debug.cc revision 6d7cb000ed533f52d745e60663019ff891bb19a8
1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "api.h"
31#include "arguments.h"
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "codegen.h"
35#include "compilation-cache.h"
36#include "compiler.h"
37#include "debug.h"
38#include "deoptimizer.h"
39#include "execution.h"
40#include "global-handles.h"
41#include "ic.h"
42#include "ic-inl.h"
43#include "messages.h"
44#include "natives.h"
45#include "stub-cache.h"
46#include "log.h"
47
48#include "../include/v8-debug.h"
49
50namespace v8 {
51namespace internal {
52
53#ifdef ENABLE_DEBUGGER_SUPPORT
54
55
56Debug::Debug(Isolate* isolate)
57    : has_break_points_(false),
58      script_cache_(NULL),
59      debug_info_list_(NULL),
60      disable_break_(false),
61      break_on_exception_(false),
62      break_on_uncaught_exception_(false),
63      debug_break_return_(NULL),
64      debug_break_slot_(NULL),
65      isolate_(isolate) {
66  memset(registers_, 0, sizeof(JSCallerSavedBuffer));
67}
68
69
70Debug::~Debug() {
71}
72
73
74static void PrintLn(v8::Local<v8::Value> value) {
75  v8::Local<v8::String> s = value->ToString();
76  ScopedVector<char> data(s->Length() + 1);
77  if (data.start() == NULL) {
78    V8::FatalProcessOutOfMemory("PrintLn");
79    return;
80  }
81  s->WriteAscii(data.start());
82  PrintF("%s\n", data.start());
83}
84
85
86static Handle<Code> ComputeCallDebugBreak(int argc, Code::Kind kind) {
87  Isolate* isolate = Isolate::Current();
88  CALL_HEAP_FUNCTION(
89      isolate,
90      isolate->stub_cache()->ComputeCallDebugBreak(argc, kind),
91      Code);
92}
93
94
95static Handle<Code> ComputeCallDebugPrepareStepIn(int argc,  Code::Kind kind) {
96  Isolate* isolate = Isolate::Current();
97  CALL_HEAP_FUNCTION(
98      isolate,
99      isolate->stub_cache()->ComputeCallDebugPrepareStepIn(argc, kind),
100      Code);
101}
102
103
104static v8::Handle<v8::Context> GetDebugEventContext(Isolate* isolate) {
105  Handle<Context> context = isolate->debug()->debugger_entry()->GetContext();
106  // Isolate::context() may have been NULL when "script collected" event
107  // occured.
108  if (context.is_null()) return v8::Local<v8::Context>();
109  Handle<Context> global_context(context->global_context());
110  return v8::Utils::ToLocal(global_context);
111}
112
113
114BreakLocationIterator::BreakLocationIterator(Handle<DebugInfo> debug_info,
115                                             BreakLocatorType type) {
116  debug_info_ = debug_info;
117  type_ = type;
118  reloc_iterator_ = NULL;
119  reloc_iterator_original_ = NULL;
120  Reset();  // Initialize the rest of the member variables.
121}
122
123
124BreakLocationIterator::~BreakLocationIterator() {
125  ASSERT(reloc_iterator_ != NULL);
126  ASSERT(reloc_iterator_original_ != NULL);
127  delete reloc_iterator_;
128  delete reloc_iterator_original_;
129}
130
131
132void BreakLocationIterator::Next() {
133  AssertNoAllocation nogc;
134  ASSERT(!RinfoDone());
135
136  // Iterate through reloc info for code and original code stopping at each
137  // breakable code target.
138  bool first = break_point_ == -1;
139  while (!RinfoDone()) {
140    if (!first) RinfoNext();
141    first = false;
142    if (RinfoDone()) return;
143
144    // Whenever a statement position or (plain) position is passed update the
145    // current value of these.
146    if (RelocInfo::IsPosition(rmode())) {
147      if (RelocInfo::IsStatementPosition(rmode())) {
148        statement_position_ = static_cast<int>(
149            rinfo()->data() - debug_info_->shared()->start_position());
150      }
151      // Always update the position as we don't want that to be before the
152      // statement position.
153      position_ = static_cast<int>(
154          rinfo()->data() - debug_info_->shared()->start_position());
155      ASSERT(position_ >= 0);
156      ASSERT(statement_position_ >= 0);
157    }
158
159    if (IsDebugBreakSlot()) {
160      // There is always a possible break point at a debug break slot.
161      break_point_++;
162      return;
163    } else if (RelocInfo::IsCodeTarget(rmode())) {
164      // Check for breakable code target. Look in the original code as setting
165      // break points can cause the code targets in the running (debugged) code
166      // to be of a different kind than in the original code.
167      Address target = original_rinfo()->target_address();
168      Code* code = Code::GetCodeFromTargetAddress(target);
169      if ((code->is_inline_cache_stub() &&
170           !code->is_type_recording_binary_op_stub() &&
171           !code->is_compare_ic_stub()) ||
172          RelocInfo::IsConstructCall(rmode())) {
173        break_point_++;
174        return;
175      }
176      if (code->kind() == Code::STUB) {
177        if (IsDebuggerStatement()) {
178          break_point_++;
179          return;
180        }
181        if (type_ == ALL_BREAK_LOCATIONS) {
182          if (Debug::IsBreakStub(code)) {
183            break_point_++;
184            return;
185          }
186        } else {
187          ASSERT(type_ == SOURCE_BREAK_LOCATIONS);
188          if (Debug::IsSourceBreakStub(code)) {
189            break_point_++;
190            return;
191          }
192        }
193      }
194    }
195
196    // Check for break at return.
197    if (RelocInfo::IsJSReturn(rmode())) {
198      // Set the positions to the end of the function.
199      if (debug_info_->shared()->HasSourceCode()) {
200        position_ = debug_info_->shared()->end_position() -
201                    debug_info_->shared()->start_position() - 1;
202      } else {
203        position_ = 0;
204      }
205      statement_position_ = position_;
206      break_point_++;
207      return;
208    }
209  }
210}
211
212
213void BreakLocationIterator::Next(int count) {
214  while (count > 0) {
215    Next();
216    count--;
217  }
218}
219
220
221// Find the break point closest to the supplied address.
222void BreakLocationIterator::FindBreakLocationFromAddress(Address pc) {
223  // Run through all break points to locate the one closest to the address.
224  int closest_break_point = 0;
225  int distance = kMaxInt;
226  while (!Done()) {
227    // Check if this break point is closer that what was previously found.
228    if (this->pc() < pc && pc - this->pc() < distance) {
229      closest_break_point = break_point();
230      distance = static_cast<int>(pc - this->pc());
231      // Check whether we can't get any closer.
232      if (distance == 0) break;
233    }
234    Next();
235  }
236
237  // Move to the break point found.
238  Reset();
239  Next(closest_break_point);
240}
241
242
243// Find the break point closest to the supplied source position.
244void BreakLocationIterator::FindBreakLocationFromPosition(int position) {
245  // Run through all break points to locate the one closest to the source
246  // position.
247  int closest_break_point = 0;
248  int distance = kMaxInt;
249  while (!Done()) {
250    // Check if this break point is closer that what was previously found.
251    if (position <= statement_position() &&
252        statement_position() - position < distance) {
253      closest_break_point = break_point();
254      distance = statement_position() - position;
255      // Check whether we can't get any closer.
256      if (distance == 0) break;
257    }
258    Next();
259  }
260
261  // Move to the break point found.
262  Reset();
263  Next(closest_break_point);
264}
265
266
267void BreakLocationIterator::Reset() {
268  // Create relocation iterators for the two code objects.
269  if (reloc_iterator_ != NULL) delete reloc_iterator_;
270  if (reloc_iterator_original_ != NULL) delete reloc_iterator_original_;
271  reloc_iterator_ = new RelocIterator(debug_info_->code());
272  reloc_iterator_original_ = new RelocIterator(debug_info_->original_code());
273
274  // Position at the first break point.
275  break_point_ = -1;
276  position_ = 1;
277  statement_position_ = 1;
278  Next();
279}
280
281
282bool BreakLocationIterator::Done() const {
283  return RinfoDone();
284}
285
286
287void BreakLocationIterator::SetBreakPoint(Handle<Object> break_point_object) {
288  // If there is not already a real break point here patch code with debug
289  // break.
290  if (!HasBreakPoint()) {
291    SetDebugBreak();
292  }
293  ASSERT(IsDebugBreak() || IsDebuggerStatement());
294  // Set the break point information.
295  DebugInfo::SetBreakPoint(debug_info_, code_position(),
296                           position(), statement_position(),
297                           break_point_object);
298}
299
300
301void BreakLocationIterator::ClearBreakPoint(Handle<Object> break_point_object) {
302  // Clear the break point information.
303  DebugInfo::ClearBreakPoint(debug_info_, code_position(), break_point_object);
304  // If there are no more break points here remove the debug break.
305  if (!HasBreakPoint()) {
306    ClearDebugBreak();
307    ASSERT(!IsDebugBreak());
308  }
309}
310
311
312void BreakLocationIterator::SetOneShot() {
313  // Debugger statement always calls debugger. No need to modify it.
314  if (IsDebuggerStatement()) {
315    return;
316  }
317
318  // If there is a real break point here no more to do.
319  if (HasBreakPoint()) {
320    ASSERT(IsDebugBreak());
321    return;
322  }
323
324  // Patch code with debug break.
325  SetDebugBreak();
326}
327
328
329void BreakLocationIterator::ClearOneShot() {
330  // Debugger statement always calls debugger. No need to modify it.
331  if (IsDebuggerStatement()) {
332    return;
333  }
334
335  // If there is a real break point here no more to do.
336  if (HasBreakPoint()) {
337    ASSERT(IsDebugBreak());
338    return;
339  }
340
341  // Patch code removing debug break.
342  ClearDebugBreak();
343  ASSERT(!IsDebugBreak());
344}
345
346
347void BreakLocationIterator::SetDebugBreak() {
348  // Debugger statement always calls debugger. No need to modify it.
349  if (IsDebuggerStatement()) {
350    return;
351  }
352
353  // If there is already a break point here just return. This might happen if
354  // the same code is flooded with break points twice. Flooding the same
355  // function twice might happen when stepping in a function with an exception
356  // handler as the handler and the function is the same.
357  if (IsDebugBreak()) {
358    return;
359  }
360
361  if (RelocInfo::IsJSReturn(rmode())) {
362    // Patch the frame exit code with a break point.
363    SetDebugBreakAtReturn();
364  } else if (IsDebugBreakSlot()) {
365    // Patch the code in the break slot.
366    SetDebugBreakAtSlot();
367  } else {
368    // Patch the IC call.
369    SetDebugBreakAtIC();
370  }
371  ASSERT(IsDebugBreak());
372}
373
374
375void BreakLocationIterator::ClearDebugBreak() {
376  // Debugger statement always calls debugger. No need to modify it.
377  if (IsDebuggerStatement()) {
378    return;
379  }
380
381  if (RelocInfo::IsJSReturn(rmode())) {
382    // Restore the frame exit code.
383    ClearDebugBreakAtReturn();
384  } else if (IsDebugBreakSlot()) {
385    // Restore the code in the break slot.
386    ClearDebugBreakAtSlot();
387  } else {
388    // Patch the IC call.
389    ClearDebugBreakAtIC();
390  }
391  ASSERT(!IsDebugBreak());
392}
393
394
395void BreakLocationIterator::PrepareStepIn() {
396  HandleScope scope;
397
398  // Step in can only be prepared if currently positioned on an IC call,
399  // construct call or CallFunction stub call.
400  Address target = rinfo()->target_address();
401  Handle<Code> code(Code::GetCodeFromTargetAddress(target));
402  if (code->is_call_stub() || code->is_keyed_call_stub()) {
403    // Step in through IC call is handled by the runtime system. Therefore make
404    // sure that the any current IC is cleared and the runtime system is
405    // called. If the executing code has a debug break at the location change
406    // the call in the original code as it is the code there that will be
407    // executed in place of the debug break call.
408    Handle<Code> stub = ComputeCallDebugPrepareStepIn(code->arguments_count(),
409                                                      code->kind());
410    if (IsDebugBreak()) {
411      original_rinfo()->set_target_address(stub->entry());
412    } else {
413      rinfo()->set_target_address(stub->entry());
414    }
415  } else {
416#ifdef DEBUG
417    // All the following stuff is needed only for assertion checks so the code
418    // is wrapped in ifdef.
419    Handle<Code> maybe_call_function_stub = code;
420    if (IsDebugBreak()) {
421      Address original_target = original_rinfo()->target_address();
422      maybe_call_function_stub =
423          Handle<Code>(Code::GetCodeFromTargetAddress(original_target));
424    }
425    bool is_call_function_stub =
426        (maybe_call_function_stub->kind() == Code::STUB &&
427         maybe_call_function_stub->major_key() == CodeStub::CallFunction);
428
429    // Step in through construct call requires no changes to the running code.
430    // Step in through getters/setters should already be prepared as well
431    // because caller of this function (Debug::PrepareStep) is expected to
432    // flood the top frame's function with one shot breakpoints.
433    // Step in through CallFunction stub should also be prepared by caller of
434    // this function (Debug::PrepareStep) which should flood target function
435    // with breakpoints.
436    ASSERT(RelocInfo::IsConstructCall(rmode()) || code->is_inline_cache_stub()
437           || is_call_function_stub);
438#endif
439  }
440}
441
442
443// Check whether the break point is at a position which will exit the function.
444bool BreakLocationIterator::IsExit() const {
445  return (RelocInfo::IsJSReturn(rmode()));
446}
447
448
449bool BreakLocationIterator::HasBreakPoint() {
450  return debug_info_->HasBreakPoint(code_position());
451}
452
453
454// Check whether there is a debug break at the current position.
455bool BreakLocationIterator::IsDebugBreak() {
456  if (RelocInfo::IsJSReturn(rmode())) {
457    return IsDebugBreakAtReturn();
458  } else if (IsDebugBreakSlot()) {
459    return IsDebugBreakAtSlot();
460  } else {
461    return Debug::IsDebugBreak(rinfo()->target_address());
462  }
463}
464
465
466void BreakLocationIterator::SetDebugBreakAtIC() {
467  // Patch the original code with the current address as the current address
468  // might have changed by the inline caching since the code was copied.
469  original_rinfo()->set_target_address(rinfo()->target_address());
470
471  RelocInfo::Mode mode = rmode();
472  if (RelocInfo::IsCodeTarget(mode)) {
473    Address target = rinfo()->target_address();
474    Handle<Code> code(Code::GetCodeFromTargetAddress(target));
475
476    // Patch the code to invoke the builtin debug break function matching the
477    // calling convention used by the call site.
478    Handle<Code> dbgbrk_code(Debug::FindDebugBreak(code, mode));
479    rinfo()->set_target_address(dbgbrk_code->entry());
480
481    // For stubs that refer back to an inlined version clear the cached map for
482    // the inlined case to always go through the IC. As long as the break point
483    // is set the patching performed by the runtime system will take place in
484    // the code copy and will therefore have no effect on the running code
485    // keeping it from using the inlined code.
486    if (code->is_keyed_load_stub()) {
487      KeyedLoadIC::ClearInlinedVersion(pc());
488    } else if (code->is_keyed_store_stub()) {
489      KeyedStoreIC::ClearInlinedVersion(pc());
490    } else if (code->is_load_stub()) {
491      LoadIC::ClearInlinedVersion(pc());
492    } else if (code->is_store_stub()) {
493      StoreIC::ClearInlinedVersion(pc());
494    }
495  }
496}
497
498
499void BreakLocationIterator::ClearDebugBreakAtIC() {
500  // Patch the code to the original invoke.
501  rinfo()->set_target_address(original_rinfo()->target_address());
502
503  RelocInfo::Mode mode = rmode();
504  if (RelocInfo::IsCodeTarget(mode)) {
505    AssertNoAllocation nogc;
506    Address target = original_rinfo()->target_address();
507    Code* code = Code::GetCodeFromTargetAddress(target);
508
509    // Restore the inlined version of keyed stores to get back to the
510    // fast case.  We need to patch back the keyed store because no
511    // patching happens when running normally.  For keyed loads, the
512    // map check will get patched back when running normally after ICs
513    // have been cleared at GC.
514    if (code->is_keyed_store_stub()) KeyedStoreIC::RestoreInlinedVersion(pc());
515  }
516}
517
518
519bool BreakLocationIterator::IsDebuggerStatement() {
520  return RelocInfo::DEBUG_BREAK == rmode();
521}
522
523
524bool BreakLocationIterator::IsDebugBreakSlot() {
525  return RelocInfo::DEBUG_BREAK_SLOT == rmode();
526}
527
528
529Object* BreakLocationIterator::BreakPointObjects() {
530  return debug_info_->GetBreakPointObjects(code_position());
531}
532
533
534// Clear out all the debug break code. This is ONLY supposed to be used when
535// shutting down the debugger as it will leave the break point information in
536// DebugInfo even though the code is patched back to the non break point state.
537void BreakLocationIterator::ClearAllDebugBreak() {
538  while (!Done()) {
539    ClearDebugBreak();
540    Next();
541  }
542}
543
544
545bool BreakLocationIterator::RinfoDone() const {
546  ASSERT(reloc_iterator_->done() == reloc_iterator_original_->done());
547  return reloc_iterator_->done();
548}
549
550
551void BreakLocationIterator::RinfoNext() {
552  reloc_iterator_->next();
553  reloc_iterator_original_->next();
554#ifdef DEBUG
555  ASSERT(reloc_iterator_->done() == reloc_iterator_original_->done());
556  if (!reloc_iterator_->done()) {
557    ASSERT(rmode() == original_rmode());
558  }
559#endif
560}
561
562
563// Threading support.
564void Debug::ThreadInit() {
565  thread_local_.break_count_ = 0;
566  thread_local_.break_id_ = 0;
567  thread_local_.break_frame_id_ = StackFrame::NO_ID;
568  thread_local_.last_step_action_ = StepNone;
569  thread_local_.last_statement_position_ = RelocInfo::kNoPosition;
570  thread_local_.step_count_ = 0;
571  thread_local_.last_fp_ = 0;
572  thread_local_.step_into_fp_ = 0;
573  thread_local_.step_out_fp_ = 0;
574  thread_local_.after_break_target_ = 0;
575  // TODO(isolates): frames_are_dropped_?
576  thread_local_.debugger_entry_ = NULL;
577  thread_local_.pending_interrupts_ = 0;
578  thread_local_.restarter_frame_function_pointer_ = NULL;
579}
580
581
582char* Debug::ArchiveDebug(char* storage) {
583  char* to = storage;
584  memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal));
585  to += sizeof(ThreadLocal);
586  memcpy(to, reinterpret_cast<char*>(&registers_), sizeof(registers_));
587  ThreadInit();
588  ASSERT(to <= storage + ArchiveSpacePerThread());
589  return storage + ArchiveSpacePerThread();
590}
591
592
593char* Debug::RestoreDebug(char* storage) {
594  char* from = storage;
595  memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal));
596  from += sizeof(ThreadLocal);
597  memcpy(reinterpret_cast<char*>(&registers_), from, sizeof(registers_));
598  ASSERT(from <= storage + ArchiveSpacePerThread());
599  return storage + ArchiveSpacePerThread();
600}
601
602
603int Debug::ArchiveSpacePerThread() {
604  return sizeof(ThreadLocal) + sizeof(JSCallerSavedBuffer);
605}
606
607
608// Frame structure (conforms InternalFrame structure):
609//   -- code
610//   -- SMI maker
611//   -- function (slot is called "context")
612//   -- frame base
613Object** Debug::SetUpFrameDropperFrame(StackFrame* bottom_js_frame,
614                                       Handle<Code> code) {
615  ASSERT(bottom_js_frame->is_java_script());
616
617  Address fp = bottom_js_frame->fp();
618
619  // Move function pointer into "context" slot.
620  Memory::Object_at(fp + StandardFrameConstants::kContextOffset) =
621      Memory::Object_at(fp + JavaScriptFrameConstants::kFunctionOffset);
622
623  Memory::Object_at(fp + InternalFrameConstants::kCodeOffset) = *code;
624  Memory::Object_at(fp + StandardFrameConstants::kMarkerOffset) =
625      Smi::FromInt(StackFrame::INTERNAL);
626
627  return reinterpret_cast<Object**>(&Memory::Object_at(
628      fp + StandardFrameConstants::kContextOffset));
629}
630
631const int Debug::kFrameDropperFrameSize = 4;
632
633
634void ScriptCache::Add(Handle<Script> script) {
635  GlobalHandles* global_handles = Isolate::Current()->global_handles();
636  // Create an entry in the hash map for the script.
637  int id = Smi::cast(script->id())->value();
638  HashMap::Entry* entry =
639      HashMap::Lookup(reinterpret_cast<void*>(id), Hash(id), true);
640  if (entry->value != NULL) {
641    ASSERT(*script == *reinterpret_cast<Script**>(entry->value));
642    return;
643  }
644
645  // Globalize the script object, make it weak and use the location of the
646  // global handle as the value in the hash map.
647  Handle<Script> script_ =
648      Handle<Script>::cast(
649          (global_handles->Create(*script)));
650  global_handles->MakeWeak(
651      reinterpret_cast<Object**>(script_.location()),
652      this,
653      ScriptCache::HandleWeakScript);
654  entry->value = script_.location();
655}
656
657
658Handle<FixedArray> ScriptCache::GetScripts() {
659  Handle<FixedArray> instances = FACTORY->NewFixedArray(occupancy());
660  int count = 0;
661  for (HashMap::Entry* entry = Start(); entry != NULL; entry = Next(entry)) {
662    ASSERT(entry->value != NULL);
663    if (entry->value != NULL) {
664      instances->set(count, *reinterpret_cast<Script**>(entry->value));
665      count++;
666    }
667  }
668  return instances;
669}
670
671
672void ScriptCache::ProcessCollectedScripts() {
673  Debugger* debugger = Isolate::Current()->debugger();
674  for (int i = 0; i < collected_scripts_.length(); i++) {
675    debugger->OnScriptCollected(collected_scripts_[i]);
676  }
677  collected_scripts_.Clear();
678}
679
680
681void ScriptCache::Clear() {
682  GlobalHandles* global_handles = Isolate::Current()->global_handles();
683  // Iterate the script cache to get rid of all the weak handles.
684  for (HashMap::Entry* entry = Start(); entry != NULL; entry = Next(entry)) {
685    ASSERT(entry != NULL);
686    Object** location = reinterpret_cast<Object**>(entry->value);
687    ASSERT((*location)->IsScript());
688    global_handles->ClearWeakness(location);
689    global_handles->Destroy(location);
690  }
691  // Clear the content of the hash map.
692  HashMap::Clear();
693}
694
695
696void ScriptCache::HandleWeakScript(v8::Persistent<v8::Value> obj, void* data) {
697  ScriptCache* script_cache = reinterpret_cast<ScriptCache*>(data);
698  // Find the location of the global handle.
699  Script** location =
700      reinterpret_cast<Script**>(Utils::OpenHandle(*obj).location());
701  ASSERT((*location)->IsScript());
702
703  // Remove the entry from the cache.
704  int id = Smi::cast((*location)->id())->value();
705  script_cache->Remove(reinterpret_cast<void*>(id), Hash(id));
706  script_cache->collected_scripts_.Add(id);
707
708  // Clear the weak handle.
709  obj.Dispose();
710  obj.Clear();
711}
712
713
714void Debug::Setup(bool create_heap_objects) {
715  ThreadInit();
716  if (create_heap_objects) {
717    // Get code to handle debug break on return.
718    debug_break_return_ =
719        isolate_->builtins()->builtin(Builtins::kReturn_DebugBreak);
720    ASSERT(debug_break_return_->IsCode());
721    // Get code to handle debug break in debug break slots.
722    debug_break_slot_ =
723        isolate_->builtins()->builtin(Builtins::kSlot_DebugBreak);
724    ASSERT(debug_break_slot_->IsCode());
725  }
726}
727
728
729void Debug::HandleWeakDebugInfo(v8::Persistent<v8::Value> obj, void* data) {
730  Debug* debug = Isolate::Current()->debug();
731  DebugInfoListNode* node = reinterpret_cast<DebugInfoListNode*>(data);
732  // We need to clear all breakpoints associated with the function to restore
733  // original code and avoid patching the code twice later because
734  // the function will live in the heap until next gc, and can be found by
735  // Runtime::FindSharedFunctionInfoInScript.
736  BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS);
737  it.ClearAllDebugBreak();
738  debug->RemoveDebugInfo(node->debug_info());
739#ifdef DEBUG
740  node = debug->debug_info_list_;
741  while (node != NULL) {
742    ASSERT(node != reinterpret_cast<DebugInfoListNode*>(data));
743    node = node->next();
744  }
745#endif
746}
747
748
749DebugInfoListNode::DebugInfoListNode(DebugInfo* debug_info): next_(NULL) {
750  GlobalHandles* global_handles = Isolate::Current()->global_handles();
751  // Globalize the request debug info object and make it weak.
752  debug_info_ = Handle<DebugInfo>::cast(
753      (global_handles->Create(debug_info)));
754  global_handles->MakeWeak(
755      reinterpret_cast<Object**>(debug_info_.location()),
756      this,
757      Debug::HandleWeakDebugInfo);
758}
759
760
761DebugInfoListNode::~DebugInfoListNode() {
762  Isolate::Current()->global_handles()->Destroy(
763      reinterpret_cast<Object**>(debug_info_.location()));
764}
765
766
767bool Debug::CompileDebuggerScript(int index) {
768  Isolate* isolate = Isolate::Current();
769  Factory* factory = isolate->factory();
770  HandleScope scope(isolate);
771
772  // Bail out if the index is invalid.
773  if (index == -1) {
774    return false;
775  }
776
777  // Find source and name for the requested script.
778  Handle<String> source_code =
779      isolate->bootstrapper()->NativesSourceLookup(index);
780  Vector<const char> name = Natives::GetScriptName(index);
781  Handle<String> script_name = factory->NewStringFromAscii(name);
782
783  // Compile the script.
784  Handle<SharedFunctionInfo> function_info;
785  function_info = Compiler::Compile(source_code,
786                                    script_name,
787                                    0, 0, NULL, NULL,
788                                    Handle<String>::null(),
789                                    NATIVES_CODE);
790
791  // Silently ignore stack overflows during compilation.
792  if (function_info.is_null()) {
793    ASSERT(isolate->has_pending_exception());
794    isolate->clear_pending_exception();
795    return false;
796  }
797
798  // Execute the shared function in the debugger context.
799  Handle<Context> context = isolate->global_context();
800  bool caught_exception = false;
801  Handle<JSFunction> function =
802      factory->NewFunctionFromSharedFunctionInfo(function_info, context);
803  Handle<Object> result =
804      Execution::TryCall(function, Handle<Object>(context->global()),
805                         0, NULL, &caught_exception);
806
807  // Check for caught exceptions.
808  if (caught_exception) {
809    Handle<Object> message = MessageHandler::MakeMessageObject(
810        "error_loading_debugger", NULL, Vector<Handle<Object> >::empty(),
811        Handle<String>(), Handle<JSArray>());
812    MessageHandler::ReportMessage(Isolate::Current(), NULL, message);
813    return false;
814  }
815
816  // Mark this script as native and return successfully.
817  Handle<Script> script(Script::cast(function->shared()->script()));
818  script->set_type(Smi::FromInt(Script::TYPE_NATIVE));
819  return true;
820}
821
822
823bool Debug::Load() {
824  // Return if debugger is already loaded.
825  if (IsLoaded()) return true;
826
827  ASSERT(Isolate::Current() == isolate_);
828  Debugger* debugger = isolate_->debugger();
829
830  // Bail out if we're already in the process of compiling the native
831  // JavaScript source code for the debugger.
832  if (debugger->compiling_natives() ||
833      debugger->is_loading_debugger())
834    return false;
835  debugger->set_loading_debugger(true);
836
837  // Disable breakpoints and interrupts while compiling and running the
838  // debugger scripts including the context creation code.
839  DisableBreak disable(true);
840  PostponeInterruptsScope postpone(isolate_);
841
842  // Create the debugger context.
843  HandleScope scope(isolate_);
844  Handle<Context> context =
845      isolate_->bootstrapper()->CreateEnvironment(
846          Handle<Object>::null(),
847          v8::Handle<ObjectTemplate>(),
848          NULL);
849
850  // Use the debugger context.
851  SaveContext save(isolate_);
852  isolate_->set_context(*context);
853
854  // Expose the builtins object in the debugger context.
855  Handle<String> key = isolate_->factory()->LookupAsciiSymbol("builtins");
856  Handle<GlobalObject> global = Handle<GlobalObject>(context->global());
857  RETURN_IF_EMPTY_HANDLE_VALUE(
858      isolate_,
859      SetProperty(global, key, Handle<Object>(global->builtins()),
860                  NONE, kNonStrictMode),
861      false);
862
863  // Compile the JavaScript for the debugger in the debugger context.
864  debugger->set_compiling_natives(true);
865  bool caught_exception =
866      !CompileDebuggerScript(Natives::GetIndex("mirror")) ||
867      !CompileDebuggerScript(Natives::GetIndex("debug"));
868
869  if (FLAG_enable_liveedit) {
870    caught_exception = caught_exception ||
871        !CompileDebuggerScript(Natives::GetIndex("liveedit"));
872  }
873
874  debugger->set_compiling_natives(false);
875
876  // Make sure we mark the debugger as not loading before we might
877  // return.
878  debugger->set_loading_debugger(false);
879
880  // Check for caught exceptions.
881  if (caught_exception) return false;
882
883  // Debugger loaded.
884  debug_context_ = context;
885
886  return true;
887}
888
889
890void Debug::Unload() {
891  // Return debugger is not loaded.
892  if (!IsLoaded()) {
893    return;
894  }
895
896  // Clear the script cache.
897  DestroyScriptCache();
898
899  // Clear debugger context global handle.
900  Isolate::Current()->global_handles()->Destroy(
901      reinterpret_cast<Object**>(debug_context_.location()));
902  debug_context_ = Handle<Context>();
903}
904
905
906// Set the flag indicating that preemption happened during debugging.
907void Debug::PreemptionWhileInDebugger() {
908  ASSERT(InDebugger());
909  Debug::set_interrupts_pending(PREEMPT);
910}
911
912
913void Debug::Iterate(ObjectVisitor* v) {
914  v->VisitPointer(BitCast<Object**>(&(debug_break_return_)));
915  v->VisitPointer(BitCast<Object**>(&(debug_break_slot_)));
916}
917
918
919Object* Debug::Break(Arguments args) {
920  Heap* heap = isolate_->heap();
921  HandleScope scope(isolate_);
922  ASSERT(args.length() == 0);
923
924  thread_local_.frame_drop_mode_ = FRAMES_UNTOUCHED;
925
926  // Get the top-most JavaScript frame.
927  JavaScriptFrameIterator it(isolate_);
928  JavaScriptFrame* frame = it.frame();
929
930  // Just continue if breaks are disabled or debugger cannot be loaded.
931  if (disable_break() || !Load()) {
932    SetAfterBreakTarget(frame);
933    return heap->undefined_value();
934  }
935
936  // Enter the debugger.
937  EnterDebugger debugger;
938  if (debugger.FailedToEnter()) {
939    return heap->undefined_value();
940  }
941
942  // Postpone interrupt during breakpoint processing.
943  PostponeInterruptsScope postpone(isolate_);
944
945  // Get the debug info (create it if it does not exist).
946  Handle<SharedFunctionInfo> shared =
947      Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared());
948  Handle<DebugInfo> debug_info = GetDebugInfo(shared);
949
950  // Find the break point where execution has stopped.
951  BreakLocationIterator break_location_iterator(debug_info,
952                                                ALL_BREAK_LOCATIONS);
953  break_location_iterator.FindBreakLocationFromAddress(frame->pc());
954
955  // Check whether step next reached a new statement.
956  if (!StepNextContinue(&break_location_iterator, frame)) {
957    // Decrease steps left if performing multiple steps.
958    if (thread_local_.step_count_ > 0) {
959      thread_local_.step_count_--;
960    }
961  }
962
963  // If there is one or more real break points check whether any of these are
964  // triggered.
965  Handle<Object> break_points_hit(heap->undefined_value());
966  if (break_location_iterator.HasBreakPoint()) {
967    Handle<Object> break_point_objects =
968        Handle<Object>(break_location_iterator.BreakPointObjects());
969    break_points_hit = CheckBreakPoints(break_point_objects);
970  }
971
972  // If step out is active skip everything until the frame where we need to step
973  // out to is reached, unless real breakpoint is hit.
974  if (StepOutActive() && frame->fp() != step_out_fp() &&
975      break_points_hit->IsUndefined() ) {
976      // Step count should always be 0 for StepOut.
977      ASSERT(thread_local_.step_count_ == 0);
978  } else if (!break_points_hit->IsUndefined() ||
979             (thread_local_.last_step_action_ != StepNone &&
980              thread_local_.step_count_ == 0)) {
981    // Notify debugger if a real break point is triggered or if performing
982    // single stepping with no more steps to perform. Otherwise do another step.
983
984    // Clear all current stepping setup.
985    ClearStepping();
986
987    // Notify the debug event listeners.
988    isolate_->debugger()->OnDebugBreak(break_points_hit, false);
989  } else if (thread_local_.last_step_action_ != StepNone) {
990    // Hold on to last step action as it is cleared by the call to
991    // ClearStepping.
992    StepAction step_action = thread_local_.last_step_action_;
993    int step_count = thread_local_.step_count_;
994
995    // Clear all current stepping setup.
996    ClearStepping();
997
998    // Set up for the remaining steps.
999    PrepareStep(step_action, step_count);
1000  }
1001
1002  if (thread_local_.frame_drop_mode_ == FRAMES_UNTOUCHED) {
1003    SetAfterBreakTarget(frame);
1004  } else if (thread_local_.frame_drop_mode_ ==
1005      FRAME_DROPPED_IN_IC_CALL) {
1006    // We must have been calling IC stub. Do not go there anymore.
1007    Code* plain_return = isolate_->builtins()->builtin(
1008        Builtins::kPlainReturn_LiveEdit);
1009    thread_local_.after_break_target_ = plain_return->entry();
1010  } else if (thread_local_.frame_drop_mode_ ==
1011      FRAME_DROPPED_IN_DEBUG_SLOT_CALL) {
1012    // Debug break slot stub does not return normally, instead it manually
1013    // cleans the stack and jumps. We should patch the jump address.
1014    Code* plain_return = isolate_->builtins()->builtin(
1015        Builtins::kFrameDropper_LiveEdit);
1016    thread_local_.after_break_target_ = plain_return->entry();
1017  } else if (thread_local_.frame_drop_mode_ ==
1018      FRAME_DROPPED_IN_DIRECT_CALL) {
1019    // Nothing to do, after_break_target is not used here.
1020  } else {
1021    UNREACHABLE();
1022  }
1023
1024  return heap->undefined_value();
1025}
1026
1027
1028RUNTIME_FUNCTION(Object*, Debug_Break) {
1029  return isolate->debug()->Break(args);
1030}
1031
1032
1033// Check the break point objects for whether one or more are actually
1034// triggered. This function returns a JSArray with the break point objects
1035// which is triggered.
1036Handle<Object> Debug::CheckBreakPoints(Handle<Object> break_point_objects) {
1037  Factory* factory = isolate_->factory();
1038
1039  // Count the number of break points hit. If there are multiple break points
1040  // they are in a FixedArray.
1041  Handle<FixedArray> break_points_hit;
1042  int break_points_hit_count = 0;
1043  ASSERT(!break_point_objects->IsUndefined());
1044  if (break_point_objects->IsFixedArray()) {
1045    Handle<FixedArray> array(FixedArray::cast(*break_point_objects));
1046    break_points_hit = factory->NewFixedArray(array->length());
1047    for (int i = 0; i < array->length(); i++) {
1048      Handle<Object> o(array->get(i));
1049      if (CheckBreakPoint(o)) {
1050        break_points_hit->set(break_points_hit_count++, *o);
1051      }
1052    }
1053  } else {
1054    break_points_hit = factory->NewFixedArray(1);
1055    if (CheckBreakPoint(break_point_objects)) {
1056      break_points_hit->set(break_points_hit_count++, *break_point_objects);
1057    }
1058  }
1059
1060  // Return undefined if no break points were triggered.
1061  if (break_points_hit_count == 0) {
1062    return factory->undefined_value();
1063  }
1064  // Return break points hit as a JSArray.
1065  Handle<JSArray> result = factory->NewJSArrayWithElements(break_points_hit);
1066  result->set_length(Smi::FromInt(break_points_hit_count));
1067  return result;
1068}
1069
1070
1071// Check whether a single break point object is triggered.
1072bool Debug::CheckBreakPoint(Handle<Object> break_point_object) {
1073  ASSERT(Isolate::Current() == isolate_);
1074  Factory* factory = isolate_->factory();
1075  HandleScope scope(isolate_);
1076
1077  // Ignore check if break point object is not a JSObject.
1078  if (!break_point_object->IsJSObject()) return true;
1079
1080  // Get the function IsBreakPointTriggered (defined in debug-debugger.js).
1081  Handle<String> is_break_point_triggered_symbol =
1082      factory->LookupAsciiSymbol("IsBreakPointTriggered");
1083  Handle<JSFunction> check_break_point =
1084    Handle<JSFunction>(JSFunction::cast(
1085        debug_context()->global()->GetPropertyNoExceptionThrown(
1086            *is_break_point_triggered_symbol)));
1087
1088  // Get the break id as an object.
1089  Handle<Object> break_id = factory->NewNumberFromInt(Debug::break_id());
1090
1091  // Call HandleBreakPointx.
1092  bool caught_exception = false;
1093  const int argc = 2;
1094  Object** argv[argc] = {
1095    break_id.location(),
1096    reinterpret_cast<Object**>(break_point_object.location())
1097  };
1098  Handle<Object> result = Execution::TryCall(check_break_point,
1099      isolate_->js_builtins_object(), argc, argv, &caught_exception);
1100
1101  // If exception or non boolean result handle as not triggered
1102  if (caught_exception || !result->IsBoolean()) {
1103    return false;
1104  }
1105
1106  // Return whether the break point is triggered.
1107  ASSERT(!result.is_null());
1108  return (*result)->IsTrue();
1109}
1110
1111
1112// Check whether the function has debug information.
1113bool Debug::HasDebugInfo(Handle<SharedFunctionInfo> shared) {
1114  return !shared->debug_info()->IsUndefined();
1115}
1116
1117
1118// Return the debug info for this function. EnsureDebugInfo must be called
1119// prior to ensure the debug info has been generated for shared.
1120Handle<DebugInfo> Debug::GetDebugInfo(Handle<SharedFunctionInfo> shared) {
1121  ASSERT(HasDebugInfo(shared));
1122  return Handle<DebugInfo>(DebugInfo::cast(shared->debug_info()));
1123}
1124
1125
1126void Debug::SetBreakPoint(Handle<SharedFunctionInfo> shared,
1127                          Handle<Object> break_point_object,
1128                          int* source_position) {
1129  HandleScope scope(isolate_);
1130
1131  if (!EnsureDebugInfo(shared)) {
1132    // Return if retrieving debug info failed.
1133    return;
1134  }
1135
1136  Handle<DebugInfo> debug_info = GetDebugInfo(shared);
1137  // Source positions starts with zero.
1138  ASSERT(source_position >= 0);
1139
1140  // Find the break point and change it.
1141  BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS);
1142  it.FindBreakLocationFromPosition(*source_position);
1143  it.SetBreakPoint(break_point_object);
1144
1145  *source_position = it.position();
1146
1147  // At least one active break point now.
1148  ASSERT(debug_info->GetBreakPointCount() > 0);
1149}
1150
1151
1152void Debug::ClearBreakPoint(Handle<Object> break_point_object) {
1153  HandleScope scope(isolate_);
1154
1155  DebugInfoListNode* node = debug_info_list_;
1156  while (node != NULL) {
1157    Object* result = DebugInfo::FindBreakPointInfo(node->debug_info(),
1158                                                   break_point_object);
1159    if (!result->IsUndefined()) {
1160      // Get information in the break point.
1161      BreakPointInfo* break_point_info = BreakPointInfo::cast(result);
1162      Handle<DebugInfo> debug_info = node->debug_info();
1163      Handle<SharedFunctionInfo> shared(debug_info->shared());
1164      int source_position =  break_point_info->statement_position()->value();
1165
1166      // Source positions starts with zero.
1167      ASSERT(source_position >= 0);
1168
1169      // Find the break point and clear it.
1170      BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS);
1171      it.FindBreakLocationFromPosition(source_position);
1172      it.ClearBreakPoint(break_point_object);
1173
1174      // If there are no more break points left remove the debug info for this
1175      // function.
1176      if (debug_info->GetBreakPointCount() == 0) {
1177        RemoveDebugInfo(debug_info);
1178      }
1179
1180      return;
1181    }
1182    node = node->next();
1183  }
1184}
1185
1186
1187void Debug::ClearAllBreakPoints() {
1188  DebugInfoListNode* node = debug_info_list_;
1189  while (node != NULL) {
1190    // Remove all debug break code.
1191    BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS);
1192    it.ClearAllDebugBreak();
1193    node = node->next();
1194  }
1195
1196  // Remove all debug info.
1197  while (debug_info_list_ != NULL) {
1198    RemoveDebugInfo(debug_info_list_->debug_info());
1199  }
1200}
1201
1202
1203void Debug::FloodWithOneShot(Handle<SharedFunctionInfo> shared) {
1204  // Make sure the function has setup the debug info.
1205  if (!EnsureDebugInfo(shared)) {
1206    // Return if we failed to retrieve the debug info.
1207    return;
1208  }
1209
1210  // Flood the function with break points.
1211  BreakLocationIterator it(GetDebugInfo(shared), ALL_BREAK_LOCATIONS);
1212  while (!it.Done()) {
1213    it.SetOneShot();
1214    it.Next();
1215  }
1216}
1217
1218
1219void Debug::FloodHandlerWithOneShot() {
1220  // Iterate through the JavaScript stack looking for handlers.
1221  StackFrame::Id id = break_frame_id();
1222  if (id == StackFrame::NO_ID) {
1223    // If there is no JavaScript stack don't do anything.
1224    return;
1225  }
1226  for (JavaScriptFrameIterator it(isolate_, id); !it.done(); it.Advance()) {
1227    JavaScriptFrame* frame = it.frame();
1228    if (frame->HasHandler()) {
1229      Handle<SharedFunctionInfo> shared =
1230          Handle<SharedFunctionInfo>(
1231              JSFunction::cast(frame->function())->shared());
1232      // Flood the function with the catch block with break points
1233      FloodWithOneShot(shared);
1234      return;
1235    }
1236  }
1237}
1238
1239
1240void Debug::ChangeBreakOnException(ExceptionBreakType type, bool enable) {
1241  if (type == BreakUncaughtException) {
1242    break_on_uncaught_exception_ = enable;
1243  } else {
1244    break_on_exception_ = enable;
1245  }
1246}
1247
1248
1249bool Debug::IsBreakOnException(ExceptionBreakType type) {
1250  if (type == BreakUncaughtException) {
1251    return break_on_uncaught_exception_;
1252  } else {
1253    return break_on_exception_;
1254  }
1255}
1256
1257
1258void Debug::PrepareStep(StepAction step_action, int step_count) {
1259  ASSERT(Isolate::Current() == isolate_);
1260  HandleScope scope(isolate_);
1261  ASSERT(Debug::InDebugger());
1262
1263  // Remember this step action and count.
1264  thread_local_.last_step_action_ = step_action;
1265  if (step_action == StepOut) {
1266    // For step out target frame will be found on the stack so there is no need
1267    // to set step counter for it. It's expected to always be 0 for StepOut.
1268    thread_local_.step_count_ = 0;
1269  } else {
1270    thread_local_.step_count_ = step_count;
1271  }
1272
1273  // Get the frame where the execution has stopped and skip the debug frame if
1274  // any. The debug frame will only be present if execution was stopped due to
1275  // hitting a break point. In other situations (e.g. unhandled exception) the
1276  // debug frame is not present.
1277  StackFrame::Id id = break_frame_id();
1278  if (id == StackFrame::NO_ID) {
1279    // If there is no JavaScript stack don't do anything.
1280    return;
1281  }
1282  JavaScriptFrameIterator frames_it(isolate_, id);
1283  JavaScriptFrame* frame = frames_it.frame();
1284
1285  // First of all ensure there is one-shot break points in the top handler
1286  // if any.
1287  FloodHandlerWithOneShot();
1288
1289  // If the function on the top frame is unresolved perform step out. This will
1290  // be the case when calling unknown functions and having the debugger stopped
1291  // in an unhandled exception.
1292  if (!frame->function()->IsJSFunction()) {
1293    // Step out: Find the calling JavaScript frame and flood it with
1294    // breakpoints.
1295    frames_it.Advance();
1296    // Fill the function to return to with one-shot break points.
1297    JSFunction* function = JSFunction::cast(frames_it.frame()->function());
1298    FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared()));
1299    return;
1300  }
1301
1302  // Get the debug info (create it if it does not exist).
1303  Handle<SharedFunctionInfo> shared =
1304      Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared());
1305  if (!EnsureDebugInfo(shared)) {
1306    // Return if ensuring debug info failed.
1307    return;
1308  }
1309  Handle<DebugInfo> debug_info = GetDebugInfo(shared);
1310
1311  // Find the break location where execution has stopped.
1312  BreakLocationIterator it(debug_info, ALL_BREAK_LOCATIONS);
1313  it.FindBreakLocationFromAddress(frame->pc());
1314
1315  // Compute whether or not the target is a call target.
1316  bool is_load_or_store = false;
1317  bool is_inline_cache_stub = false;
1318  bool is_at_restarted_function = false;
1319  Handle<Code> call_function_stub;
1320
1321  if (thread_local_.restarter_frame_function_pointer_ == NULL) {
1322    if (RelocInfo::IsCodeTarget(it.rinfo()->rmode())) {
1323      bool is_call_target = false;
1324      Address target = it.rinfo()->target_address();
1325      Code* code = Code::GetCodeFromTargetAddress(target);
1326      if (code->is_call_stub() || code->is_keyed_call_stub()) {
1327        is_call_target = true;
1328      }
1329      if (code->is_inline_cache_stub()) {
1330        is_inline_cache_stub = true;
1331        is_load_or_store = !is_call_target;
1332      }
1333
1334      // Check if target code is CallFunction stub.
1335      Code* maybe_call_function_stub = code;
1336      // If there is a breakpoint at this line look at the original code to
1337      // check if it is a CallFunction stub.
1338      if (it.IsDebugBreak()) {
1339        Address original_target = it.original_rinfo()->target_address();
1340        maybe_call_function_stub =
1341            Code::GetCodeFromTargetAddress(original_target);
1342      }
1343      if (maybe_call_function_stub->kind() == Code::STUB &&
1344          maybe_call_function_stub->major_key() == CodeStub::CallFunction) {
1345        // Save reference to the code as we may need it to find out arguments
1346        // count for 'step in' later.
1347        call_function_stub = Handle<Code>(maybe_call_function_stub);
1348      }
1349    }
1350  } else {
1351    is_at_restarted_function = true;
1352  }
1353
1354  // If this is the last break code target step out is the only possibility.
1355  if (it.IsExit() || step_action == StepOut) {
1356    if (step_action == StepOut) {
1357      // Skip step_count frames starting with the current one.
1358      while (step_count-- > 0 && !frames_it.done()) {
1359        frames_it.Advance();
1360      }
1361    } else {
1362      ASSERT(it.IsExit());
1363      frames_it.Advance();
1364    }
1365    // Skip builtin functions on the stack.
1366    while (!frames_it.done() &&
1367           JSFunction::cast(frames_it.frame()->function())->IsBuiltin()) {
1368      frames_it.Advance();
1369    }
1370    // Step out: If there is a JavaScript caller frame, we need to
1371    // flood it with breakpoints.
1372    if (!frames_it.done()) {
1373      // Fill the function to return to with one-shot break points.
1374      JSFunction* function = JSFunction::cast(frames_it.frame()->function());
1375      FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared()));
1376      // Set target frame pointer.
1377      ActivateStepOut(frames_it.frame());
1378    }
1379  } else if (!(is_inline_cache_stub || RelocInfo::IsConstructCall(it.rmode()) ||
1380               !call_function_stub.is_null() || is_at_restarted_function)
1381             || step_action == StepNext || step_action == StepMin) {
1382    // Step next or step min.
1383
1384    // Fill the current function with one-shot break points.
1385    FloodWithOneShot(shared);
1386
1387    // Remember source position and frame to handle step next.
1388    thread_local_.last_statement_position_ =
1389        debug_info->code()->SourceStatementPosition(frame->pc());
1390    thread_local_.last_fp_ = frame->fp();
1391  } else {
1392    // If there's restarter frame on top of the stack, just get the pointer
1393    // to function which is going to be restarted.
1394    if (is_at_restarted_function) {
1395      Handle<JSFunction> restarted_function(
1396          JSFunction::cast(*thread_local_.restarter_frame_function_pointer_));
1397      Handle<SharedFunctionInfo> restarted_shared(
1398          restarted_function->shared());
1399      FloodWithOneShot(restarted_shared);
1400    } else if (!call_function_stub.is_null()) {
1401      // If it's CallFunction stub ensure target function is compiled and flood
1402      // it with one shot breakpoints.
1403
1404      // Find out number of arguments from the stub minor key.
1405      // Reverse lookup required as the minor key cannot be retrieved
1406      // from the code object.
1407      Handle<Object> obj(
1408          isolate_->heap()->code_stubs()->SlowReverseLookup(
1409              *call_function_stub));
1410      ASSERT(!obj.is_null());
1411      ASSERT(!(*obj)->IsUndefined());
1412      ASSERT(obj->IsSmi());
1413      // Get the STUB key and extract major and minor key.
1414      uint32_t key = Smi::cast(*obj)->value();
1415      // Argc in the stub is the number of arguments passed - not the
1416      // expected arguments of the called function.
1417      int call_function_arg_count =
1418          CallFunctionStub::ExtractArgcFromMinorKey(
1419              CodeStub::MinorKeyFromKey(key));
1420      ASSERT(call_function_stub->major_key() ==
1421             CodeStub::MajorKeyFromKey(key));
1422
1423      // Find target function on the expression stack.
1424      // Expression stack looks like this (top to bottom):
1425      // argN
1426      // ...
1427      // arg0
1428      // Receiver
1429      // Function to call
1430      int expressions_count = frame->ComputeExpressionsCount();
1431      ASSERT(expressions_count - 2 - call_function_arg_count >= 0);
1432      Object* fun = frame->GetExpression(
1433          expressions_count - 2 - call_function_arg_count);
1434      if (fun->IsJSFunction()) {
1435        Handle<JSFunction> js_function(JSFunction::cast(fun));
1436        // Don't step into builtins.
1437        if (!js_function->IsBuiltin()) {
1438          // It will also compile target function if it's not compiled yet.
1439          FloodWithOneShot(Handle<SharedFunctionInfo>(js_function->shared()));
1440        }
1441      }
1442    }
1443
1444    // Fill the current function with one-shot break points even for step in on
1445    // a call target as the function called might be a native function for
1446    // which step in will not stop. It also prepares for stepping in
1447    // getters/setters.
1448    FloodWithOneShot(shared);
1449
1450    if (is_load_or_store) {
1451      // Remember source position and frame to handle step in getter/setter. If
1452      // there is a custom getter/setter it will be handled in
1453      // Object::Get/SetPropertyWithCallback, otherwise the step action will be
1454      // propagated on the next Debug::Break.
1455      thread_local_.last_statement_position_ =
1456          debug_info->code()->SourceStatementPosition(frame->pc());
1457      thread_local_.last_fp_ = frame->fp();
1458    }
1459
1460    // Step in or Step in min
1461    it.PrepareStepIn();
1462    ActivateStepIn(frame);
1463  }
1464}
1465
1466
1467// Check whether the current debug break should be reported to the debugger. It
1468// is used to have step next and step in only report break back to the debugger
1469// if on a different frame or in a different statement. In some situations
1470// there will be several break points in the same statement when the code is
1471// flooded with one-shot break points. This function helps to perform several
1472// steps before reporting break back to the debugger.
1473bool Debug::StepNextContinue(BreakLocationIterator* break_location_iterator,
1474                             JavaScriptFrame* frame) {
1475  // If the step last action was step next or step in make sure that a new
1476  // statement is hit.
1477  if (thread_local_.last_step_action_ == StepNext ||
1478      thread_local_.last_step_action_ == StepIn) {
1479    // Never continue if returning from function.
1480    if (break_location_iterator->IsExit()) return false;
1481
1482    // Continue if we are still on the same frame and in the same statement.
1483    int current_statement_position =
1484        break_location_iterator->code()->SourceStatementPosition(frame->pc());
1485    return thread_local_.last_fp_ == frame->fp() &&
1486        thread_local_.last_statement_position_ == current_statement_position;
1487  }
1488
1489  // No step next action - don't continue.
1490  return false;
1491}
1492
1493
1494// Check whether the code object at the specified address is a debug break code
1495// object.
1496bool Debug::IsDebugBreak(Address addr) {
1497  Code* code = Code::GetCodeFromTargetAddress(addr);
1498  return code->ic_state() == DEBUG_BREAK;
1499}
1500
1501
1502// Check whether a code stub with the specified major key is a possible break
1503// point location when looking for source break locations.
1504bool Debug::IsSourceBreakStub(Code* code) {
1505  CodeStub::Major major_key = CodeStub::GetMajorKey(code);
1506  return major_key == CodeStub::CallFunction;
1507}
1508
1509
1510// Check whether a code stub with the specified major key is a possible break
1511// location.
1512bool Debug::IsBreakStub(Code* code) {
1513  CodeStub::Major major_key = CodeStub::GetMajorKey(code);
1514  return major_key == CodeStub::CallFunction;
1515}
1516
1517
1518// Find the builtin to use for invoking the debug break
1519Handle<Code> Debug::FindDebugBreak(Handle<Code> code, RelocInfo::Mode mode) {
1520  // Find the builtin debug break function matching the calling convention
1521  // used by the call site.
1522  if (code->is_inline_cache_stub()) {
1523    switch (code->kind()) {
1524      case Code::CALL_IC:
1525      case Code::KEYED_CALL_IC:
1526        return ComputeCallDebugBreak(code->arguments_count(), code->kind());
1527
1528      case Code::LOAD_IC:
1529        return Isolate::Current()->builtins()->LoadIC_DebugBreak();
1530
1531      case Code::STORE_IC:
1532        return Isolate::Current()->builtins()->StoreIC_DebugBreak();
1533
1534      case Code::KEYED_LOAD_IC:
1535        return Isolate::Current()->builtins()->KeyedLoadIC_DebugBreak();
1536
1537      case Code::KEYED_STORE_IC:
1538        return Isolate::Current()->builtins()->KeyedStoreIC_DebugBreak();
1539
1540      default:
1541        UNREACHABLE();
1542    }
1543  }
1544  if (RelocInfo::IsConstructCall(mode)) {
1545    Handle<Code> result =
1546        Isolate::Current()->builtins()->ConstructCall_DebugBreak();
1547    return result;
1548  }
1549  if (code->kind() == Code::STUB) {
1550    ASSERT(code->major_key() == CodeStub::CallFunction);
1551    Handle<Code> result =
1552        Isolate::Current()->builtins()->StubNoRegisters_DebugBreak();
1553    return result;
1554  }
1555
1556  UNREACHABLE();
1557  return Handle<Code>::null();
1558}
1559
1560
1561// Simple function for returning the source positions for active break points.
1562Handle<Object> Debug::GetSourceBreakLocations(
1563    Handle<SharedFunctionInfo> shared) {
1564  Isolate* isolate = Isolate::Current();
1565  Heap* heap = isolate->heap();
1566  if (!HasDebugInfo(shared)) return Handle<Object>(heap->undefined_value());
1567  Handle<DebugInfo> debug_info = GetDebugInfo(shared);
1568  if (debug_info->GetBreakPointCount() == 0) {
1569    return Handle<Object>(heap->undefined_value());
1570  }
1571  Handle<FixedArray> locations =
1572      isolate->factory()->NewFixedArray(debug_info->GetBreakPointCount());
1573  int count = 0;
1574  for (int i = 0; i < debug_info->break_points()->length(); i++) {
1575    if (!debug_info->break_points()->get(i)->IsUndefined()) {
1576      BreakPointInfo* break_point_info =
1577          BreakPointInfo::cast(debug_info->break_points()->get(i));
1578      if (break_point_info->GetBreakPointCount() > 0) {
1579        locations->set(count++, break_point_info->statement_position());
1580      }
1581    }
1582  }
1583  return locations;
1584}
1585
1586
1587void Debug::NewBreak(StackFrame::Id break_frame_id) {
1588  thread_local_.break_frame_id_ = break_frame_id;
1589  thread_local_.break_id_ = ++thread_local_.break_count_;
1590}
1591
1592
1593void Debug::SetBreak(StackFrame::Id break_frame_id, int break_id) {
1594  thread_local_.break_frame_id_ = break_frame_id;
1595  thread_local_.break_id_ = break_id;
1596}
1597
1598
1599// Handle stepping into a function.
1600void Debug::HandleStepIn(Handle<JSFunction> function,
1601                         Handle<Object> holder,
1602                         Address fp,
1603                         bool is_constructor) {
1604  // If the frame pointer is not supplied by the caller find it.
1605  if (fp == 0) {
1606    StackFrameIterator it;
1607    it.Advance();
1608    // For constructor functions skip another frame.
1609    if (is_constructor) {
1610      ASSERT(it.frame()->is_construct());
1611      it.Advance();
1612    }
1613    fp = it.frame()->fp();
1614  }
1615
1616  // Flood the function with one-shot break points if it is called from where
1617  // step into was requested.
1618  if (fp == step_in_fp()) {
1619    // Don't allow step into functions in the native context.
1620    if (!function->IsBuiltin()) {
1621      if (function->shared()->code() ==
1622          Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply) ||
1623          function->shared()->code() ==
1624          Isolate::Current()->builtins()->builtin(Builtins::kFunctionCall)) {
1625        // Handle function.apply and function.call separately to flood the
1626        // function to be called and not the code for Builtins::FunctionApply or
1627        // Builtins::FunctionCall. The receiver of call/apply is the target
1628        // function.
1629        if (!holder.is_null() && holder->IsJSFunction() &&
1630            !JSFunction::cast(*holder)->IsBuiltin()) {
1631          Handle<SharedFunctionInfo> shared_info(
1632              JSFunction::cast(*holder)->shared());
1633          Debug::FloodWithOneShot(shared_info);
1634        }
1635      } else {
1636        Debug::FloodWithOneShot(Handle<SharedFunctionInfo>(function->shared()));
1637      }
1638    }
1639  }
1640}
1641
1642
1643void Debug::ClearStepping() {
1644  // Clear the various stepping setup.
1645  ClearOneShot();
1646  ClearStepIn();
1647  ClearStepOut();
1648  ClearStepNext();
1649
1650  // Clear multiple step counter.
1651  thread_local_.step_count_ = 0;
1652}
1653
1654// Clears all the one-shot break points that are currently set. Normally this
1655// function is called each time a break point is hit as one shot break points
1656// are used to support stepping.
1657void Debug::ClearOneShot() {
1658  // The current implementation just runs through all the breakpoints. When the
1659  // last break point for a function is removed that function is automatically
1660  // removed from the list.
1661
1662  DebugInfoListNode* node = debug_info_list_;
1663  while (node != NULL) {
1664    BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS);
1665    while (!it.Done()) {
1666      it.ClearOneShot();
1667      it.Next();
1668    }
1669    node = node->next();
1670  }
1671}
1672
1673
1674void Debug::ActivateStepIn(StackFrame* frame) {
1675  ASSERT(!StepOutActive());
1676  thread_local_.step_into_fp_ = frame->fp();
1677}
1678
1679
1680void Debug::ClearStepIn() {
1681  thread_local_.step_into_fp_ = 0;
1682}
1683
1684
1685void Debug::ActivateStepOut(StackFrame* frame) {
1686  ASSERT(!StepInActive());
1687  thread_local_.step_out_fp_ = frame->fp();
1688}
1689
1690
1691void Debug::ClearStepOut() {
1692  thread_local_.step_out_fp_ = 0;
1693}
1694
1695
1696void Debug::ClearStepNext() {
1697  thread_local_.last_step_action_ = StepNone;
1698  thread_local_.last_statement_position_ = RelocInfo::kNoPosition;
1699  thread_local_.last_fp_ = 0;
1700}
1701
1702
1703// Ensures the debug information is present for shared.
1704bool Debug::EnsureDebugInfo(Handle<SharedFunctionInfo> shared) {
1705  // Return if we already have the debug info for shared.
1706  if (HasDebugInfo(shared)) return true;
1707
1708  // Ensure shared in compiled. Return false if this failed.
1709  if (!EnsureCompiled(shared, CLEAR_EXCEPTION)) return false;
1710
1711  // If preparing for the first break point make sure to deoptimize all
1712  // functions as debugging does not work with optimized code.
1713  if (!has_break_points_) {
1714    Deoptimizer::DeoptimizeAll();
1715  }
1716
1717  // Create the debug info object.
1718  Handle<DebugInfo> debug_info = FACTORY->NewDebugInfo(shared);
1719
1720  // Add debug info to the list.
1721  DebugInfoListNode* node = new DebugInfoListNode(*debug_info);
1722  node->set_next(debug_info_list_);
1723  debug_info_list_ = node;
1724
1725  // Now there is at least one break point.
1726  has_break_points_ = true;
1727
1728  return true;
1729}
1730
1731
1732void Debug::RemoveDebugInfo(Handle<DebugInfo> debug_info) {
1733  ASSERT(debug_info_list_ != NULL);
1734  // Run through the debug info objects to find this one and remove it.
1735  DebugInfoListNode* prev = NULL;
1736  DebugInfoListNode* current = debug_info_list_;
1737  while (current != NULL) {
1738    if (*current->debug_info() == *debug_info) {
1739      // Unlink from list. If prev is NULL we are looking at the first element.
1740      if (prev == NULL) {
1741        debug_info_list_ = current->next();
1742      } else {
1743        prev->set_next(current->next());
1744      }
1745      current->debug_info()->shared()->set_debug_info(
1746              isolate_->heap()->undefined_value());
1747      delete current;
1748
1749      // If there are no more debug info objects there are not more break
1750      // points.
1751      has_break_points_ = debug_info_list_ != NULL;
1752
1753      return;
1754    }
1755    // Move to next in list.
1756    prev = current;
1757    current = current->next();
1758  }
1759  UNREACHABLE();
1760}
1761
1762
1763void Debug::SetAfterBreakTarget(JavaScriptFrame* frame) {
1764  ASSERT(Isolate::Current() == isolate_);
1765  HandleScope scope(isolate_);
1766
1767  // Get the executing function in which the debug break occurred.
1768  Handle<SharedFunctionInfo> shared =
1769      Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared());
1770  if (!EnsureDebugInfo(shared)) {
1771    // Return if we failed to retrieve the debug info.
1772    return;
1773  }
1774  Handle<DebugInfo> debug_info = GetDebugInfo(shared);
1775  Handle<Code> code(debug_info->code());
1776  Handle<Code> original_code(debug_info->original_code());
1777#ifdef DEBUG
1778  // Get the code which is actually executing.
1779  Handle<Code> frame_code(frame->LookupCode());
1780  ASSERT(frame_code.is_identical_to(code));
1781#endif
1782
1783  // Find the call address in the running code. This address holds the call to
1784  // either a DebugBreakXXX or to the debug break return entry code if the
1785  // break point is still active after processing the break point.
1786  Address addr = frame->pc() - Assembler::kCallTargetAddressOffset;
1787
1788  // Check if the location is at JS exit or debug break slot.
1789  bool at_js_return = false;
1790  bool break_at_js_return_active = false;
1791  bool at_debug_break_slot = false;
1792  RelocIterator it(debug_info->code());
1793  while (!it.done() && !at_js_return && !at_debug_break_slot) {
1794    if (RelocInfo::IsJSReturn(it.rinfo()->rmode())) {
1795      at_js_return = (it.rinfo()->pc() ==
1796          addr - Assembler::kPatchReturnSequenceAddressOffset);
1797      break_at_js_return_active = it.rinfo()->IsPatchedReturnSequence();
1798    }
1799    if (RelocInfo::IsDebugBreakSlot(it.rinfo()->rmode())) {
1800      at_debug_break_slot = (it.rinfo()->pc() ==
1801          addr - Assembler::kPatchDebugBreakSlotAddressOffset);
1802    }
1803    it.next();
1804  }
1805
1806  // Handle the jump to continue execution after break point depending on the
1807  // break location.
1808  if (at_js_return) {
1809    // If the break point as return is still active jump to the corresponding
1810    // place in the original code. If not the break point was removed during
1811    // break point processing.
1812    if (break_at_js_return_active) {
1813      addr +=  original_code->instruction_start() - code->instruction_start();
1814    }
1815
1816    // Move back to where the call instruction sequence started.
1817    thread_local_.after_break_target_ =
1818        addr - Assembler::kPatchReturnSequenceAddressOffset;
1819  } else if (at_debug_break_slot) {
1820    // Address of where the debug break slot starts.
1821    addr = addr - Assembler::kPatchDebugBreakSlotAddressOffset;
1822
1823    // Continue just after the slot.
1824    thread_local_.after_break_target_ = addr + Assembler::kDebugBreakSlotLength;
1825  } else if (IsDebugBreak(Assembler::target_address_at(addr))) {
1826    // We now know that there is still a debug break call at the target address,
1827    // so the break point is still there and the original code will hold the
1828    // address to jump to in order to complete the call which is replaced by a
1829    // call to DebugBreakXXX.
1830
1831    // Find the corresponding address in the original code.
1832    addr += original_code->instruction_start() - code->instruction_start();
1833
1834    // Install jump to the call address in the original code. This will be the
1835    // call which was overwritten by the call to DebugBreakXXX.
1836    thread_local_.after_break_target_ = Assembler::target_address_at(addr);
1837  } else {
1838    // There is no longer a break point present. Don't try to look in the
1839    // original code as the running code will have the right address. This takes
1840    // care of the case where the last break point is removed from the function
1841    // and therefore no "original code" is available.
1842    thread_local_.after_break_target_ = Assembler::target_address_at(addr);
1843  }
1844}
1845
1846
1847bool Debug::IsBreakAtReturn(JavaScriptFrame* frame) {
1848  HandleScope scope(isolate_);
1849
1850  // Get the executing function in which the debug break occurred.
1851  Handle<SharedFunctionInfo> shared =
1852      Handle<SharedFunctionInfo>(JSFunction::cast(frame->function())->shared());
1853  if (!EnsureDebugInfo(shared)) {
1854    // Return if we failed to retrieve the debug info.
1855    return false;
1856  }
1857  Handle<DebugInfo> debug_info = GetDebugInfo(shared);
1858  Handle<Code> code(debug_info->code());
1859#ifdef DEBUG
1860  // Get the code which is actually executing.
1861  Handle<Code> frame_code(frame->LookupCode());
1862  ASSERT(frame_code.is_identical_to(code));
1863#endif
1864
1865  // Find the call address in the running code.
1866  Address addr = frame->pc() - Assembler::kCallTargetAddressOffset;
1867
1868  // Check if the location is at JS return.
1869  RelocIterator it(debug_info->code());
1870  while (!it.done()) {
1871    if (RelocInfo::IsJSReturn(it.rinfo()->rmode())) {
1872      return (it.rinfo()->pc() ==
1873          addr - Assembler::kPatchReturnSequenceAddressOffset);
1874    }
1875    it.next();
1876  }
1877  return false;
1878}
1879
1880
1881void Debug::FramesHaveBeenDropped(StackFrame::Id new_break_frame_id,
1882                                  FrameDropMode mode,
1883                                  Object** restarter_frame_function_pointer) {
1884  thread_local_.frame_drop_mode_ = mode;
1885  thread_local_.break_frame_id_ = new_break_frame_id;
1886  thread_local_.restarter_frame_function_pointer_ =
1887      restarter_frame_function_pointer;
1888}
1889
1890
1891bool Debug::IsDebugGlobal(GlobalObject* global) {
1892  return IsLoaded() && global == debug_context()->global();
1893}
1894
1895
1896void Debug::ClearMirrorCache() {
1897  ASSERT(Isolate::Current() == isolate_);
1898  PostponeInterruptsScope postpone(isolate_);
1899  HandleScope scope(isolate_);
1900  ASSERT(isolate_->context() == *Debug::debug_context());
1901
1902  // Clear the mirror cache.
1903  Handle<String> function_name =
1904      isolate_->factory()->LookupSymbol(CStrVector("ClearMirrorCache"));
1905  Handle<Object> fun(Isolate::Current()->global()->GetPropertyNoExceptionThrown(
1906      *function_name));
1907  ASSERT(fun->IsJSFunction());
1908  bool caught_exception;
1909  Handle<Object> js_object = Execution::TryCall(
1910      Handle<JSFunction>::cast(fun),
1911      Handle<JSObject>(Debug::debug_context()->global()),
1912      0, NULL, &caught_exception);
1913}
1914
1915
1916void Debug::CreateScriptCache() {
1917  ASSERT(Isolate::Current() == isolate_);
1918  Heap* heap = isolate_->heap();
1919  HandleScope scope(isolate_);
1920
1921  // Perform two GCs to get rid of all unreferenced scripts. The first GC gets
1922  // rid of all the cached script wrappers and the second gets rid of the
1923  // scripts which are no longer referenced.
1924  heap->CollectAllGarbage(false);
1925  heap->CollectAllGarbage(false);
1926
1927  ASSERT(script_cache_ == NULL);
1928  script_cache_ = new ScriptCache();
1929
1930  // Scan heap for Script objects.
1931  int count = 0;
1932  HeapIterator iterator;
1933  for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
1934    if (obj->IsScript() && Script::cast(obj)->HasValidSource()) {
1935      script_cache_->Add(Handle<Script>(Script::cast(obj)));
1936      count++;
1937    }
1938  }
1939}
1940
1941
1942void Debug::DestroyScriptCache() {
1943  // Get rid of the script cache if it was created.
1944  if (script_cache_ != NULL) {
1945    delete script_cache_;
1946    script_cache_ = NULL;
1947  }
1948}
1949
1950
1951void Debug::AddScriptToScriptCache(Handle<Script> script) {
1952  if (script_cache_ != NULL) {
1953    script_cache_->Add(script);
1954  }
1955}
1956
1957
1958Handle<FixedArray> Debug::GetLoadedScripts() {
1959  ASSERT(Isolate::Current() == isolate_);
1960  // Create and fill the script cache when the loaded scripts is requested for
1961  // the first time.
1962  if (script_cache_ == NULL) {
1963    CreateScriptCache();
1964  }
1965
1966  // If the script cache is not active just return an empty array.
1967  ASSERT(script_cache_ != NULL);
1968  if (script_cache_ == NULL) {
1969    isolate_->factory()->NewFixedArray(0);
1970  }
1971
1972  // Perform GC to get unreferenced scripts evicted from the cache before
1973  // returning the content.
1974  isolate_->heap()->CollectAllGarbage(false);
1975
1976  // Get the scripts from the cache.
1977  return script_cache_->GetScripts();
1978}
1979
1980
1981void Debug::AfterGarbageCollection() {
1982  // Generate events for collected scripts.
1983  if (script_cache_ != NULL) {
1984    script_cache_->ProcessCollectedScripts();
1985  }
1986}
1987
1988
1989Debugger::Debugger(Isolate* isolate)
1990    : debugger_access_(isolate->debugger_access()),
1991      event_listener_(Handle<Object>()),
1992      event_listener_data_(Handle<Object>()),
1993      compiling_natives_(false),
1994      is_loading_debugger_(false),
1995      never_unload_debugger_(false),
1996      message_handler_(NULL),
1997      debugger_unload_pending_(false),
1998      host_dispatch_handler_(NULL),
1999      dispatch_handler_access_(OS::CreateMutex()),
2000      debug_message_dispatch_handler_(NULL),
2001      message_dispatch_helper_thread_(NULL),
2002      host_dispatch_micros_(100 * 1000),
2003      agent_(NULL),
2004      command_queue_(kQueueInitialSize),
2005      command_received_(OS::CreateSemaphore(0)),
2006      event_command_queue_(kQueueInitialSize),
2007      isolate_(isolate) {
2008}
2009
2010
2011Debugger::~Debugger() {
2012  delete dispatch_handler_access_;
2013  dispatch_handler_access_ = 0;
2014  delete command_received_;
2015  command_received_ = 0;
2016}
2017
2018
2019Handle<Object> Debugger::MakeJSObject(Vector<const char> constructor_name,
2020                                      int argc, Object*** argv,
2021                                      bool* caught_exception) {
2022  ASSERT(Isolate::Current() == isolate_);
2023  ASSERT(isolate_->context() == *isolate_->debug()->debug_context());
2024
2025  // Create the execution state object.
2026  Handle<String> constructor_str =
2027      isolate_->factory()->LookupSymbol(constructor_name);
2028  Handle<Object> constructor(
2029      isolate_->global()->GetPropertyNoExceptionThrown(*constructor_str));
2030  ASSERT(constructor->IsJSFunction());
2031  if (!constructor->IsJSFunction()) {
2032    *caught_exception = true;
2033    return isolate_->factory()->undefined_value();
2034  }
2035  Handle<Object> js_object = Execution::TryCall(
2036      Handle<JSFunction>::cast(constructor),
2037      Handle<JSObject>(isolate_->debug()->debug_context()->global()),
2038      argc, argv, caught_exception);
2039  return js_object;
2040}
2041
2042
2043Handle<Object> Debugger::MakeExecutionState(bool* caught_exception) {
2044  ASSERT(Isolate::Current() == isolate_);
2045  // Create the execution state object.
2046  Handle<Object> break_id = isolate_->factory()->NewNumberFromInt(
2047      isolate_->debug()->break_id());
2048  const int argc = 1;
2049  Object** argv[argc] = { break_id.location() };
2050  return MakeJSObject(CStrVector("MakeExecutionState"),
2051                      argc, argv, caught_exception);
2052}
2053
2054
2055Handle<Object> Debugger::MakeBreakEvent(Handle<Object> exec_state,
2056                                        Handle<Object> break_points_hit,
2057                                        bool* caught_exception) {
2058  ASSERT(Isolate::Current() == isolate_);
2059  // Create the new break event object.
2060  const int argc = 2;
2061  Object** argv[argc] = { exec_state.location(),
2062                          break_points_hit.location() };
2063  return MakeJSObject(CStrVector("MakeBreakEvent"),
2064                      argc,
2065                      argv,
2066                      caught_exception);
2067}
2068
2069
2070Handle<Object> Debugger::MakeExceptionEvent(Handle<Object> exec_state,
2071                                            Handle<Object> exception,
2072                                            bool uncaught,
2073                                            bool* caught_exception) {
2074  ASSERT(Isolate::Current() == isolate_);
2075  Factory* factory = isolate_->factory();
2076  // Create the new exception event object.
2077  const int argc = 3;
2078  Object** argv[argc] = { exec_state.location(),
2079                          exception.location(),
2080                          uncaught ? factory->true_value().location() :
2081                                     factory->false_value().location()};
2082  return MakeJSObject(CStrVector("MakeExceptionEvent"),
2083                      argc, argv, caught_exception);
2084}
2085
2086
2087Handle<Object> Debugger::MakeNewFunctionEvent(Handle<Object> function,
2088                                              bool* caught_exception) {
2089  ASSERT(Isolate::Current() == isolate_);
2090  // Create the new function event object.
2091  const int argc = 1;
2092  Object** argv[argc] = { function.location() };
2093  return MakeJSObject(CStrVector("MakeNewFunctionEvent"),
2094                      argc, argv, caught_exception);
2095}
2096
2097
2098Handle<Object> Debugger::MakeCompileEvent(Handle<Script> script,
2099                                          bool before,
2100                                          bool* caught_exception) {
2101  ASSERT(Isolate::Current() == isolate_);
2102  Factory* factory = isolate_->factory();
2103  // Create the compile event object.
2104  Handle<Object> exec_state = MakeExecutionState(caught_exception);
2105  Handle<Object> script_wrapper = GetScriptWrapper(script);
2106  const int argc = 3;
2107  Object** argv[argc] = { exec_state.location(),
2108                          script_wrapper.location(),
2109                          before ? factory->true_value().location() :
2110                                   factory->false_value().location() };
2111
2112  return MakeJSObject(CStrVector("MakeCompileEvent"),
2113                      argc,
2114                      argv,
2115                      caught_exception);
2116}
2117
2118
2119Handle<Object> Debugger::MakeScriptCollectedEvent(int id,
2120                                                  bool* caught_exception) {
2121  ASSERT(Isolate::Current() == isolate_);
2122  // Create the script collected event object.
2123  Handle<Object> exec_state = MakeExecutionState(caught_exception);
2124  Handle<Object> id_object = Handle<Smi>(Smi::FromInt(id));
2125  const int argc = 2;
2126  Object** argv[argc] = { exec_state.location(), id_object.location() };
2127
2128  return MakeJSObject(CStrVector("MakeScriptCollectedEvent"),
2129                      argc,
2130                      argv,
2131                      caught_exception);
2132}
2133
2134
2135void Debugger::OnException(Handle<Object> exception, bool uncaught) {
2136  ASSERT(Isolate::Current() == isolate_);
2137  HandleScope scope(isolate_);
2138  Debug* debug = isolate_->debug();
2139
2140  // Bail out based on state or if there is no listener for this event
2141  if (debug->InDebugger()) return;
2142  if (!Debugger::EventActive(v8::Exception)) return;
2143
2144  // Bail out if exception breaks are not active
2145  if (uncaught) {
2146    // Uncaught exceptions are reported by either flags.
2147    if (!(debug->break_on_uncaught_exception() ||
2148          debug->break_on_exception())) return;
2149  } else {
2150    // Caught exceptions are reported is activated.
2151    if (!debug->break_on_exception()) return;
2152  }
2153
2154  // Enter the debugger.
2155  EnterDebugger debugger;
2156  if (debugger.FailedToEnter()) return;
2157
2158  // Clear all current stepping setup.
2159  debug->ClearStepping();
2160  // Create the event data object.
2161  bool caught_exception = false;
2162  Handle<Object> exec_state = MakeExecutionState(&caught_exception);
2163  Handle<Object> event_data;
2164  if (!caught_exception) {
2165    event_data = MakeExceptionEvent(exec_state, exception, uncaught,
2166                                    &caught_exception);
2167  }
2168  // Bail out and don't call debugger if exception.
2169  if (caught_exception) {
2170    return;
2171  }
2172
2173  // Process debug event.
2174  ProcessDebugEvent(v8::Exception, Handle<JSObject>::cast(event_data), false);
2175  // Return to continue execution from where the exception was thrown.
2176}
2177
2178
2179void Debugger::OnDebugBreak(Handle<Object> break_points_hit,
2180                            bool auto_continue) {
2181  ASSERT(Isolate::Current() == isolate_);
2182  HandleScope scope(isolate_);
2183
2184  // Debugger has already been entered by caller.
2185  ASSERT(isolate_->context() == *isolate_->debug()->debug_context());
2186
2187  // Bail out if there is no listener for this event
2188  if (!Debugger::EventActive(v8::Break)) return;
2189
2190  // Debugger must be entered in advance.
2191  ASSERT(Isolate::Current()->context() == *isolate_->debug()->debug_context());
2192
2193  // Create the event data object.
2194  bool caught_exception = false;
2195  Handle<Object> exec_state = MakeExecutionState(&caught_exception);
2196  Handle<Object> event_data;
2197  if (!caught_exception) {
2198    event_data = MakeBreakEvent(exec_state, break_points_hit,
2199                                &caught_exception);
2200  }
2201  // Bail out and don't call debugger if exception.
2202  if (caught_exception) {
2203    return;
2204  }
2205
2206  // Process debug event.
2207  ProcessDebugEvent(v8::Break,
2208                    Handle<JSObject>::cast(event_data),
2209                    auto_continue);
2210}
2211
2212
2213void Debugger::OnBeforeCompile(Handle<Script> script) {
2214  ASSERT(Isolate::Current() == isolate_);
2215  HandleScope scope(isolate_);
2216
2217  // Bail out based on state or if there is no listener for this event
2218  if (isolate_->debug()->InDebugger()) return;
2219  if (compiling_natives()) return;
2220  if (!EventActive(v8::BeforeCompile)) return;
2221
2222  // Enter the debugger.
2223  EnterDebugger debugger;
2224  if (debugger.FailedToEnter()) return;
2225
2226  // Create the event data object.
2227  bool caught_exception = false;
2228  Handle<Object> event_data = MakeCompileEvent(script, true, &caught_exception);
2229  // Bail out and don't call debugger if exception.
2230  if (caught_exception) {
2231    return;
2232  }
2233
2234  // Process debug event.
2235  ProcessDebugEvent(v8::BeforeCompile,
2236                    Handle<JSObject>::cast(event_data),
2237                    true);
2238}
2239
2240
2241// Handle debugger actions when a new script is compiled.
2242void Debugger::OnAfterCompile(Handle<Script> script,
2243                              AfterCompileFlags after_compile_flags) {
2244  ASSERT(Isolate::Current() == isolate_);
2245  HandleScope scope(isolate_);
2246  Debug* debug = isolate_->debug();
2247
2248  // Add the newly compiled script to the script cache.
2249  debug->AddScriptToScriptCache(script);
2250
2251  // No more to do if not debugging.
2252  if (!IsDebuggerActive()) return;
2253
2254  // No compile events while compiling natives.
2255  if (compiling_natives()) return;
2256
2257  // Store whether in debugger before entering debugger.
2258  bool in_debugger = debug->InDebugger();
2259
2260  // Enter the debugger.
2261  EnterDebugger debugger;
2262  if (debugger.FailedToEnter()) return;
2263
2264  // If debugging there might be script break points registered for this
2265  // script. Make sure that these break points are set.
2266
2267  // Get the function UpdateScriptBreakPoints (defined in debug-debugger.js).
2268  Handle<String> update_script_break_points_symbol =
2269      isolate_->factory()->LookupAsciiSymbol("UpdateScriptBreakPoints");
2270  Handle<Object> update_script_break_points =
2271      Handle<Object>(debug->debug_context()->global()->
2272          GetPropertyNoExceptionThrown(*update_script_break_points_symbol));
2273  if (!update_script_break_points->IsJSFunction()) {
2274    return;
2275  }
2276  ASSERT(update_script_break_points->IsJSFunction());
2277
2278  // Wrap the script object in a proper JS object before passing it
2279  // to JavaScript.
2280  Handle<JSValue> wrapper = GetScriptWrapper(script);
2281
2282  // Call UpdateScriptBreakPoints expect no exceptions.
2283  bool caught_exception = false;
2284  const int argc = 1;
2285  Object** argv[argc] = { reinterpret_cast<Object**>(wrapper.location()) };
2286  Handle<Object> result = Execution::TryCall(
2287      Handle<JSFunction>::cast(update_script_break_points),
2288      Isolate::Current()->js_builtins_object(), argc, argv,
2289      &caught_exception);
2290  if (caught_exception) {
2291    return;
2292  }
2293  // Bail out based on state or if there is no listener for this event
2294  if (in_debugger && (after_compile_flags & SEND_WHEN_DEBUGGING) == 0) return;
2295  if (!Debugger::EventActive(v8::AfterCompile)) return;
2296
2297  // Create the compile state object.
2298  Handle<Object> event_data = MakeCompileEvent(script,
2299                                               false,
2300                                               &caught_exception);
2301  // Bail out and don't call debugger if exception.
2302  if (caught_exception) {
2303    return;
2304  }
2305  // Process debug event.
2306  ProcessDebugEvent(v8::AfterCompile,
2307                    Handle<JSObject>::cast(event_data),
2308                    true);
2309}
2310
2311
2312void Debugger::OnScriptCollected(int id) {
2313  ASSERT(Isolate::Current() == isolate_);
2314  HandleScope scope(isolate_);
2315
2316  // No more to do if not debugging.
2317  if (!IsDebuggerActive()) return;
2318  if (!Debugger::EventActive(v8::ScriptCollected)) return;
2319
2320  // Enter the debugger.
2321  EnterDebugger debugger;
2322  if (debugger.FailedToEnter()) return;
2323
2324  // Create the script collected state object.
2325  bool caught_exception = false;
2326  Handle<Object> event_data = MakeScriptCollectedEvent(id,
2327                                                       &caught_exception);
2328  // Bail out and don't call debugger if exception.
2329  if (caught_exception) {
2330    return;
2331  }
2332
2333  // Process debug event.
2334  ProcessDebugEvent(v8::ScriptCollected,
2335                    Handle<JSObject>::cast(event_data),
2336                    true);
2337}
2338
2339
2340void Debugger::ProcessDebugEvent(v8::DebugEvent event,
2341                                 Handle<JSObject> event_data,
2342                                 bool auto_continue) {
2343  ASSERT(Isolate::Current() == isolate_);
2344  HandleScope scope(isolate_);
2345
2346  // Clear any pending debug break if this is a real break.
2347  if (!auto_continue) {
2348    isolate_->debug()->clear_interrupt_pending(DEBUGBREAK);
2349  }
2350
2351  // Create the execution state.
2352  bool caught_exception = false;
2353  Handle<Object> exec_state = MakeExecutionState(&caught_exception);
2354  if (caught_exception) {
2355    return;
2356  }
2357  // First notify the message handler if any.
2358  if (message_handler_ != NULL) {
2359    NotifyMessageHandler(event,
2360                         Handle<JSObject>::cast(exec_state),
2361                         event_data,
2362                         auto_continue);
2363  }
2364  // Notify registered debug event listener. This can be either a C or
2365  // a JavaScript function. Don't call event listener for v8::Break
2366  // here, if it's only a debug command -- they will be processed later.
2367  if ((event != v8::Break || !auto_continue) && !event_listener_.is_null()) {
2368    CallEventCallback(event, exec_state, event_data, NULL);
2369  }
2370  // Process pending debug commands.
2371  if (event == v8::Break) {
2372    while (!event_command_queue_.IsEmpty()) {
2373      CommandMessage command = event_command_queue_.Get();
2374      if (!event_listener_.is_null()) {
2375        CallEventCallback(v8::BreakForCommand,
2376                          exec_state,
2377                          event_data,
2378                          command.client_data());
2379      }
2380      command.Dispose();
2381    }
2382  }
2383}
2384
2385
2386void Debugger::CallEventCallback(v8::DebugEvent event,
2387                                 Handle<Object> exec_state,
2388                                 Handle<Object> event_data,
2389                                 v8::Debug::ClientData* client_data) {
2390  if (event_listener_->IsProxy()) {
2391    CallCEventCallback(event, exec_state, event_data, client_data);
2392  } else {
2393    CallJSEventCallback(event, exec_state, event_data);
2394  }
2395}
2396
2397
2398void Debugger::CallCEventCallback(v8::DebugEvent event,
2399                                  Handle<Object> exec_state,
2400                                  Handle<Object> event_data,
2401                                  v8::Debug::ClientData* client_data) {
2402  Handle<Proxy> callback_obj(Handle<Proxy>::cast(event_listener_));
2403  v8::Debug::EventCallback2 callback =
2404      FUNCTION_CAST<v8::Debug::EventCallback2>(callback_obj->proxy());
2405  EventDetailsImpl event_details(
2406      event,
2407      Handle<JSObject>::cast(exec_state),
2408      Handle<JSObject>::cast(event_data),
2409      event_listener_data_,
2410      client_data);
2411  callback(event_details);
2412}
2413
2414
2415void Debugger::CallJSEventCallback(v8::DebugEvent event,
2416                                   Handle<Object> exec_state,
2417                                   Handle<Object> event_data) {
2418  ASSERT(event_listener_->IsJSFunction());
2419  ASSERT(Isolate::Current() == isolate_);
2420  Handle<JSFunction> fun(Handle<JSFunction>::cast(event_listener_));
2421
2422  // Invoke the JavaScript debug event listener.
2423  const int argc = 4;
2424  Object** argv[argc] = { Handle<Object>(Smi::FromInt(event)).location(),
2425                          exec_state.location(),
2426                          Handle<Object>::cast(event_data).location(),
2427                          event_listener_data_.location() };
2428  bool caught_exception = false;
2429  Execution::TryCall(fun, isolate_->global(), argc, argv, &caught_exception);
2430  // Silently ignore exceptions from debug event listeners.
2431}
2432
2433
2434Handle<Context> Debugger::GetDebugContext() {
2435  ASSERT(Isolate::Current() == isolate_);
2436  never_unload_debugger_ = true;
2437  EnterDebugger debugger;
2438  return isolate_->debug()->debug_context();
2439}
2440
2441
2442void Debugger::UnloadDebugger() {
2443  ASSERT(Isolate::Current() == isolate_);
2444  Debug* debug = isolate_->debug();
2445
2446  // Make sure that there are no breakpoints left.
2447  debug->ClearAllBreakPoints();
2448
2449  // Unload the debugger if feasible.
2450  if (!never_unload_debugger_) {
2451    debug->Unload();
2452  }
2453
2454  // Clear the flag indicating that the debugger should be unloaded.
2455  debugger_unload_pending_ = false;
2456}
2457
2458
2459void Debugger::NotifyMessageHandler(v8::DebugEvent event,
2460                                    Handle<JSObject> exec_state,
2461                                    Handle<JSObject> event_data,
2462                                    bool auto_continue) {
2463  ASSERT(Isolate::Current() == isolate_);
2464  HandleScope scope(isolate_);
2465
2466  if (!isolate_->debug()->Load()) return;
2467
2468  // Process the individual events.
2469  bool sendEventMessage = false;
2470  switch (event) {
2471    case v8::Break:
2472    case v8::BreakForCommand:
2473      sendEventMessage = !auto_continue;
2474      break;
2475    case v8::Exception:
2476      sendEventMessage = true;
2477      break;
2478    case v8::BeforeCompile:
2479      break;
2480    case v8::AfterCompile:
2481      sendEventMessage = true;
2482      break;
2483    case v8::ScriptCollected:
2484      sendEventMessage = true;
2485      break;
2486    case v8::NewFunction:
2487      break;
2488    default:
2489      UNREACHABLE();
2490  }
2491
2492  // The debug command interrupt flag might have been set when the command was
2493  // added. It should be enough to clear the flag only once while we are in the
2494  // debugger.
2495  ASSERT(isolate_->debug()->InDebugger());
2496  isolate_->stack_guard()->Continue(DEBUGCOMMAND);
2497
2498  // Notify the debugger that a debug event has occurred unless auto continue is
2499  // active in which case no event is send.
2500  if (sendEventMessage) {
2501    MessageImpl message = MessageImpl::NewEvent(
2502        event,
2503        auto_continue,
2504        Handle<JSObject>::cast(exec_state),
2505        Handle<JSObject>::cast(event_data));
2506    InvokeMessageHandler(message);
2507  }
2508
2509  // If auto continue don't make the event cause a break, but process messages
2510  // in the queue if any. For script collected events don't even process
2511  // messages in the queue as the execution state might not be what is expected
2512  // by the client.
2513  if ((auto_continue && !HasCommands()) || event == v8::ScriptCollected) {
2514    return;
2515  }
2516
2517  v8::TryCatch try_catch;
2518
2519  // DebugCommandProcessor goes here.
2520  v8::Local<v8::Object> cmd_processor;
2521  {
2522    v8::Local<v8::Object> api_exec_state =
2523        v8::Utils::ToLocal(Handle<JSObject>::cast(exec_state));
2524    v8::Local<v8::String> fun_name =
2525        v8::String::New("debugCommandProcessor");
2526    v8::Local<v8::Function> fun =
2527        v8::Function::Cast(*api_exec_state->Get(fun_name));
2528
2529    v8::Handle<v8::Boolean> running =
2530        auto_continue ? v8::True() : v8::False();
2531    static const int kArgc = 1;
2532    v8::Handle<Value> argv[kArgc] = { running };
2533    cmd_processor = v8::Object::Cast(*fun->Call(api_exec_state, kArgc, argv));
2534    if (try_catch.HasCaught()) {
2535      PrintLn(try_catch.Exception());
2536      return;
2537    }
2538  }
2539
2540  bool running = auto_continue;
2541
2542  // Process requests from the debugger.
2543  while (true) {
2544    // Wait for new command in the queue.
2545    if (Debugger::host_dispatch_handler_) {
2546      // In case there is a host dispatch - do periodic dispatches.
2547      if (!command_received_->Wait(host_dispatch_micros_)) {
2548        // Timout expired, do the dispatch.
2549        Debugger::host_dispatch_handler_();
2550        continue;
2551      }
2552    } else {
2553      // In case there is no host dispatch - just wait.
2554      command_received_->Wait();
2555    }
2556
2557    // Get the command from the queue.
2558    CommandMessage command = command_queue_.Get();
2559    LOGGER->DebugTag("Got request from command queue, in interactive loop.");
2560    if (!Debugger::IsDebuggerActive()) {
2561      // Delete command text and user data.
2562      command.Dispose();
2563      return;
2564    }
2565
2566    // Invoke JavaScript to process the debug request.
2567    v8::Local<v8::String> fun_name;
2568    v8::Local<v8::Function> fun;
2569    v8::Local<v8::Value> request;
2570    v8::TryCatch try_catch;
2571    fun_name = v8::String::New("processDebugRequest");
2572    fun = v8::Function::Cast(*cmd_processor->Get(fun_name));
2573
2574    request = v8::String::New(command.text().start(),
2575                              command.text().length());
2576    static const int kArgc = 1;
2577    v8::Handle<Value> argv[kArgc] = { request };
2578    v8::Local<v8::Value> response_val = fun->Call(cmd_processor, kArgc, argv);
2579
2580    // Get the response.
2581    v8::Local<v8::String> response;
2582    if (!try_catch.HasCaught()) {
2583      // Get response string.
2584      if (!response_val->IsUndefined()) {
2585        response = v8::String::Cast(*response_val);
2586      } else {
2587        response = v8::String::New("");
2588      }
2589
2590      // Log the JSON request/response.
2591      if (FLAG_trace_debug_json) {
2592        PrintLn(request);
2593        PrintLn(response);
2594      }
2595
2596      // Get the running state.
2597      fun_name = v8::String::New("isRunning");
2598      fun = v8::Function::Cast(*cmd_processor->Get(fun_name));
2599      static const int kArgc = 1;
2600      v8::Handle<Value> argv[kArgc] = { response };
2601      v8::Local<v8::Value> running_val = fun->Call(cmd_processor, kArgc, argv);
2602      if (!try_catch.HasCaught()) {
2603        running = running_val->ToBoolean()->Value();
2604      }
2605    } else {
2606      // In case of failure the result text is the exception text.
2607      response = try_catch.Exception()->ToString();
2608    }
2609
2610    // Return the result.
2611    MessageImpl message = MessageImpl::NewResponse(
2612        event,
2613        running,
2614        Handle<JSObject>::cast(exec_state),
2615        Handle<JSObject>::cast(event_data),
2616        Handle<String>(Utils::OpenHandle(*response)),
2617        command.client_data());
2618    InvokeMessageHandler(message);
2619    command.Dispose();
2620
2621    // Return from debug event processing if either the VM is put into the
2622    // runnning state (through a continue command) or auto continue is active
2623    // and there are no more commands queued.
2624    if (running && !HasCommands()) {
2625      return;
2626    }
2627  }
2628}
2629
2630
2631void Debugger::SetEventListener(Handle<Object> callback,
2632                                Handle<Object> data) {
2633  ASSERT(Isolate::Current() == isolate_);
2634  HandleScope scope(isolate_);
2635  GlobalHandles* global_handles = isolate_->global_handles();
2636
2637  // Clear the global handles for the event listener and the event listener data
2638  // object.
2639  if (!event_listener_.is_null()) {
2640    global_handles->Destroy(
2641        reinterpret_cast<Object**>(event_listener_.location()));
2642    event_listener_ = Handle<Object>();
2643  }
2644  if (!event_listener_data_.is_null()) {
2645    global_handles->Destroy(
2646        reinterpret_cast<Object**>(event_listener_data_.location()));
2647    event_listener_data_ = Handle<Object>();
2648  }
2649
2650  // If there is a new debug event listener register it together with its data
2651  // object.
2652  if (!callback->IsUndefined() && !callback->IsNull()) {
2653    event_listener_ = Handle<Object>::cast(
2654        global_handles->Create(*callback));
2655    if (data.is_null()) {
2656      data = isolate_->factory()->undefined_value();
2657    }
2658    event_listener_data_ = Handle<Object>::cast(
2659        global_handles->Create(*data));
2660  }
2661
2662  ListenersChanged();
2663}
2664
2665
2666void Debugger::SetMessageHandler(v8::Debug::MessageHandler2 handler) {
2667  ASSERT(Isolate::Current() == isolate_);
2668  ScopedLock with(debugger_access_);
2669
2670  message_handler_ = handler;
2671  ListenersChanged();
2672  if (handler == NULL) {
2673    // Send an empty command to the debugger if in a break to make JavaScript
2674    // run again if the debugger is closed.
2675    if (isolate_->debug()->InDebugger()) {
2676      ProcessCommand(Vector<const uint16_t>::empty());
2677    }
2678  }
2679}
2680
2681
2682void Debugger::ListenersChanged() {
2683  ASSERT(Isolate::Current() == isolate_);
2684  if (IsDebuggerActive()) {
2685    // Disable the compilation cache when the debugger is active.
2686    isolate_->compilation_cache()->Disable();
2687    debugger_unload_pending_ = false;
2688  } else {
2689    isolate_->compilation_cache()->Enable();
2690    // Unload the debugger if event listener and message handler cleared.
2691    // Schedule this for later, because we may be in non-V8 thread.
2692    debugger_unload_pending_ = true;
2693  }
2694}
2695
2696
2697void Debugger::SetHostDispatchHandler(v8::Debug::HostDispatchHandler handler,
2698                                      int period) {
2699  ASSERT(Isolate::Current() == isolate_);
2700  host_dispatch_handler_ = handler;
2701  host_dispatch_micros_ = period * 1000;
2702}
2703
2704
2705void Debugger::SetDebugMessageDispatchHandler(
2706    v8::Debug::DebugMessageDispatchHandler handler, bool provide_locker) {
2707  ASSERT(Isolate::Current() == isolate_);
2708  ScopedLock with(dispatch_handler_access_);
2709  debug_message_dispatch_handler_ = handler;
2710
2711  if (provide_locker && message_dispatch_helper_thread_ == NULL) {
2712    message_dispatch_helper_thread_ = new MessageDispatchHelperThread(isolate_);
2713    message_dispatch_helper_thread_->Start();
2714  }
2715}
2716
2717
2718// Calls the registered debug message handler. This callback is part of the
2719// public API.
2720void Debugger::InvokeMessageHandler(MessageImpl message) {
2721  ASSERT(Isolate::Current() == isolate_);
2722  ScopedLock with(debugger_access_);
2723
2724  if (message_handler_ != NULL) {
2725    message_handler_(message);
2726  }
2727}
2728
2729
2730// Puts a command coming from the public API on the queue.  Creates
2731// a copy of the command string managed by the debugger.  Up to this
2732// point, the command data was managed by the API client.  Called
2733// by the API client thread.
2734void Debugger::ProcessCommand(Vector<const uint16_t> command,
2735                              v8::Debug::ClientData* client_data) {
2736  ASSERT(Isolate::Current() == isolate_);
2737  // Need to cast away const.
2738  CommandMessage message = CommandMessage::New(
2739      Vector<uint16_t>(const_cast<uint16_t*>(command.start()),
2740                       command.length()),
2741      client_data);
2742  LOGGER->DebugTag("Put command on command_queue.");
2743  command_queue_.Put(message);
2744  command_received_->Signal();
2745
2746  // Set the debug command break flag to have the command processed.
2747  if (!isolate_->debug()->InDebugger()) {
2748    isolate_->stack_guard()->DebugCommand();
2749  }
2750
2751  MessageDispatchHelperThread* dispatch_thread;
2752  {
2753    ScopedLock with(dispatch_handler_access_);
2754    dispatch_thread = message_dispatch_helper_thread_;
2755  }
2756
2757  if (dispatch_thread == NULL) {
2758    CallMessageDispatchHandler();
2759  } else {
2760    dispatch_thread->Schedule();
2761  }
2762}
2763
2764
2765bool Debugger::HasCommands() {
2766  ASSERT(Isolate::Current() == isolate_);
2767  return !command_queue_.IsEmpty();
2768}
2769
2770
2771void Debugger::EnqueueDebugCommand(v8::Debug::ClientData* client_data) {
2772  ASSERT(Isolate::Current() == isolate_);
2773  CommandMessage message = CommandMessage::New(Vector<uint16_t>(), client_data);
2774  event_command_queue_.Put(message);
2775
2776  // Set the debug command break flag to have the command processed.
2777  if (!isolate_->debug()->InDebugger()) {
2778    isolate_->stack_guard()->DebugCommand();
2779  }
2780}
2781
2782
2783bool Debugger::IsDebuggerActive() {
2784  ASSERT(Isolate::Current() == isolate_);
2785  ScopedLock with(debugger_access_);
2786
2787  return message_handler_ != NULL || !event_listener_.is_null();
2788}
2789
2790
2791Handle<Object> Debugger::Call(Handle<JSFunction> fun,
2792                              Handle<Object> data,
2793                              bool* pending_exception) {
2794  ASSERT(Isolate::Current() == isolate_);
2795  // When calling functions in the debugger prevent it from beeing unloaded.
2796  Debugger::never_unload_debugger_ = true;
2797
2798  // Enter the debugger.
2799  EnterDebugger debugger;
2800  if (debugger.FailedToEnter()) {
2801    return isolate_->factory()->undefined_value();
2802  }
2803
2804  // Create the execution state.
2805  bool caught_exception = false;
2806  Handle<Object> exec_state = MakeExecutionState(&caught_exception);
2807  if (caught_exception) {
2808    return isolate_->factory()->undefined_value();
2809  }
2810
2811  static const int kArgc = 2;
2812  Object** argv[kArgc] = { exec_state.location(), data.location() };
2813  Handle<Object> result = Execution::Call(
2814      fun,
2815      Handle<Object>(isolate_->debug()->debug_context_->global_proxy()),
2816      kArgc,
2817      argv,
2818      pending_exception);
2819  return result;
2820}
2821
2822
2823static void StubMessageHandler2(const v8::Debug::Message& message) {
2824  // Simply ignore message.
2825}
2826
2827
2828bool Debugger::StartAgent(const char* name, int port,
2829                          bool wait_for_connection) {
2830  ASSERT(Isolate::Current() == isolate_);
2831  if (wait_for_connection) {
2832    // Suspend V8 if it is already running or set V8 to suspend whenever
2833    // it starts.
2834    // Provide stub message handler; V8 auto-continues each suspend
2835    // when there is no message handler; we doesn't need it.
2836    // Once become suspended, V8 will stay so indefinitely long, until remote
2837    // debugger connects and issues "continue" command.
2838    Debugger::message_handler_ = StubMessageHandler2;
2839    v8::Debug::DebugBreak();
2840  }
2841
2842  if (Socket::Setup()) {
2843    if (agent_ == NULL) {
2844      agent_ = new DebuggerAgent(isolate_, name, port);
2845      agent_->Start();
2846    }
2847    return true;
2848  }
2849
2850  return false;
2851}
2852
2853
2854void Debugger::StopAgent() {
2855  ASSERT(Isolate::Current() == isolate_);
2856  if (agent_ != NULL) {
2857    agent_->Shutdown();
2858    agent_->Join();
2859    delete agent_;
2860    agent_ = NULL;
2861  }
2862}
2863
2864
2865void Debugger::WaitForAgent() {
2866  ASSERT(Isolate::Current() == isolate_);
2867  if (agent_ != NULL)
2868    agent_->WaitUntilListening();
2869}
2870
2871
2872void Debugger::CallMessageDispatchHandler() {
2873  ASSERT(Isolate::Current() == isolate_);
2874  v8::Debug::DebugMessageDispatchHandler handler;
2875  {
2876    ScopedLock with(dispatch_handler_access_);
2877    handler = Debugger::debug_message_dispatch_handler_;
2878  }
2879  if (handler != NULL) {
2880    handler();
2881  }
2882}
2883
2884
2885MessageImpl MessageImpl::NewEvent(DebugEvent event,
2886                                  bool running,
2887                                  Handle<JSObject> exec_state,
2888                                  Handle<JSObject> event_data) {
2889  MessageImpl message(true, event, running,
2890                      exec_state, event_data, Handle<String>(), NULL);
2891  return message;
2892}
2893
2894
2895MessageImpl MessageImpl::NewResponse(DebugEvent event,
2896                                     bool running,
2897                                     Handle<JSObject> exec_state,
2898                                     Handle<JSObject> event_data,
2899                                     Handle<String> response_json,
2900                                     v8::Debug::ClientData* client_data) {
2901  MessageImpl message(false, event, running,
2902                      exec_state, event_data, response_json, client_data);
2903  return message;
2904}
2905
2906
2907MessageImpl::MessageImpl(bool is_event,
2908                         DebugEvent event,
2909                         bool running,
2910                         Handle<JSObject> exec_state,
2911                         Handle<JSObject> event_data,
2912                         Handle<String> response_json,
2913                         v8::Debug::ClientData* client_data)
2914    : is_event_(is_event),
2915      event_(event),
2916      running_(running),
2917      exec_state_(exec_state),
2918      event_data_(event_data),
2919      response_json_(response_json),
2920      client_data_(client_data) {}
2921
2922
2923bool MessageImpl::IsEvent() const {
2924  return is_event_;
2925}
2926
2927
2928bool MessageImpl::IsResponse() const {
2929  return !is_event_;
2930}
2931
2932
2933DebugEvent MessageImpl::GetEvent() const {
2934  return event_;
2935}
2936
2937
2938bool MessageImpl::WillStartRunning() const {
2939  return running_;
2940}
2941
2942
2943v8::Handle<v8::Object> MessageImpl::GetExecutionState() const {
2944  return v8::Utils::ToLocal(exec_state_);
2945}
2946
2947
2948v8::Handle<v8::Object> MessageImpl::GetEventData() const {
2949  return v8::Utils::ToLocal(event_data_);
2950}
2951
2952
2953v8::Handle<v8::String> MessageImpl::GetJSON() const {
2954  v8::HandleScope scope;
2955
2956  if (IsEvent()) {
2957    // Call toJSONProtocol on the debug event object.
2958    Handle<Object> fun = GetProperty(event_data_, "toJSONProtocol");
2959    if (!fun->IsJSFunction()) {
2960      return v8::Handle<v8::String>();
2961    }
2962    bool caught_exception;
2963    Handle<Object> json = Execution::TryCall(Handle<JSFunction>::cast(fun),
2964                                             event_data_,
2965                                             0, NULL, &caught_exception);
2966    if (caught_exception || !json->IsString()) {
2967      return v8::Handle<v8::String>();
2968    }
2969    return scope.Close(v8::Utils::ToLocal(Handle<String>::cast(json)));
2970  } else {
2971    return v8::Utils::ToLocal(response_json_);
2972  }
2973}
2974
2975
2976v8::Handle<v8::Context> MessageImpl::GetEventContext() const {
2977  Isolate* isolate = Isolate::Current();
2978  v8::Handle<v8::Context> context = GetDebugEventContext(isolate);
2979  // Isolate::context() may be NULL when "script collected" event occures.
2980  ASSERT(!context.IsEmpty() || event_ == v8::ScriptCollected);
2981  return GetDebugEventContext(isolate);
2982}
2983
2984
2985v8::Debug::ClientData* MessageImpl::GetClientData() const {
2986  return client_data_;
2987}
2988
2989
2990EventDetailsImpl::EventDetailsImpl(DebugEvent event,
2991                                   Handle<JSObject> exec_state,
2992                                   Handle<JSObject> event_data,
2993                                   Handle<Object> callback_data,
2994                                   v8::Debug::ClientData* client_data)
2995    : event_(event),
2996      exec_state_(exec_state),
2997      event_data_(event_data),
2998      callback_data_(callback_data),
2999      client_data_(client_data) {}
3000
3001
3002DebugEvent EventDetailsImpl::GetEvent() const {
3003  return event_;
3004}
3005
3006
3007v8::Handle<v8::Object> EventDetailsImpl::GetExecutionState() const {
3008  return v8::Utils::ToLocal(exec_state_);
3009}
3010
3011
3012v8::Handle<v8::Object> EventDetailsImpl::GetEventData() const {
3013  return v8::Utils::ToLocal(event_data_);
3014}
3015
3016
3017v8::Handle<v8::Context> EventDetailsImpl::GetEventContext() const {
3018  return GetDebugEventContext(Isolate::Current());
3019}
3020
3021
3022v8::Handle<v8::Value> EventDetailsImpl::GetCallbackData() const {
3023  return v8::Utils::ToLocal(callback_data_);
3024}
3025
3026
3027v8::Debug::ClientData* EventDetailsImpl::GetClientData() const {
3028  return client_data_;
3029}
3030
3031
3032CommandMessage::CommandMessage() : text_(Vector<uint16_t>::empty()),
3033                                   client_data_(NULL) {
3034}
3035
3036
3037CommandMessage::CommandMessage(const Vector<uint16_t>& text,
3038                               v8::Debug::ClientData* data)
3039    : text_(text),
3040      client_data_(data) {
3041}
3042
3043
3044CommandMessage::~CommandMessage() {
3045}
3046
3047
3048void CommandMessage::Dispose() {
3049  text_.Dispose();
3050  delete client_data_;
3051  client_data_ = NULL;
3052}
3053
3054
3055CommandMessage CommandMessage::New(const Vector<uint16_t>& command,
3056                                   v8::Debug::ClientData* data) {
3057  return CommandMessage(command.Clone(), data);
3058}
3059
3060
3061CommandMessageQueue::CommandMessageQueue(int size) : start_(0), end_(0),
3062                                                     size_(size) {
3063  messages_ = NewArray<CommandMessage>(size);
3064}
3065
3066
3067CommandMessageQueue::~CommandMessageQueue() {
3068  while (!IsEmpty()) {
3069    CommandMessage m = Get();
3070    m.Dispose();
3071  }
3072  DeleteArray(messages_);
3073}
3074
3075
3076CommandMessage CommandMessageQueue::Get() {
3077  ASSERT(!IsEmpty());
3078  int result = start_;
3079  start_ = (start_ + 1) % size_;
3080  return messages_[result];
3081}
3082
3083
3084void CommandMessageQueue::Put(const CommandMessage& message) {
3085  if ((end_ + 1) % size_ == start_) {
3086    Expand();
3087  }
3088  messages_[end_] = message;
3089  end_ = (end_ + 1) % size_;
3090}
3091
3092
3093void CommandMessageQueue::Expand() {
3094  CommandMessageQueue new_queue(size_ * 2);
3095  while (!IsEmpty()) {
3096    new_queue.Put(Get());
3097  }
3098  CommandMessage* array_to_free = messages_;
3099  *this = new_queue;
3100  new_queue.messages_ = array_to_free;
3101  // Make the new_queue empty so that it doesn't call Dispose on any messages.
3102  new_queue.start_ = new_queue.end_;
3103  // Automatic destructor called on new_queue, freeing array_to_free.
3104}
3105
3106
3107LockingCommandMessageQueue::LockingCommandMessageQueue(int size)
3108    : queue_(size) {
3109  lock_ = OS::CreateMutex();
3110}
3111
3112
3113LockingCommandMessageQueue::~LockingCommandMessageQueue() {
3114  delete lock_;
3115}
3116
3117
3118bool LockingCommandMessageQueue::IsEmpty() const {
3119  ScopedLock sl(lock_);
3120  return queue_.IsEmpty();
3121}
3122
3123
3124CommandMessage LockingCommandMessageQueue::Get() {
3125  ScopedLock sl(lock_);
3126  CommandMessage result = queue_.Get();
3127  LOGGER->DebugEvent("Get", result.text());
3128  return result;
3129}
3130
3131
3132void LockingCommandMessageQueue::Put(const CommandMessage& message) {
3133  ScopedLock sl(lock_);
3134  queue_.Put(message);
3135  LOGGER->DebugEvent("Put", message.text());
3136}
3137
3138
3139void LockingCommandMessageQueue::Clear() {
3140  ScopedLock sl(lock_);
3141  queue_.Clear();
3142}
3143
3144
3145MessageDispatchHelperThread::MessageDispatchHelperThread(Isolate* isolate)
3146    : Thread(isolate, "v8:MsgDispHelpr"),
3147      sem_(OS::CreateSemaphore(0)), mutex_(OS::CreateMutex()),
3148      already_signalled_(false) {
3149}
3150
3151
3152MessageDispatchHelperThread::~MessageDispatchHelperThread() {
3153  delete mutex_;
3154  delete sem_;
3155}
3156
3157
3158void MessageDispatchHelperThread::Schedule() {
3159  {
3160    ScopedLock lock(mutex_);
3161    if (already_signalled_) {
3162      return;
3163    }
3164    already_signalled_ = true;
3165  }
3166  sem_->Signal();
3167}
3168
3169
3170void MessageDispatchHelperThread::Run() {
3171  while (true) {
3172    sem_->Wait();
3173    {
3174      ScopedLock lock(mutex_);
3175      already_signalled_ = false;
3176    }
3177    {
3178      Locker locker;
3179      Isolate::Current()->debugger()->CallMessageDispatchHandler();
3180    }
3181  }
3182}
3183
3184#endif  // ENABLE_DEBUGGER_SUPPORT
3185
3186} }  // namespace v8::internal
3187