1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "../include/v8stdint.h"
29#include "checks.h"
30#include "utils.h"
31
32#include "fast-dtoa.h"
33
34#include "cached-powers.h"
35#include "diy-fp.h"
36#include "double.h"
37
38namespace v8 {
39namespace internal {
40
41// The minimal and maximal target exponent define the range of w's binary
42// exponent, where 'w' is the result of multiplying the input by a cached power
43// of ten.
44//
45// A different range might be chosen on a different platform, to optimize digit
46// generation, but a smaller range requires more powers of ten to be cached.
47static const int kMinimalTargetExponent = -60;
48static const int kMaximalTargetExponent = -32;
49
50
51// Adjusts the last digit of the generated number, and screens out generated
52// solutions that may be inaccurate. A solution may be inaccurate if it is
53// outside the safe interval, or if we ctannot prove that it is closer to the
54// input than a neighboring representation of the same length.
55//
56// Input: * buffer containing the digits of too_high / 10^kappa
57//        * the buffer's length
58//        * distance_too_high_w == (too_high - w).f() * unit
59//        * unsafe_interval == (too_high - too_low).f() * unit
60//        * rest = (too_high - buffer * 10^kappa).f() * unit
61//        * ten_kappa = 10^kappa * unit
62//        * unit = the common multiplier
63// Output: returns true if the buffer is guaranteed to contain the closest
64//    representable number to the input.
65//  Modifies the generated digits in the buffer to approach (round towards) w.
66static bool RoundWeed(Vector<char> buffer,
67                      int length,
68                      uint64_t distance_too_high_w,
69                      uint64_t unsafe_interval,
70                      uint64_t rest,
71                      uint64_t ten_kappa,
72                      uint64_t unit) {
73  uint64_t small_distance = distance_too_high_w - unit;
74  uint64_t big_distance = distance_too_high_w + unit;
75  // Let w_low  = too_high - big_distance, and
76  //     w_high = too_high - small_distance.
77  // Note: w_low < w < w_high
78  //
79  // The real w (* unit) must lie somewhere inside the interval
80  // ]w_low; w_high[ (often written as "(w_low; w_high)")
81
82  // Basically the buffer currently contains a number in the unsafe interval
83  // ]too_low; too_high[ with too_low < w < too_high
84  //
85  //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
86  //                     ^v 1 unit            ^      ^                 ^      ^
87  //  boundary_high ---------------------     .      .                 .      .
88  //                     ^v 1 unit            .      .                 .      .
89  //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
90  //                                          .      .         ^       .      .
91  //                                          .  big_distance  .       .      .
92  //                                          .      .         .       .    rest
93  //                              small_distance     .         .       .      .
94  //                                          v      .         .       .      .
95  //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
96  //                     ^v 1 unit                   .         .       .      .
97  //  w ----------------------------------------     .         .       .      .
98  //                     ^v 1 unit                   v         .       .      .
99  //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
100  //                                                           .       .      v
101  //  buffer --------------------------------------------------+-------+--------
102  //                                                           .       .
103  //                                                  safe_interval    .
104  //                                                           v       .
105  //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
106  //                     ^v 1 unit                                     .
107  //  boundary_low -------------------------                     unsafe_interval
108  //                     ^v 1 unit                                     v
109  //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
110  //
111  //
112  // Note that the value of buffer could lie anywhere inside the range too_low
113  // to too_high.
114  //
115  // boundary_low, boundary_high and w are approximations of the real boundaries
116  // and v (the input number). They are guaranteed to be precise up to one unit.
117  // In fact the error is guaranteed to be strictly less than one unit.
118  //
119  // Anything that lies outside the unsafe interval is guaranteed not to round
120  // to v when read again.
121  // Anything that lies inside the safe interval is guaranteed to round to v
122  // when read again.
123  // If the number inside the buffer lies inside the unsafe interval but not
124  // inside the safe interval then we simply do not know and bail out (returning
125  // false).
126  //
127  // Similarly we have to take into account the imprecision of 'w' when finding
128  // the closest representation of 'w'. If we have two potential
129  // representations, and one is closer to both w_low and w_high, then we know
130  // it is closer to the actual value v.
131  //
132  // By generating the digits of too_high we got the largest (closest to
133  // too_high) buffer that is still in the unsafe interval. In the case where
134  // w_high < buffer < too_high we try to decrement the buffer.
135  // This way the buffer approaches (rounds towards) w.
136  // There are 3 conditions that stop the decrementation process:
137  //   1) the buffer is already below w_high
138  //   2) decrementing the buffer would make it leave the unsafe interval
139  //   3) decrementing the buffer would yield a number below w_high and farther
140  //      away than the current number. In other words:
141  //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
142  // Instead of using the buffer directly we use its distance to too_high.
143  // Conceptually rest ~= too_high - buffer
144  // We need to do the following tests in this order to avoid over- and
145  // underflows.
146  ASSERT(rest <= unsafe_interval);
147  while (rest < small_distance &&  // Negated condition 1
148         unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
149         (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
150          small_distance - rest >= rest + ten_kappa - small_distance)) {
151    buffer[length - 1]--;
152    rest += ten_kappa;
153  }
154
155  // We have approached w+ as much as possible. We now test if approaching w-
156  // would require changing the buffer. If yes, then we have two possible
157  // representations close to w, but we cannot decide which one is closer.
158  if (rest < big_distance &&
159      unsafe_interval - rest >= ten_kappa &&
160      (rest + ten_kappa < big_distance ||
161       big_distance - rest > rest + ten_kappa - big_distance)) {
162    return false;
163  }
164
165  // Weeding test.
166  //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
167  //   Since too_low = too_high - unsafe_interval this is equivalent to
168  //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
169  //   Conceptually we have: rest ~= too_high - buffer
170  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
171}
172
173
174// Rounds the buffer upwards if the result is closer to v by possibly adding
175// 1 to the buffer. If the precision of the calculation is not sufficient to
176// round correctly, return false.
177// The rounding might shift the whole buffer in which case the kappa is
178// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
179//
180// If 2*rest > ten_kappa then the buffer needs to be round up.
181// rest can have an error of +/- 1 unit. This function accounts for the
182// imprecision and returns false, if the rounding direction cannot be
183// unambiguously determined.
184//
185// Precondition: rest < ten_kappa.
186static bool RoundWeedCounted(Vector<char> buffer,
187                             int length,
188                             uint64_t rest,
189                             uint64_t ten_kappa,
190                             uint64_t unit,
191                             int* kappa) {
192  ASSERT(rest < ten_kappa);
193  // The following tests are done in a specific order to avoid overflows. They
194  // will work correctly with any uint64 values of rest < ten_kappa and unit.
195  //
196  // If the unit is too big, then we don't know which way to round. For example
197  // a unit of 50 means that the real number lies within rest +/- 50. If
198  // 10^kappa == 40 then there is no way to tell which way to round.
199  if (unit >= ten_kappa) return false;
200  // Even if unit is just half the size of 10^kappa we are already completely
201  // lost. (And after the previous test we know that the expression will not
202  // over/underflow.)
203  if (ten_kappa - unit <= unit) return false;
204  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
205  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
206    return true;
207  }
208  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
209  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
210    // Increment the last digit recursively until we find a non '9' digit.
211    buffer[length - 1]++;
212    for (int i = length - 1; i > 0; --i) {
213      if (buffer[i] != '0' + 10) break;
214      buffer[i] = '0';
215      buffer[i - 1]++;
216    }
217    // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
218    // exception of the first digit all digits are now '0'. Simply switch the
219    // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
220    // the power (the kappa) is increased.
221    if (buffer[0] == '0' + 10) {
222      buffer[0] = '1';
223      (*kappa) += 1;
224    }
225    return true;
226  }
227  return false;
228}
229
230
231static const uint32_t kTen4 = 10000;
232static const uint32_t kTen5 = 100000;
233static const uint32_t kTen6 = 1000000;
234static const uint32_t kTen7 = 10000000;
235static const uint32_t kTen8 = 100000000;
236static const uint32_t kTen9 = 1000000000;
237
238// Returns the biggest power of ten that is less than or equal than the given
239// number. We furthermore receive the maximum number of bits 'number' has.
240// If number_bits == 0 then 0^-1 is returned
241// The number of bits must be <= 32.
242// Precondition: number < (1 << (number_bits + 1)).
243static void BiggestPowerTen(uint32_t number,
244                            int number_bits,
245                            uint32_t* power,
246                            int* exponent) {
247  switch (number_bits) {
248    case 32:
249    case 31:
250    case 30:
251      if (kTen9 <= number) {
252        *power = kTen9;
253        *exponent = 9;
254        break;
255      }  // else fallthrough
256    case 29:
257    case 28:
258    case 27:
259      if (kTen8 <= number) {
260        *power = kTen8;
261        *exponent = 8;
262        break;
263      }  // else fallthrough
264    case 26:
265    case 25:
266    case 24:
267      if (kTen7 <= number) {
268        *power = kTen7;
269        *exponent = 7;
270        break;
271      }  // else fallthrough
272    case 23:
273    case 22:
274    case 21:
275    case 20:
276      if (kTen6 <= number) {
277        *power = kTen6;
278        *exponent = 6;
279        break;
280      }  // else fallthrough
281    case 19:
282    case 18:
283    case 17:
284      if (kTen5 <= number) {
285        *power = kTen5;
286        *exponent = 5;
287        break;
288      }  // else fallthrough
289    case 16:
290    case 15:
291    case 14:
292      if (kTen4 <= number) {
293        *power = kTen4;
294        *exponent = 4;
295        break;
296      }  // else fallthrough
297    case 13:
298    case 12:
299    case 11:
300    case 10:
301      if (1000 <= number) {
302        *power = 1000;
303        *exponent = 3;
304        break;
305      }  // else fallthrough
306    case 9:
307    case 8:
308    case 7:
309      if (100 <= number) {
310        *power = 100;
311        *exponent = 2;
312        break;
313      }  // else fallthrough
314    case 6:
315    case 5:
316    case 4:
317      if (10 <= number) {
318        *power = 10;
319        *exponent = 1;
320        break;
321      }  // else fallthrough
322    case 3:
323    case 2:
324    case 1:
325      if (1 <= number) {
326        *power = 1;
327        *exponent = 0;
328        break;
329      }  // else fallthrough
330    case 0:
331      *power = 0;
332      *exponent = -1;
333      break;
334    default:
335      // Following assignments are here to silence compiler warnings.
336      *power = 0;
337      *exponent = 0;
338      UNREACHABLE();
339  }
340}
341
342
343// Generates the digits of input number w.
344// w is a floating-point number (DiyFp), consisting of a significand and an
345// exponent. Its exponent is bounded by kMinimalTargetExponent and
346// kMaximalTargetExponent.
347//       Hence -60 <= w.e() <= -32.
348//
349// Returns false if it fails, in which case the generated digits in the buffer
350// should not be used.
351// Preconditions:
352//  * low, w and high are correct up to 1 ulp (unit in the last place). That
353//    is, their error must be less than a unit of their last digits.
354//  * low.e() == w.e() == high.e()
355//  * low < w < high, and taking into account their error: low~ <= high~
356//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
357// Postconditions: returns false if procedure fails.
358//   otherwise:
359//     * buffer is not null-terminated, but len contains the number of digits.
360//     * buffer contains the shortest possible decimal digit-sequence
361//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
362//       correct values of low and high (without their error).
363//     * if more than one decimal representation gives the minimal number of
364//       decimal digits then the one closest to W (where W is the correct value
365//       of w) is chosen.
366// Remark: this procedure takes into account the imprecision of its input
367//   numbers. If the precision is not enough to guarantee all the postconditions
368//   then false is returned. This usually happens rarely (~0.5%).
369//
370// Say, for the sake of example, that
371//   w.e() == -48, and w.f() == 0x1234567890abcdef
372// w's value can be computed by w.f() * 2^w.e()
373// We can obtain w's integral digits by simply shifting w.f() by -w.e().
374//  -> w's integral part is 0x1234
375//  w's fractional part is therefore 0x567890abcdef.
376// Printing w's integral part is easy (simply print 0x1234 in decimal).
377// In order to print its fraction we repeatedly multiply the fraction by 10 and
378// get each digit. Example the first digit after the point would be computed by
379//   (0x567890abcdef * 10) >> 48. -> 3
380// The whole thing becomes slightly more complicated because we want to stop
381// once we have enough digits. That is, once the digits inside the buffer
382// represent 'w' we can stop. Everything inside the interval low - high
383// represents w. However we have to pay attention to low, high and w's
384// imprecision.
385static bool DigitGen(DiyFp low,
386                     DiyFp w,
387                     DiyFp high,
388                     Vector<char> buffer,
389                     int* length,
390                     int* kappa) {
391  ASSERT(low.e() == w.e() && w.e() == high.e());
392  ASSERT(low.f() + 1 <= high.f() - 1);
393  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
394  // low, w and high are imprecise, but by less than one ulp (unit in the last
395  // place).
396  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
397  // the new numbers are outside of the interval we want the final
398  // representation to lie in.
399  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
400  // numbers that are certain to lie in the interval. We will use this fact
401  // later on.
402  // We will now start by generating the digits within the uncertain
403  // interval. Later we will weed out representations that lie outside the safe
404  // interval and thus _might_ lie outside the correct interval.
405  uint64_t unit = 1;
406  DiyFp too_low = DiyFp(low.f() - unit, low.e());
407  DiyFp too_high = DiyFp(high.f() + unit, high.e());
408  // too_low and too_high are guaranteed to lie outside the interval we want the
409  // generated number in.
410  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
411  // We now cut the input number into two parts: the integral digits and the
412  // fractionals. We will not write any decimal separator though, but adapt
413  // kappa instead.
414  // Reminder: we are currently computing the digits (stored inside the buffer)
415  // such that:   too_low < buffer * 10^kappa < too_high
416  // We use too_high for the digit_generation and stop as soon as possible.
417  // If we stop early we effectively round down.
418  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
419  // Division by one is a shift.
420  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
421  // Modulo by one is an and.
422  uint64_t fractionals = too_high.f() & (one.f() - 1);
423  uint32_t divisor;
424  int divisor_exponent;
425  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
426                  &divisor, &divisor_exponent);
427  *kappa = divisor_exponent + 1;
428  *length = 0;
429  // Loop invariant: buffer = too_high / 10^kappa  (integer division)
430  // The invariant holds for the first iteration: kappa has been initialized
431  // with the divisor exponent + 1. And the divisor is the biggest power of ten
432  // that is smaller than integrals.
433  while (*kappa > 0) {
434    int digit = integrals / divisor;
435    buffer[*length] = '0' + digit;
436    (*length)++;
437    integrals %= divisor;
438    (*kappa)--;
439    // Note that kappa now equals the exponent of the divisor and that the
440    // invariant thus holds again.
441    uint64_t rest =
442        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
443    // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
444    // Reminder: unsafe_interval.e() == one.e()
445    if (rest < unsafe_interval.f()) {
446      // Rounding down (by not emitting the remaining digits) yields a number
447      // that lies within the unsafe interval.
448      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
449                       unsafe_interval.f(), rest,
450                       static_cast<uint64_t>(divisor) << -one.e(), unit);
451    }
452    divisor /= 10;
453  }
454
455  // The integrals have been generated. We are at the point of the decimal
456  // separator. In the following loop we simply multiply the remaining digits by
457  // 10 and divide by one. We just need to pay attention to multiply associated
458  // data (like the interval or 'unit'), too.
459  // Note that the multiplication by 10 does not overflow, because w.e >= -60
460  // and thus one.e >= -60.
461  ASSERT(one.e() >= -60);
462  ASSERT(fractionals < one.f());
463  ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
464  while (true) {
465    fractionals *= 10;
466    unit *= 10;
467    unsafe_interval.set_f(unsafe_interval.f() * 10);
468    // Integer division by one.
469    int digit = static_cast<int>(fractionals >> -one.e());
470    buffer[*length] = '0' + digit;
471    (*length)++;
472    fractionals &= one.f() - 1;  // Modulo by one.
473    (*kappa)--;
474    if (fractionals < unsafe_interval.f()) {
475      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
476                       unsafe_interval.f(), fractionals, one.f(), unit);
477    }
478  }
479}
480
481
482
483// Generates (at most) requested_digits of input number w.
484// w is a floating-point number (DiyFp), consisting of a significand and an
485// exponent. Its exponent is bounded by kMinimalTargetExponent and
486// kMaximalTargetExponent.
487//       Hence -60 <= w.e() <= -32.
488//
489// Returns false if it fails, in which case the generated digits in the buffer
490// should not be used.
491// Preconditions:
492//  * w is correct up to 1 ulp (unit in the last place). That
493//    is, its error must be strictly less than a unit of its last digit.
494//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
495//
496// Postconditions: returns false if procedure fails.
497//   otherwise:
498//     * buffer is not null-terminated, but length contains the number of
499//       digits.
500//     * the representation in buffer is the most precise representation of
501//       requested_digits digits.
502//     * buffer contains at most requested_digits digits of w. If there are less
503//       than requested_digits digits then some trailing '0's have been removed.
504//     * kappa is such that
505//            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
506//
507// Remark: This procedure takes into account the imprecision of its input
508//   numbers. If the precision is not enough to guarantee all the postconditions
509//   then false is returned. This usually happens rarely, but the failure-rate
510//   increases with higher requested_digits.
511static bool DigitGenCounted(DiyFp w,
512                            int requested_digits,
513                            Vector<char> buffer,
514                            int* length,
515                            int* kappa) {
516  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
517  ASSERT(kMinimalTargetExponent >= -60);
518  ASSERT(kMaximalTargetExponent <= -32);
519  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
520  // also scale its error.
521  uint64_t w_error = 1;
522  // We cut the input number into two parts: the integral digits and the
523  // fractional digits. We don't emit any decimal separator, but adapt kappa
524  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
525  // increase kappa by 1.
526  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
527  // Division by one is a shift.
528  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
529  // Modulo by one is an and.
530  uint64_t fractionals = w.f() & (one.f() - 1);
531  uint32_t divisor;
532  int divisor_exponent;
533  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
534                  &divisor, &divisor_exponent);
535  *kappa = divisor_exponent + 1;
536  *length = 0;
537
538  // Loop invariant: buffer = w / 10^kappa  (integer division)
539  // The invariant holds for the first iteration: kappa has been initialized
540  // with the divisor exponent + 1. And the divisor is the biggest power of ten
541  // that is smaller than 'integrals'.
542  while (*kappa > 0) {
543    int digit = integrals / divisor;
544    buffer[*length] = '0' + digit;
545    (*length)++;
546    requested_digits--;
547    integrals %= divisor;
548    (*kappa)--;
549    // Note that kappa now equals the exponent of the divisor and that the
550    // invariant thus holds again.
551    if (requested_digits == 0) break;
552    divisor /= 10;
553  }
554
555  if (requested_digits == 0) {
556    uint64_t rest =
557        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
558    return RoundWeedCounted(buffer, *length, rest,
559                            static_cast<uint64_t>(divisor) << -one.e(), w_error,
560                            kappa);
561  }
562
563  // The integrals have been generated. We are at the point of the decimal
564  // separator. In the following loop we simply multiply the remaining digits by
565  // 10 and divide by one. We just need to pay attention to multiply associated
566  // data (the 'unit'), too.
567  // Note that the multiplication by 10 does not overflow, because w.e >= -60
568  // and thus one.e >= -60.
569  ASSERT(one.e() >= -60);
570  ASSERT(fractionals < one.f());
571  ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
572  while (requested_digits > 0 && fractionals > w_error) {
573    fractionals *= 10;
574    w_error *= 10;
575    // Integer division by one.
576    int digit = static_cast<int>(fractionals >> -one.e());
577    buffer[*length] = '0' + digit;
578    (*length)++;
579    requested_digits--;
580    fractionals &= one.f() - 1;  // Modulo by one.
581    (*kappa)--;
582  }
583  if (requested_digits != 0) return false;
584  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
585                          kappa);
586}
587
588
589// Provides a decimal representation of v.
590// Returns true if it succeeds, otherwise the result cannot be trusted.
591// There will be *length digits inside the buffer (not null-terminated).
592// If the function returns true then
593//        v == (double) (buffer * 10^decimal_exponent).
594// The digits in the buffer are the shortest representation possible: no
595// 0.09999999999999999 instead of 0.1. The shorter representation will even be
596// chosen even if the longer one would be closer to v.
597// The last digit will be closest to the actual v. That is, even if several
598// digits might correctly yield 'v' when read again, the closest will be
599// computed.
600static bool Grisu3(double v,
601                   Vector<char> buffer,
602                   int* length,
603                   int* decimal_exponent) {
604  DiyFp w = Double(v).AsNormalizedDiyFp();
605  // boundary_minus and boundary_plus are the boundaries between v and its
606  // closest floating-point neighbors. Any number strictly between
607  // boundary_minus and boundary_plus will round to v when convert to a double.
608  // Grisu3 will never output representations that lie exactly on a boundary.
609  DiyFp boundary_minus, boundary_plus;
610  Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
611  ASSERT(boundary_plus.e() == w.e());
612  DiyFp ten_mk;  // Cached power of ten: 10^-k
613  int mk;        // -k
614  int ten_mk_minimal_binary_exponent =
615     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
616  int ten_mk_maximal_binary_exponent =
617     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
618  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
619      ten_mk_minimal_binary_exponent,
620      ten_mk_maximal_binary_exponent,
621      &ten_mk, &mk);
622  ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
623          DiyFp::kSignificandSize) &&
624         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
625          DiyFp::kSignificandSize));
626  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
627  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
628
629  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
630  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
631  // off by a small amount.
632  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
633  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
634  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
635  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
636  ASSERT(scaled_w.e() ==
637         boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
638  // In theory it would be possible to avoid some recomputations by computing
639  // the difference between w and boundary_minus/plus (a power of 2) and to
640  // compute scaled_boundary_minus/plus by subtracting/adding from
641  // scaled_w. However the code becomes much less readable and the speed
642  // enhancements are not terriffic.
643  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
644  DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
645
646  // DigitGen will generate the digits of scaled_w. Therefore we have
647  // v == (double) (scaled_w * 10^-mk).
648  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
649  // integer than it will be updated. For instance if scaled_w == 1.23 then
650  // the buffer will be filled with "123" und the decimal_exponent will be
651  // decreased by 2.
652  int kappa;
653  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
654                         buffer, length, &kappa);
655  *decimal_exponent = -mk + kappa;
656  return result;
657}
658
659
660// The "counted" version of grisu3 (see above) only generates requested_digits
661// number of digits. This version does not generate the shortest representation,
662// and with enough requested digits 0.1 will at some point print as 0.9999999...
663// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
664// therefore the rounding strategy for halfway cases is irrelevant.
665static bool Grisu3Counted(double v,
666                          int requested_digits,
667                          Vector<char> buffer,
668                          int* length,
669                          int* decimal_exponent) {
670  DiyFp w = Double(v).AsNormalizedDiyFp();
671  DiyFp ten_mk;  // Cached power of ten: 10^-k
672  int mk;        // -k
673  int ten_mk_minimal_binary_exponent =
674     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
675  int ten_mk_maximal_binary_exponent =
676     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
677  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
678      ten_mk_minimal_binary_exponent,
679      ten_mk_maximal_binary_exponent,
680      &ten_mk, &mk);
681  ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
682          DiyFp::kSignificandSize) &&
683         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
684          DiyFp::kSignificandSize));
685  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
686  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
687
688  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
689  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
690  // off by a small amount.
691  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
692  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
693  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
694  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
695
696  // We now have (double) (scaled_w * 10^-mk).
697  // DigitGen will generate the first requested_digits digits of scaled_w and
698  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
699  // will not always be exactly the same since DigitGenCounted only produces a
700  // limited number of digits.)
701  int kappa;
702  bool result = DigitGenCounted(scaled_w, requested_digits,
703                                buffer, length, &kappa);
704  *decimal_exponent = -mk + kappa;
705  return result;
706}
707
708
709bool FastDtoa(double v,
710              FastDtoaMode mode,
711              int requested_digits,
712              Vector<char> buffer,
713              int* length,
714              int* decimal_point) {
715  ASSERT(v > 0);
716  ASSERT(!Double(v).IsSpecial());
717
718  bool result = false;
719  int decimal_exponent = 0;
720  switch (mode) {
721    case FAST_DTOA_SHORTEST:
722      result = Grisu3(v, buffer, length, &decimal_exponent);
723      break;
724    case FAST_DTOA_PRECISION:
725      result = Grisu3Counted(v, requested_digits,
726                             buffer, length, &decimal_exponent);
727      break;
728    default:
729      UNREACHABLE();
730  }
731  if (result) {
732    *decimal_point = *length + decimal_exponent;
733    buffer[*length] = '\0';
734  }
735  return result;
736}
737
738} }  // namespace v8::internal
739