CheckedInt.h revision cad810f21b803229eb11403f9209855525a25d57
1/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2/* vim:set ts=2 sw=2 sts=2 et cindent: */
3/* ***** BEGIN LICENSE BLOCK *****
4 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 *
6 * The contents of this file are subject to the Mozilla Public License Version
7 * 1.1 (the "License"); you may not use this file except in compliance with
8 * the License. You may obtain a copy of the License at
9 * http://www.mozilla.org/MPL/
10 *
11 * Software distributed under the License is distributed on an "AS IS" basis,
12 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 * for the specific language governing rights and limitations under the
14 * License.
15 *
16 * The Original Code is Mozilla code.
17 *
18 * The Initial Developer of the Original Code is the Mozilla Corporation.
19 * Portions created by the Initial Developer are Copyright (C) 2009
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *  Benoit Jacob <bjacob@mozilla.com>
24 *  Jeff Muizelaar <jmuizelaar@mozilla.com>
25 *
26 * Alternatively, the contents of this file may be used under the terms of
27 * either the GNU General Public License Version 2 or later (the "GPL"), or
28 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29 * in which case the provisions of the GPL or the LGPL are applicable instead
30 * of those above. If you wish to allow use of your version of this file only
31 * under the terms of either the GPL or the LGPL, and not to allow others to
32 * use your version of this file under the terms of the MPL, indicate your
33 * decision by deleting the provisions above and replace them with the notice
34 * and other provisions required by the GPL or the LGPL. If you do not delete
35 * the provisions above, a recipient may use your version of this file under
36 * the terms of any one of the MPL, the GPL or the LGPL.
37 *
38 * ***** END LICENSE BLOCK ***** */
39
40// Necessary modifications are made to the original CheckedInt.h file to remove
41// dependencies on prtypes.
42// Also, change define Mozilla_CheckedInt_h to CheckedInt_h, change namespace
43// from mozilla to WebCore for easier usage.
44
45#ifndef CheckedInt_h
46#define CheckedInt_h
47
48#include <climits>
49
50namespace WebCore {
51
52namespace CheckedInt_internal {
53
54/* we don't want to use std::numeric_limits here because int... types may not support it,
55 * depending on the platform, e.g. on certain platform they use nonstandard built-in types
56 */
57
58/*** Step 1: manually record information for all the types that we want to support
59 ***/
60
61struct unsupported_type {};
62
63template<typename T> struct integer_type_manually_recorded_info
64{
65    enum { is_supported = 0 };
66    typedef unsupported_type twice_bigger_type;
67};
68
69
70#define CHECKEDINT_REGISTER_SUPPORTED_TYPE(T,_twice_bigger_type)  \
71template<> struct integer_type_manually_recorded_info<T>       \
72{                                                              \
73    enum { is_supported = 1 };                                 \
74    typedef _twice_bigger_type twice_bigger_type;              \
75    static void TYPE_NOT_SUPPORTED_BY_CheckedInt() {}             \
76};
77
78CHECKEDINT_REGISTER_SUPPORTED_TYPE(int8_t,   int16_t)
79CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint8_t,  uint16_t)
80CHECKEDINT_REGISTER_SUPPORTED_TYPE(int16_t,  int32_t)
81CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint16_t, uint32_t)
82CHECKEDINT_REGISTER_SUPPORTED_TYPE(int32_t,  int64_t)
83CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint32_t, uint64_t)
84CHECKEDINT_REGISTER_SUPPORTED_TYPE(int64_t,  unsupported_type)
85CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint64_t, unsupported_type)
86
87
88/*** Step 2: record some info about a given integer type,
89 ***         including whether it is supported, whether a twice bigger integer type
90 ***         is supported, what that twice bigger type is, and some stuff as found
91 ***         in std::numeric_limits (which we don't use because int.. types may
92 ***         not support it, if they are defined directly from compiler built-in types).
93 ***/
94
95template<typename T> struct is_unsupported_type { enum { answer = 0 }; };
96template<> struct is_unsupported_type<unsupported_type> { enum { answer = 1 }; };
97
98template<typename T> struct integer_traits
99{
100    typedef typename integer_type_manually_recorded_info<T>::twice_bigger_type twice_bigger_type;
101
102    enum {
103        is_supported = integer_type_manually_recorded_info<T>::is_supported,
104        twice_bigger_type_is_supported
105            = is_unsupported_type<
106                  typename integer_type_manually_recorded_info<T>::twice_bigger_type
107              >::answer ? 0 : 1,
108        size = sizeof(T),
109        position_of_sign_bit = CHAR_BIT * size - 1,
110        is_signed = (T(-1) > T(0)) ? 0 : 1
111    };
112
113    static T min()
114    {
115        // bitwise ops may return a larger type, that's why we cast explicitly to T
116        return is_signed ? T(T(1) << position_of_sign_bit) : T(0);
117    }
118
119    static T max()
120    {
121        return ~min();
122    }
123};
124
125/*** Step 3: Implement the actual validity checks --- ideas taken from IntegerLib, code different.
126 ***/
127
128// bitwise ops may return a larger type, so it's good to use these inline helpers guaranteeing that
129// the result is really of type T
130
131template<typename T> inline T has_sign_bit(T x)
132{
133    return x >> integer_traits<T>::position_of_sign_bit;
134}
135
136template<typename T> inline T binary_complement(T x)
137{
138    return ~x;
139}
140
141template<typename T, typename U,
142         bool is_T_signed = integer_traits<T>::is_signed,
143         bool is_U_signed = integer_traits<U>::is_signed>
144struct is_in_range_impl {};
145
146template<typename T, typename U>
147struct is_in_range_impl<T, U, true, true>
148{
149    static T run(U x)
150    {
151        return (x <= integer_traits<T>::max()) &
152               (x >= integer_traits<T>::min());
153    }
154};
155
156template<typename T, typename U>
157struct is_in_range_impl<T, U, false, false>
158{
159    static T run(U x)
160    {
161        return x <= integer_traits<T>::max();
162    }
163};
164
165template<typename T, typename U>
166struct is_in_range_impl<T, U, true, false>
167{
168    static T run(U x)
169    {
170        if (sizeof(T) > sizeof(U))
171            return 1;
172        else
173            return x <= U(integer_traits<T>::max());
174    }
175};
176
177template<typename T, typename U>
178struct is_in_range_impl<T, U, false, true>
179{
180    static T run(U x)
181    {
182        if (sizeof(T) >= sizeof(U))
183            return x >= 0;
184        else
185            return x >= 0 && x <= U(integer_traits<T>::max());
186    }
187};
188
189template<typename T, typename U> inline T is_in_range(U x)
190{
191    return is_in_range_impl<T, U>::run(x);
192}
193
194template<typename T> inline T is_add_valid(T x, T y, T result)
195{
196    return integer_traits<T>::is_signed ?
197                        // addition is valid if the sign of x+y is equal to either that of x or that of y.
198                        // Beware! These bitwise operations can return a larger integer type, if T was a
199                        // small type like int8, so we explicitly cast to T.
200                        has_sign_bit(binary_complement(T((result^x) & (result^y))))
201                    :
202                        binary_complement(x) >= y;
203}
204
205template<typename T> inline T is_sub_valid(T x, T y, T result)
206{
207    return integer_traits<T>::is_signed ?
208                        // substraction is valid if either x and y have same sign, or x-y and x have same sign
209                        has_sign_bit(binary_complement(T((result^x) & (x^y))))
210                    :
211                        x >= y;
212}
213
214template<typename T,
215         bool is_signed =  integer_traits<T>::is_signed,
216         bool twice_bigger_type_is_supported = integer_traits<T>::twice_bigger_type_is_supported>
217struct is_mul_valid_impl {};
218
219template<typename T>
220struct is_mul_valid_impl<T, true, true>
221{
222    static T run(T x, T y)
223    {
224        typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type;
225        twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y);
226        return is_in_range<T>(product);
227    }
228};
229
230template<typename T>
231struct is_mul_valid_impl<T, false, true>
232{
233    static T run(T x, T y)
234    {
235        typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type;
236        twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y);
237        return is_in_range<T>(product);
238    }
239};
240
241template<typename T>
242struct is_mul_valid_impl<T, true, false>
243{
244    static T run(T x, T y)
245    {
246        const T max_value = integer_traits<T>::max();
247        const T min_value = integer_traits<T>::min();
248
249        if (x == 0 || y == 0) return true;
250
251        if (x > 0) {
252            if (y > 0)
253                return x <= max_value / y;
254            else
255                return y >= min_value / x;
256        } else {
257            if (y > 0)
258                return x >= min_value / y;
259            else
260                return y >= max_value / x;
261        }
262    }
263};
264
265template<typename T>
266struct is_mul_valid_impl<T, false, false>
267{
268    static T run(T x, T y)
269    {
270        const T max_value = integer_traits<T>::max();
271        if (x == 0 || y == 0) return true;
272        return x <= max_value / y;
273    }
274};
275
276template<typename T> inline T is_mul_valid(T x, T y, T /*result not used*/)
277{
278    return is_mul_valid_impl<T>::run(x, y);
279}
280
281template<typename T> inline T is_div_valid(T x, T y)
282{
283    return integer_traits<T>::is_signed ?
284                        // keep in mind that min/-1 is invalid because abs(min)>max
285                        y != 0 && (x != integer_traits<T>::min() || y != T(-1))
286                    :
287                        y != 0;
288}
289
290} // end namespace CheckedInt_internal
291
292
293/*** Step 4: Now define the CheckedInt class.
294 ***/
295
296/** \class CheckedInt
297  * \brief Integer wrapper class checking for integer overflow and other errors
298  * \param T the integer type to wrap. Can be any of int8_t, uint8_t, int16_t, uint16_t,
299  *          int32_t, uint32_t, int64_t, uint64_t.
300  *
301  * This class implements guarded integer arithmetic. Do a computation, then check that
302  * valid() returns true, you then have a guarantee that no problem, such as integer overflow,
303  * happened during this computation.
304  *
305  * The arithmetic operators in this class are guaranteed not to crash your app
306  * in case of a division by zero.
307  *
308  * For example, suppose that you want to implement a function that computes (x+y)/z,
309  * that doesn't crash if z==0, and that reports on error (divide by zero or integer overflow).
310  * You could code it as follows:
311    \code
312    bool compute_x_plus_y_over_z(int32_t x, int32_t y, int32_t z, int32_t *result)
313    {
314        CheckedInt<int32_t> checked_result = (CheckedInt<int32_t>(x) + y) / z;
315        *result = checked_result.value();
316        return checked_result.valid();
317    }
318    \endcode
319  *
320  * Implicit conversion from plain integers to checked integers is allowed. The plain integer
321  * is checked to be in range before being casted to the destination type. This means that the following
322  * lines all compile, and the resulting CheckedInts are correctly detected as valid or invalid:
323  * \code
324    CheckedInt<uint8_t> x(1);   // 1 is of type int, is found to be in range for uint8_t, x is valid
325    CheckedInt<uint8_t> x(-1);  // -1 is of type int, is found not to be in range for uint8_t, x is invalid
326    CheckedInt<int8_t> x(-1);   // -1 is of type int, is found to be in range for int8_t, x is valid
327    CheckedInt<int8_t> x(int16_t(1000)); // 1000 is of type int16_t, is found not to be in range for int8_t, x is invalid
328    CheckedInt<int32_t> x(uint32_t(123456789)); // 3123456789 is of type uint32_t, is found not to be in range
329                                             // for int32_t, x is invalid
330  * \endcode
331  * Implicit conversion from
332  * checked integers to plain integers is not allowed. As shown in the
333  * above example, to get the value of a checked integer as a normal integer, call value().
334  *
335  * Arithmetic operations between checked and plain integers is allowed; the result type
336  * is the type of the checked integer.
337  *
338  * Safe integers of different types cannot be used in the same arithmetic expression.
339  */
340template<typename T>
341class CheckedInt
342{
343protected:
344    T mValue;
345    T mIsValid; // stored as a T to limit the number of integer conversions when
346                // evaluating nested arithmetic expressions.
347
348    template<typename U>
349    CheckedInt(const U& value, bool isValid) : mValue(value), mIsValid(isValid)
350    {
351        CheckedInt_internal::integer_type_manually_recorded_info<T>
352            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
353    }
354
355public:
356    /** Constructs a checked integer with given \a value. The checked integer is initialized as valid or invalid
357      * depending on whether the \a value is in range.
358      *
359      * This constructor is not explicit. Instead, the type of its argument is a separate template parameter,
360      * ensuring that no conversion is performed before this constructor is actually called.
361      * As explained in the above documentation for class CheckedInt, this constructor checks that its argument is
362      * valid.
363      */
364    template<typename U>
365    CheckedInt(const U& value)
366        : mValue(value),
367          mIsValid(CheckedInt_internal::is_in_range<T>(value))
368    {
369        CheckedInt_internal::integer_type_manually_recorded_info<T>
370            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
371    }
372
373    /** Constructs a valid checked integer with uninitialized value */
374    CheckedInt() : mIsValid(1)
375    {
376        CheckedInt_internal::integer_type_manually_recorded_info<T>
377            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
378    }
379
380    /** \returns the actual value */
381    T value() const { return mValue; }
382
383    /** \returns true if the checked integer is valid, i.e. is not the result
384      * of an invalid operation or of an operation involving an invalid checked integer
385      */
386    bool valid() const { return mIsValid; }
387
388    /** \returns the sum. Checks for overflow. */
389    template<typename U> friend CheckedInt<U> operator +(const CheckedInt<U>& lhs, const CheckedInt<U>& rhs);
390    /** Adds. Checks for overflow. \returns self reference */
391    template<typename U> CheckedInt& operator +=(const U &rhs);
392    /** \returns the difference. Checks for overflow. */
393    template<typename U> friend CheckedInt<U> operator -(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
394    /** Substracts. Checks for overflow. \returns self reference */
395    template<typename U> CheckedInt& operator -=(const U &rhs);
396    /** \returns the product. Checks for overflow. */
397    template<typename U> friend CheckedInt<U> operator *(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
398    /** Multiplies. Checks for overflow. \returns self reference */
399    template<typename U> CheckedInt& operator *=(const U &rhs);
400    /** \returns the quotient. Checks for overflow and for divide-by-zero. */
401    template<typename U> friend CheckedInt<U> operator /(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
402    /** Divides. Checks for overflow and for divide-by-zero. \returns self reference */
403    template<typename U> CheckedInt& operator /=(const U &rhs);
404
405    /** \returns the opposite value. Checks for overflow. */
406    CheckedInt operator -() const
407    {
408        T result = -value();
409        /* give the compiler a good chance to perform RVO */
410        return CheckedInt(result,
411                       mIsValid & CheckedInt_internal::is_sub_valid(T(0), value(), result));
412    }
413
414    /** \returns true if the left and right hand sides are valid and have the same value. */
415    bool operator ==(const CheckedInt& other) const
416    {
417        return bool(mIsValid & other.mIsValid & T(value() == other.value()));
418    }
419
420private:
421    /** operator!= is disabled. Indeed: (a!=b) should be the same as !(a==b) but that
422      * would mean that if a or b is invalid, (a!=b) is always true, which is very tricky.
423      */
424    template<typename U>
425    bool operator !=(const U& other) const { return !(*this == other); }
426};
427
428#define CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP)               \
429template<typename T>                                          \
430inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) \
431{                                                             \
432    T x = lhs.value();                                        \
433    T y = rhs.value();                                        \
434    T result = x OP y;                                        \
435    T is_op_valid                                             \
436        = CheckedInt_internal::is_##NAME##_valid(x, y, result);  \
437    /* give the compiler a good chance to perform RVO */      \
438    return CheckedInt<T>(result,                                 \
439                      lhs.mIsValid &                          \
440                      rhs.mIsValid &                          \
441                      is_op_valid);                           \
442}
443
444CHECKEDINT_BASIC_BINARY_OPERATOR(add, +)
445CHECKEDINT_BASIC_BINARY_OPERATOR(sub, -)
446CHECKEDINT_BASIC_BINARY_OPERATOR(mul, *)
447
448// division can't be implemented by CHECKEDINT_BASIC_BINARY_OPERATOR
449// because if rhs == 0, we are not allowed to even try to compute the quotient.
450template<typename T>
451inline CheckedInt<T> operator /(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs)
452{
453    T x = lhs.value();
454    T y = rhs.value();
455    T is_op_valid = CheckedInt_internal::is_div_valid(x, y);
456    T result = is_op_valid ? (x / y) : 0;
457    /* give the compiler a good chance to perform RVO */
458    return CheckedInt<T>(result,
459                      lhs.mIsValid &
460                      rhs.mIsValid &
461                      is_op_valid);
462}
463
464// implement cast_to_CheckedInt<T>(x), making sure that
465//  - it allows x to be either a CheckedInt<T> or any integer type that can be casted to T
466//  - if x is already a CheckedInt<T>, we just return a reference to it, instead of copying it (optimization)
467
468template<typename T, typename U>
469struct cast_to_CheckedInt_impl
470{
471    typedef CheckedInt<T> return_type;
472    static CheckedInt<T> run(const U& u) { return u; }
473};
474
475template<typename T>
476struct cast_to_CheckedInt_impl<T, CheckedInt<T> >
477{
478    typedef const CheckedInt<T>& return_type;
479    static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; }
480};
481
482template<typename T, typename U>
483inline typename cast_to_CheckedInt_impl<T, U>::return_type
484cast_to_CheckedInt(const U& u)
485{
486    return cast_to_CheckedInt_impl<T, U>::run(u);
487}
488
489#define CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
490template<typename T>                                          \
491template<typename U>                                          \
492CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(const U &rhs)    \
493{                                                             \
494    *this = *this OP cast_to_CheckedInt<T>(rhs);                 \
495    return *this;                                             \
496}                                                             \
497template<typename T, typename U>                              \
498inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const U &rhs) \
499{                                                             \
500    return lhs OP cast_to_CheckedInt<T>(rhs);                    \
501}                                                             \
502template<typename T, typename U>                              \
503inline CheckedInt<T> operator OP(const U & lhs, const CheckedInt<T> &rhs) \
504{                                                             \
505    return cast_to_CheckedInt<T>(lhs) OP rhs;                    \
506}
507
508CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
509CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
510CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
511CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
512
513template<typename T, typename U>
514inline bool operator ==(const CheckedInt<T> &lhs, const U &rhs)
515{
516    return lhs == cast_to_CheckedInt<T>(rhs);
517}
518
519template<typename T, typename U>
520inline bool operator ==(const U & lhs, const CheckedInt<T> &rhs)
521{
522    return cast_to_CheckedInt<T>(lhs) == rhs;
523}
524
525} // end namespace WebCore
526
527#endif /* CheckedInt_h */
528