M4VIFI_ResizeYUVtoBGR565.c revision 7c9d8018755adf1857571125ba1b3598c96ea506
1/*
2 * Copyright (C) 2004-2011 NXP Software
3 * Copyright (C) 2011 The Android Open Source Project
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 *      http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17/**
18 ******************************************************************************
19 * @file     M4VIFI_ResizeYUV420toBGR565.c
20 * @brief    Contain video library function
21 * @note     This file has a Combo filter function
22 *           -# Resizes YUV420 and converts to RGR565 with rotation
23 ******************************************************************************
24*/
25
26/* Prototypes of functions, and type definitions */
27#include    "M4VIFI_FiltersAPI.h"
28/* Macro definitions */
29#include    "M4VIFI_Defines.h"
30/* Clip table declaration */
31#include    "M4VIFI_Clip.h"
32
33/**
34 *********************************************************************************************
35 * M4VIFI_UInt8 M4VIFI_ResizeBilinearYUV420toBGR565(void *pContext, M4VIFI_ImagePlane *pPlaneIn,
36 *                                                                  M4VIFI_ImagePlane *pPlaneOut)
37 * @brief   Resize YUV420 plane and converts to BGR565 with +90 rotation.
38 * @note    Basic sturture of the function
39 *          Loop on each row (step 2)
40 *              Loop on each column (step 2)
41 *                  Get four Y samples and 1 u & V sample
42 *                  Resize the Y with corresponing U and V samples
43 *                  Compute the four corresponding R G B values
44 *                  Place the R G B in the ouput plane in rotated fashion
45 *              end loop column
46 *          end loop row
47 *          For resizing bilinear interpolation linearly interpolates along
48 *          each row, and then uses that result in a linear interpolation down each column.
49 *          Each estimated pixel in the output image is a weighted
50 *          combination of its four neighbours. The ratio of compression
51 *          or dilatation is estimated using input and output sizes.
52 * @param   pPlaneIn: (IN) Pointer to YUV plane buffer
53 * @param   pContext: (IN) Context Pointer
54 * @param   pPlaneOut: (OUT) Pointer to BGR565 Plane
55 * @return  M4VIFI_OK: there is no error
56 * @return  M4VIFI_ILLEGAL_FRAME_HEIGHT: YUV Plane height is ODD
57 * @return  M4VIFI_ILLEGAL_FRAME_WIDTH:  YUV Plane width is ODD
58 *********************************************************************************************
59*/
60M4VIFI_UInt8    M4VIFI_ResizeBilinearYUV420toBGR565(void* pContext,
61                                                                 M4VIFI_ImagePlane *pPlaneIn,
62                                                                 M4VIFI_ImagePlane *pPlaneOut)
63{
64    M4VIFI_UInt8    *pu8_data_in[PLANES], *pu8_data_in1[PLANES],*pu8_data_out;
65    M4VIFI_UInt32   *pu32_rgb_data_current, *pu32_rgb_data_next, *pu32_rgb_data_start;
66
67    M4VIFI_UInt32   u32_width_in[PLANES], u32_width_out, u32_height_in[PLANES], u32_height_out;
68    M4VIFI_UInt32   u32_stride_in[PLANES];
69    M4VIFI_UInt32   u32_stride_out, u32_stride2_out, u32_width2_RGB, u32_height2_RGB;
70    M4VIFI_UInt32   u32_x_inc[PLANES], u32_y_inc[PLANES];
71    M4VIFI_UInt32   u32_x_accum_Y, u32_x_accum_U, u32_x_accum_start;
72    M4VIFI_UInt32   u32_y_accum_Y, u32_y_accum_U;
73    M4VIFI_UInt32   u32_x_frac_Y, u32_x_frac_U, u32_y_frac_Y,u32_y_frac_U;
74    M4VIFI_Int32    U_32, V_32, Y_32, Yval_32;
75    M4VIFI_UInt8    u8_Red, u8_Green, u8_Blue;
76    M4VIFI_UInt32   u32_row, u32_col;
77
78    M4VIFI_UInt32   u32_plane;
79    M4VIFI_UInt32   u32_rgb_temp1, u32_rgb_temp2;
80    M4VIFI_UInt32   u32_rgb_temp3,u32_rgb_temp4;
81    M4VIFI_UInt32   u32_check_size;
82
83    M4VIFI_UInt8    *pu8_src_top_Y,*pu8_src_top_U,*pu8_src_top_V ;
84    M4VIFI_UInt8    *pu8_src_bottom_Y, *pu8_src_bottom_U, *pu8_src_bottom_V;
85
86    /* Check for the YUV width and height are even */
87    u32_check_size = IS_EVEN(pPlaneIn[0].u_height);
88    if( u32_check_size == FALSE )
89    {
90        return M4VIFI_ILLEGAL_FRAME_HEIGHT;
91    }
92    u32_check_size = IS_EVEN(pPlaneIn[0].u_width);
93    if (u32_check_size == FALSE )
94    {
95        return M4VIFI_ILLEGAL_FRAME_WIDTH;
96
97    }
98    /* Make the ouput width and height as even */
99    pPlaneOut->u_height = pPlaneOut->u_height & 0xFFFFFFFE;
100    pPlaneOut->u_width = pPlaneOut->u_width & 0xFFFFFFFE;
101    pPlaneOut->u_stride = pPlaneOut->u_stride & 0xFFFFFFFC;
102
103    /* Assignment of output pointer */
104    pu8_data_out    = pPlaneOut->pac_data + pPlaneOut->u_topleft;
105    /* Assignment of output width(rotated) */
106    u32_width_out   = pPlaneOut->u_width;
107    /* Assignment of output height(rotated) */
108    u32_height_out  = pPlaneOut->u_height;
109
110    u32_width2_RGB  = pPlaneOut->u_width >> 1;
111    u32_height2_RGB = pPlaneOut->u_height >> 1;
112
113    u32_stride_out = pPlaneOut->u_stride >> 1;
114    u32_stride2_out = pPlaneOut->u_stride >> 2;
115
116    for(u32_plane = 0; u32_plane < PLANES; u32_plane++)
117    {
118        /* Set the working pointers at the beginning of the input/output data field */
119        pu8_data_in[u32_plane] = pPlaneIn[u32_plane].pac_data + pPlaneIn[u32_plane].u_topleft;
120
121        /* Get the memory jump corresponding to a row jump */
122        u32_stride_in[u32_plane] = pPlaneIn[u32_plane].u_stride;
123
124        /* Set the bounds of the active image */
125        u32_width_in[u32_plane] = pPlaneIn[u32_plane].u_width;
126        u32_height_in[u32_plane] = pPlaneIn[u32_plane].u_height;
127    }
128    /* Compute horizontal ratio between src and destination width for Y Plane. */
129    if (u32_width_out >= u32_width_in[YPlane])
130    {
131        u32_x_inc[YPlane]   = ((u32_width_in[YPlane]-1) * MAX_SHORT) / (u32_width_out-1);
132    }
133    else
134    {
135        u32_x_inc[YPlane]   = (u32_width_in[YPlane] * MAX_SHORT) / (u32_width_out);
136    }
137
138    /* Compute vertical ratio between src and destination height for Y Plane.*/
139    if (u32_height_out >= u32_height_in[YPlane])
140    {
141        u32_y_inc[YPlane]   = ((u32_height_in[YPlane]-1) * MAX_SHORT) / (u32_height_out-1);
142    }
143    else
144    {
145        u32_y_inc[YPlane] = (u32_height_in[YPlane] * MAX_SHORT) / (u32_height_out);
146    }
147
148    /* Compute horizontal ratio between src and destination width for U and V Planes. */
149    if (u32_width2_RGB >= u32_width_in[UPlane])
150    {
151        u32_x_inc[UPlane]   = ((u32_width_in[UPlane]-1) * MAX_SHORT) / (u32_width2_RGB-1);
152    }
153    else
154    {
155        u32_x_inc[UPlane]   = (u32_width_in[UPlane] * MAX_SHORT) / (u32_width2_RGB);
156    }
157
158    /* Compute vertical ratio between src and destination height for U and V Planes. */
159
160    if (u32_height2_RGB >= u32_height_in[UPlane])
161    {
162        u32_y_inc[UPlane]   = ((u32_height_in[UPlane]-1) * MAX_SHORT) / (u32_height2_RGB-1);
163    }
164    else
165    {
166        u32_y_inc[UPlane]  = (u32_height_in[UPlane] * MAX_SHORT) / (u32_height2_RGB);
167    }
168
169    u32_y_inc[VPlane] = u32_y_inc[UPlane];
170    u32_x_inc[VPlane] = u32_x_inc[UPlane];
171
172    /*
173        Calculate initial accumulator value : u32_y_accum_start.
174        u32_y_accum_start is coded on 15 bits,and represents a value between 0 and 0.5
175    */
176    if (u32_y_inc[YPlane] > MAX_SHORT)
177    {
178        /*
179            Keep the fractionnal part, assimung that integer  part is coded on the 16 high bits,
180            and the fractionnal on the 15 low bits
181        */
182        u32_y_accum_Y = u32_y_inc[YPlane] & 0xffff;
183        u32_y_accum_U = u32_y_inc[UPlane] & 0xffff;
184
185        if (!u32_y_accum_Y)
186        {
187            u32_y_accum_Y = MAX_SHORT;
188            u32_y_accum_U = MAX_SHORT;
189        }
190        u32_y_accum_Y >>= 1;
191        u32_y_accum_U >>= 1;
192    }
193    else
194    {
195        u32_y_accum_Y = 0;
196        u32_y_accum_U = 0;
197
198    }
199
200    /*
201        Calculate initial accumulator value : u32_x_accum_start.
202        u32_x_accum_start is coded on 15 bits, and represents a value between 0 and 0.5
203    */
204    if (u32_x_inc[YPlane] > MAX_SHORT)
205    {
206        u32_x_accum_start = u32_x_inc[YPlane] & 0xffff;
207
208        if (!u32_x_accum_start)
209        {
210            u32_x_accum_start = MAX_SHORT;
211        }
212
213        u32_x_accum_start >>= 1;
214    }
215    else
216    {
217        u32_x_accum_start = 0;
218    }
219
220    pu32_rgb_data_start = (M4VIFI_UInt32*)pu8_data_out;
221
222    /*
223        Bilinear interpolation linearly interpolates along each row, and then uses that
224        result in a linear interpolation donw each column. Each estimated pixel in the
225        output image is a weighted combination of its four neighbours according to the formula :
226        F(p',q')=f(p,q)R(-a)R(b)+f(p,q-1)R(-a)R(b-1)+f(p+1,q)R(1-a)R(b)+f(p+&,q+1)R(1-a)R(b-1)
227        with  R(x) = / x+1  -1 =< x =< 0 \ 1-x  0 =< x =< 1 and a (resp. b) weighting coefficient
228        is the distance from the nearest neighbor in the p (resp. q) direction
229    */
230    for (u32_row = u32_height_out; u32_row != 0; u32_row -= 2)
231    {
232        u32_x_accum_Y = u32_x_accum_start;
233        u32_x_accum_U = u32_x_accum_start;
234
235        /* Vertical weight factor */
236        u32_y_frac_Y = (u32_y_accum_Y >> 12) & 15;
237        u32_y_frac_U = (u32_y_accum_U >> 12) & 15;
238
239        /* RGB current line position pointer */
240        pu32_rgb_data_current = pu32_rgb_data_start ;
241
242        /* RGB next line position pointer */
243        pu32_rgb_data_next    = pu32_rgb_data_current + (u32_stride2_out);
244
245        /* Y Plane next row pointer */
246        pu8_data_in1[YPlane] = pu8_data_in[YPlane];
247
248        u32_rgb_temp3 = u32_y_accum_Y + (u32_y_inc[YPlane]);
249        if (u32_rgb_temp3 >> 16)
250        {
251            pu8_data_in1[YPlane] =  pu8_data_in[YPlane] +
252                                                (u32_rgb_temp3 >> 16) * (u32_stride_in[YPlane]);
253            u32_rgb_temp3 &= 0xffff;
254        }
255        u32_rgb_temp4 = (u32_rgb_temp3 >> 12) & 15;
256
257        for (u32_col = u32_width_out; u32_col != 0; u32_col -= 2)
258        {
259
260            /* Input Y plane elements */
261            pu8_src_top_Y = pu8_data_in[YPlane] + (u32_x_accum_Y >> 16);
262            pu8_src_bottom_Y = pu8_src_top_Y + u32_stride_in[YPlane];
263
264            /* Input U Plane elements */
265            pu8_src_top_U = pu8_data_in[UPlane] + (u32_x_accum_U >> 16);
266            pu8_src_bottom_U = pu8_src_top_U + u32_stride_in[UPlane];
267
268            pu8_src_top_V = pu8_data_in[VPlane] + (u32_x_accum_U >> 16);
269            pu8_src_bottom_V = pu8_src_top_V + u32_stride_in[VPlane];
270
271            /* Horizontal weight factor for Y plane */
272            u32_x_frac_Y = (u32_x_accum_Y >> 12)&15;
273            /* Horizontal weight factor for U and V planes */
274            u32_x_frac_U = (u32_x_accum_U >> 12)&15;
275
276            /* Weighted combination */
277            U_32 = (((pu8_src_top_U[0]*(16-u32_x_frac_U) + pu8_src_top_U[1]*u32_x_frac_U)
278                    *(16-u32_y_frac_U) + (pu8_src_bottom_U[0]*(16-u32_x_frac_U)
279                    + pu8_src_bottom_U[1]*u32_x_frac_U)*u32_y_frac_U ) >> 8);
280
281            V_32 = (((pu8_src_top_V[0]*(16-u32_x_frac_U) + pu8_src_top_V[1]*u32_x_frac_U)
282                    *(16-u32_y_frac_U)+ (pu8_src_bottom_V[0]*(16-u32_x_frac_U)
283                    + pu8_src_bottom_V[1]*u32_x_frac_U)*u32_y_frac_U ) >> 8);
284
285            Y_32 = (((pu8_src_top_Y[0]*(16-u32_x_frac_Y) + pu8_src_top_Y[1]*u32_x_frac_Y)
286                    *(16-u32_y_frac_Y) + (pu8_src_bottom_Y[0]*(16-u32_x_frac_Y)
287                    + pu8_src_bottom_Y[1]*u32_x_frac_Y)*u32_y_frac_Y ) >> 8);
288
289            u32_x_accum_U += (u32_x_inc[UPlane]);
290
291            /* YUV to RGB */
292            #ifdef __RGB_V1__
293                    Yval_32 = Y_32*37;
294            #else   /* __RGB_V1__v */
295                    Yval_32 = Y_32*0x2568;
296            #endif /* __RGB_V1__v */
297
298                    DEMATRIX(u8_Red,u8_Green,u8_Blue,Yval_32,U_32,V_32);
299
300            /* Pack 8 bit R,G,B to RGB565 */
301            #ifdef  LITTLE_ENDIAN
302                    u32_rgb_temp1 = PACK_BGR565(0,u8_Red,u8_Green,u8_Blue);
303            #else   /* LITTLE_ENDIAN */
304                    u32_rgb_temp1 = PACK_BGR565(16,u8_Red,u8_Green,u8_Blue);
305            #endif  /* LITTLE_ENDIAN */
306
307
308            pu8_src_top_Y = pu8_data_in1[YPlane]+(u32_x_accum_Y >> 16);
309            pu8_src_bottom_Y = pu8_src_top_Y + u32_stride_in[YPlane];
310
311            /* Weighted combination */
312            Y_32 = (((pu8_src_top_Y[0]*(16-u32_x_frac_Y) + pu8_src_top_Y[1]*u32_x_frac_Y)
313                    *(16-u32_rgb_temp4) + (pu8_src_bottom_Y[0]*(16-u32_x_frac_Y)
314                    + pu8_src_bottom_Y[1]*u32_x_frac_Y)*u32_rgb_temp4 ) >> 8);
315
316            u32_x_accum_Y += u32_x_inc[YPlane];
317
318            /* Horizontal weight factor */
319            u32_x_frac_Y = (u32_x_accum_Y >> 12)&15;
320
321            /* YUV to RGB */
322            #ifdef __RGB_V1__
323                    Yval_32 = Y_32*37;
324            #else   /* __RGB_V1__v */
325                    Yval_32 = Y_32*0x2568;
326            #endif  /* __RGB_V1__v */
327
328            DEMATRIX(u8_Red,u8_Green,u8_Blue,Yval_32,U_32,V_32);
329
330            /* Pack 8 bit R,G,B to RGB565 */
331            #ifdef  LITTLE_ENDIAN
332                    u32_rgb_temp2 = PACK_BGR565(0,u8_Red,u8_Green,u8_Blue);
333            #else   /* LITTLE_ENDIAN */
334                    u32_rgb_temp2 = PACK_BGR565(16,u8_Red,u8_Green,u8_Blue);
335            #endif  /* LITTLE_ENDIAN */
336
337
338            pu8_src_top_Y = pu8_data_in[YPlane] + (u32_x_accum_Y >> 16) ;
339            pu8_src_bottom_Y = pu8_src_top_Y + u32_stride_in[YPlane];
340
341            /* Weighted combination */
342            Y_32 = (((pu8_src_top_Y[0]*(16-u32_x_frac_Y) + pu8_src_top_Y[1]*u32_x_frac_Y)
343                    *(16-u32_y_frac_Y) + (pu8_src_bottom_Y[0]*(16-u32_x_frac_Y)
344                    + pu8_src_bottom_Y[1]*u32_x_frac_Y)*u32_y_frac_Y ) >> 8);
345
346            /* YUV to RGB */
347            #ifdef __RGB_V1__
348                    Yval_32 = Y_32*37;
349            #else   /* __RGB_V1__v */
350                    Yval_32 = Y_32*0x2568;
351            #endif  /* __RGB_V1__v */
352
353            DEMATRIX(u8_Red,u8_Green,u8_Blue,Yval_32,U_32,V_32);
354
355            /* Pack 8 bit R,G,B to RGB565 */
356            #ifdef  LITTLE_ENDIAN
357                    *(pu32_rgb_data_current)++ = u32_rgb_temp1 |
358                                                        PACK_BGR565(16,u8_Red,u8_Green,u8_Blue);
359            #else   /* LITTLE_ENDIAN */
360                    *(pu32_rgb_data_current)++ = u32_rgb_temp1 |
361                                                        PACK_BGR565(0,u8_Red,u8_Green,u8_Blue);
362            #endif  /* LITTLE_ENDIAN */
363
364
365            pu8_src_top_Y = pu8_data_in1[YPlane]+ (u32_x_accum_Y >> 16);
366            pu8_src_bottom_Y = pu8_src_top_Y + u32_stride_in[YPlane];
367
368            /* Weighted combination */
369            Y_32 = (((pu8_src_top_Y[0]*(16-u32_x_frac_Y) + pu8_src_top_Y[1]*u32_x_frac_Y)
370                    *(16-u32_rgb_temp4) + (pu8_src_bottom_Y[0]*(16-u32_x_frac_Y)
371                    + pu8_src_bottom_Y[1]*u32_x_frac_Y)*u32_rgb_temp4 )>>8);
372
373            u32_x_accum_Y += u32_x_inc[YPlane];
374            /* YUV to RGB */
375            #ifdef __RGB_V1__
376                    Yval_32=Y_32*37;
377            #else   /* __RGB_V1__v */
378                    Yval_32=Y_32*0x2568;
379            #endif  /* __RGB_V1__v */
380
381            DEMATRIX(u8_Red,u8_Green,u8_Blue,Yval_32,U_32,V_32);
382
383            /* Pack 8 bit R,G,B to RGB565 */
384            #ifdef  LITTLE_ENDIAN
385                    *(pu32_rgb_data_next)++ = u32_rgb_temp2 |
386                                                        PACK_BGR565(16,u8_Red,u8_Green,u8_Blue);
387            #else   /* LITTLE_ENDIAN */
388                    *(pu32_rgb_data_next)++ = u32_rgb_temp2 |
389                                                        PACK_BGR565(0,u8_Red,u8_Green,u8_Blue);
390            #endif  /* LITTLE_ENDIAN */
391
392        }   /* End of horizontal scanning */
393
394        u32_y_accum_Y  =  u32_rgb_temp3 + (u32_y_inc[YPlane]);
395        u32_y_accum_U += (u32_y_inc[UPlane]);
396
397        /* Y plane row update */
398        if (u32_y_accum_Y >> 16)
399        {
400            pu8_data_in[YPlane] =  pu8_data_in1[YPlane] +
401                                                ((u32_y_accum_Y >> 16) * (u32_stride_in[YPlane]));
402            u32_y_accum_Y &= 0xffff;
403        }
404        else
405        {
406            pu8_data_in[YPlane] = pu8_data_in1[YPlane];
407        }
408        /* U and V planes row update */
409        if (u32_y_accum_U >> 16)
410        {
411            pu8_data_in[UPlane] =  pu8_data_in[UPlane] +
412                                                (u32_y_accum_U >> 16) * (u32_stride_in[UPlane]);
413            pu8_data_in[VPlane] =  pu8_data_in[VPlane] +
414                                                (u32_y_accum_U >> 16) * (u32_stride_in[VPlane]);
415            u32_y_accum_U &= 0xffff;
416        }
417        /* BGR pointer Update */
418        pu32_rgb_data_start += u32_stride_out;
419
420    }   /* End of vertical scanning */
421    return M4VIFI_OK;
422}
423
424