) {
253    v->s = Dot( v->coords, sUnit );
254    v->t = Dot( v->coords, tUnit );
255  }
256  if( computedNormal ) {
257    CheckOrientation( tess );
258  }
259}
260