1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "FastMixer"
18//#define LOG_NDEBUG 0
19
20#include <sys/atomics.h>
21#include <time.h>
22#include <utils/Log.h>
23#include <utils/Trace.h>
24#include <system/audio.h>
25#ifdef FAST_MIXER_STATISTICS
26#include <cpustats/CentralTendencyStatistics.h>
27#ifdef CPU_FREQUENCY_STATISTICS
28#include <cpustats/ThreadCpuUsage.h>
29#endif
30#endif
31#include "AudioMixer.h"
32#include "FastMixer.h"
33
34#define FAST_HOT_IDLE_NS     1000000L   // 1 ms: time to sleep while hot idling
35#define FAST_DEFAULT_NS    999999999L   // ~1 sec: default time to sleep
36#define MIN_WARMUP_CYCLES          2    // minimum number of loop cycles to wait for warmup
37#define MAX_WARMUP_CYCLES         10    // maximum number of loop cycles to wait for warmup
38
39namespace android {
40
41// Fast mixer thread
42bool FastMixer::threadLoop()
43{
44    static const FastMixerState initial;
45    const FastMixerState *previous = &initial, *current = &initial;
46    FastMixerState preIdle; // copy of state before we went into idle
47    struct timespec oldTs = {0, 0};
48    bool oldTsValid = false;
49    long slopNs = 0;    // accumulated time we've woken up too early (> 0) or too late (< 0)
50    long sleepNs = -1;  // -1: busy wait, 0: sched_yield, > 0: nanosleep
51    int fastTrackNames[FastMixerState::kMaxFastTracks]; // handles used by mixer to identify tracks
52    int generations[FastMixerState::kMaxFastTracks];    // last observed mFastTracks[i].mGeneration
53    unsigned i;
54    for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
55        fastTrackNames[i] = -1;
56        generations[i] = 0;
57    }
58    NBAIO_Sink *outputSink = NULL;
59    int outputSinkGen = 0;
60    AudioMixer* mixer = NULL;
61    short *mixBuffer = NULL;
62    enum {UNDEFINED, MIXED, ZEROED} mixBufferState = UNDEFINED;
63    NBAIO_Format format = Format_Invalid;
64    unsigned sampleRate = 0;
65    int fastTracksGen = 0;
66    long periodNs = 0;      // expected period; the time required to render one mix buffer
67    long underrunNs = 0;    // underrun likely when write cycle is greater than this value
68    long overrunNs = 0;     // overrun likely when write cycle is less than this value
69    long forceNs = 0;       // if overrun detected, force the write cycle to take this much time
70    long warmupNs = 0;      // warmup complete when write cycle is greater than to this value
71    FastMixerDumpState dummyDumpState, *dumpState = &dummyDumpState;
72    bool ignoreNextOverrun = true;  // used to ignore initial overrun and first after an underrun
73#ifdef FAST_MIXER_STATISTICS
74    struct timespec oldLoad = {0, 0};    // previous value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
75    bool oldLoadValid = false;  // whether oldLoad is valid
76    uint32_t bounds = 0;
77    bool full = false;      // whether we have collected at least kSamplingN samples
78#ifdef CPU_FREQUENCY_STATISTICS
79    ThreadCpuUsage tcu;     // for reading the current CPU clock frequency in kHz
80#endif
81#endif
82    unsigned coldGen = 0;   // last observed mColdGen
83    bool isWarm = false;    // true means ready to mix, false means wait for warmup before mixing
84    struct timespec measuredWarmupTs = {0, 0};  // how long did it take for warmup to complete
85    uint32_t warmupCycles = 0;  // counter of number of loop cycles required to warmup
86    NBAIO_Sink* teeSink = NULL; // if non-NULL, then duplicate write() to this non-blocking sink
87
88    for (;;) {
89
90        // either nanosleep, sched_yield, or busy wait
91        if (sleepNs >= 0) {
92            if (sleepNs > 0) {
93                ALOG_ASSERT(sleepNs < 1000000000);
94                const struct timespec req = {0, sleepNs};
95                nanosleep(&req, NULL);
96            } else {
97                sched_yield();
98            }
99        }
100        // default to long sleep for next cycle
101        sleepNs = FAST_DEFAULT_NS;
102
103        // poll for state change
104        const FastMixerState *next = mSQ.poll();
105        if (next == NULL) {
106            // continue to use the default initial state until a real state is available
107            ALOG_ASSERT(current == &initial && previous == &initial);
108            next = current;
109        }
110
111        FastMixerState::Command command = next->mCommand;
112        if (next != current) {
113
114            // As soon as possible of learning of a new dump area, start using it
115            dumpState = next->mDumpState != NULL ? next->mDumpState : &dummyDumpState;
116            teeSink = next->mTeeSink;
117
118            // We want to always have a valid reference to the previous (non-idle) state.
119            // However, the state queue only guarantees access to current and previous states.
120            // So when there is a transition from a non-idle state into an idle state, we make a
121            // copy of the last known non-idle state so it is still available on return from idle.
122            // The possible transitions are:
123            //  non-idle -> non-idle    update previous from current in-place
124            //  non-idle -> idle        update previous from copy of current
125            //  idle     -> idle        don't update previous
126            //  idle     -> non-idle    don't update previous
127            if (!(current->mCommand & FastMixerState::IDLE)) {
128                if (command & FastMixerState::IDLE) {
129                    preIdle = *current;
130                    current = &preIdle;
131                    oldTsValid = false;
132                    oldLoadValid = false;
133                    ignoreNextOverrun = true;
134                }
135                previous = current;
136            }
137            current = next;
138        }
139#if !LOG_NDEBUG
140        next = NULL;    // not referenced again
141#endif
142
143        dumpState->mCommand = command;
144
145        switch (command) {
146        case FastMixerState::INITIAL:
147        case FastMixerState::HOT_IDLE:
148            sleepNs = FAST_HOT_IDLE_NS;
149            continue;
150        case FastMixerState::COLD_IDLE:
151            // only perform a cold idle command once
152            // FIXME consider checking previous state and only perform if previous != COLD_IDLE
153            if (current->mColdGen != coldGen) {
154                int32_t *coldFutexAddr = current->mColdFutexAddr;
155                ALOG_ASSERT(coldFutexAddr != NULL);
156                int32_t old = android_atomic_dec(coldFutexAddr);
157                if (old <= 0) {
158                    __futex_syscall4(coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
159                }
160                // This may be overly conservative; there could be times that the normal mixer
161                // requests such a brief cold idle that it doesn't require resetting this flag.
162                isWarm = false;
163                measuredWarmupTs.tv_sec = 0;
164                measuredWarmupTs.tv_nsec = 0;
165                warmupCycles = 0;
166                sleepNs = -1;
167                coldGen = current->mColdGen;
168                bounds = 0;
169                full = false;
170                oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs);
171            } else {
172                sleepNs = FAST_HOT_IDLE_NS;
173            }
174            continue;
175        case FastMixerState::EXIT:
176            delete mixer;
177            delete[] mixBuffer;
178            return false;
179        case FastMixerState::MIX:
180        case FastMixerState::WRITE:
181        case FastMixerState::MIX_WRITE:
182            break;
183        default:
184            LOG_FATAL("bad command %d", command);
185        }
186
187        // there is a non-idle state available to us; did the state change?
188        size_t frameCount = current->mFrameCount;
189        if (current != previous) {
190
191            // handle state change here, but since we want to diff the state,
192            // we're prepared for previous == &initial the first time through
193            unsigned previousTrackMask;
194
195            // check for change in output HAL configuration
196            NBAIO_Format previousFormat = format;
197            if (current->mOutputSinkGen != outputSinkGen) {
198                outputSink = current->mOutputSink;
199                outputSinkGen = current->mOutputSinkGen;
200                if (outputSink == NULL) {
201                    format = Format_Invalid;
202                    sampleRate = 0;
203                } else {
204                    format = outputSink->format();
205                    sampleRate = Format_sampleRate(format);
206                    ALOG_ASSERT(Format_channelCount(format) == 2);
207                }
208                dumpState->mSampleRate = sampleRate;
209            }
210
211            if ((format != previousFormat) || (frameCount != previous->mFrameCount)) {
212                // FIXME to avoid priority inversion, don't delete here
213                delete mixer;
214                mixer = NULL;
215                delete[] mixBuffer;
216                mixBuffer = NULL;
217                if (frameCount > 0 && sampleRate > 0) {
218                    // FIXME new may block for unbounded time at internal mutex of the heap
219                    //       implementation; it would be better to have normal mixer allocate for us
220                    //       to avoid blocking here and to prevent possible priority inversion
221                    mixer = new AudioMixer(frameCount, sampleRate, FastMixerState::kMaxFastTracks);
222                    mixBuffer = new short[frameCount * 2];
223                    periodNs = (frameCount * 1000000000LL) / sampleRate;    // 1.00
224                    underrunNs = (frameCount * 1750000000LL) / sampleRate;  // 1.75
225                    overrunNs = (frameCount * 500000000LL) / sampleRate;    // 0.50
226                    forceNs = (frameCount * 950000000LL) / sampleRate;      // 0.95
227                    warmupNs = (frameCount * 500000000LL) / sampleRate;     // 0.50
228                } else {
229                    periodNs = 0;
230                    underrunNs = 0;
231                    overrunNs = 0;
232                    forceNs = 0;
233                    warmupNs = 0;
234                }
235                mixBufferState = UNDEFINED;
236#if !LOG_NDEBUG
237                for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
238                    fastTrackNames[i] = -1;
239                }
240#endif
241                // we need to reconfigure all active tracks
242                previousTrackMask = 0;
243                fastTracksGen = current->mFastTracksGen - 1;
244                dumpState->mFrameCount = frameCount;
245            } else {
246                previousTrackMask = previous->mTrackMask;
247            }
248
249            // check for change in active track set
250            unsigned currentTrackMask = current->mTrackMask;
251            dumpState->mTrackMask = currentTrackMask;
252            if (current->mFastTracksGen != fastTracksGen) {
253                ALOG_ASSERT(mixBuffer != NULL);
254                int name;
255
256                // process removed tracks first to avoid running out of track names
257                unsigned removedTracks = previousTrackMask & ~currentTrackMask;
258                while (removedTracks != 0) {
259                    i = __builtin_ctz(removedTracks);
260                    removedTracks &= ~(1 << i);
261                    const FastTrack* fastTrack = &current->mFastTracks[i];
262                    ALOG_ASSERT(fastTrack->mBufferProvider == NULL);
263                    if (mixer != NULL) {
264                        name = fastTrackNames[i];
265                        ALOG_ASSERT(name >= 0);
266                        mixer->deleteTrackName(name);
267                    }
268#if !LOG_NDEBUG
269                    fastTrackNames[i] = -1;
270#endif
271                    // don't reset track dump state, since other side is ignoring it
272                    generations[i] = fastTrack->mGeneration;
273                }
274
275                // now process added tracks
276                unsigned addedTracks = currentTrackMask & ~previousTrackMask;
277                while (addedTracks != 0) {
278                    i = __builtin_ctz(addedTracks);
279                    addedTracks &= ~(1 << i);
280                    const FastTrack* fastTrack = &current->mFastTracks[i];
281                    AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
282                    ALOG_ASSERT(bufferProvider != NULL && fastTrackNames[i] == -1);
283                    if (mixer != NULL) {
284                        // calling getTrackName with default channel mask and a random invalid
285                        //   sessionId (no effects here)
286                        name = mixer->getTrackName(AUDIO_CHANNEL_OUT_STEREO, -555);
287                        ALOG_ASSERT(name >= 0);
288                        fastTrackNames[i] = name;
289                        mixer->setBufferProvider(name, bufferProvider);
290                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER,
291                                (void *) mixBuffer);
292                        // newly allocated track names default to full scale volume
293                        if (fastTrack->mSampleRate != 0 && fastTrack->mSampleRate != sampleRate) {
294                            mixer->setParameter(name, AudioMixer::RESAMPLE,
295                                    AudioMixer::SAMPLE_RATE, (void*) fastTrack->mSampleRate);
296                        }
297                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
298                                (void *) fastTrack->mChannelMask);
299                        mixer->enable(name);
300                    }
301                    generations[i] = fastTrack->mGeneration;
302                }
303
304                // finally process modified tracks; these use the same slot
305                // but may have a different buffer provider or volume provider
306                unsigned modifiedTracks = currentTrackMask & previousTrackMask;
307                while (modifiedTracks != 0) {
308                    i = __builtin_ctz(modifiedTracks);
309                    modifiedTracks &= ~(1 << i);
310                    const FastTrack* fastTrack = &current->mFastTracks[i];
311                    if (fastTrack->mGeneration != generations[i]) {
312                        AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
313                        ALOG_ASSERT(bufferProvider != NULL);
314                        if (mixer != NULL) {
315                            name = fastTrackNames[i];
316                            ALOG_ASSERT(name >= 0);
317                            mixer->setBufferProvider(name, bufferProvider);
318                            if (fastTrack->mVolumeProvider == NULL) {
319                                mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
320                                        (void *)0x1000);
321                                mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
322                                        (void *)0x1000);
323                            }
324                            if (fastTrack->mSampleRate != 0 &&
325                                    fastTrack->mSampleRate != sampleRate) {
326                                mixer->setParameter(name, AudioMixer::RESAMPLE,
327                                        AudioMixer::SAMPLE_RATE, (void*) fastTrack->mSampleRate);
328                            } else {
329                                mixer->setParameter(name, AudioMixer::RESAMPLE,
330                                        AudioMixer::REMOVE, NULL);
331                            }
332                            mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
333                                    (void *) fastTrack->mChannelMask);
334                            // already enabled
335                        }
336                        generations[i] = fastTrack->mGeneration;
337                    }
338                }
339
340                fastTracksGen = current->mFastTracksGen;
341
342                dumpState->mNumTracks = popcount(currentTrackMask);
343            }
344
345#if 1   // FIXME shouldn't need this
346            // only process state change once
347            previous = current;
348#endif
349        }
350
351        // do work using current state here
352        if ((command & FastMixerState::MIX) && (mixer != NULL) && isWarm) {
353            ALOG_ASSERT(mixBuffer != NULL);
354            // for each track, update volume and check for underrun
355            unsigned currentTrackMask = current->mTrackMask;
356            while (currentTrackMask != 0) {
357                i = __builtin_ctz(currentTrackMask);
358                currentTrackMask &= ~(1 << i);
359                const FastTrack* fastTrack = &current->mFastTracks[i];
360                int name = fastTrackNames[i];
361                ALOG_ASSERT(name >= 0);
362                if (fastTrack->mVolumeProvider != NULL) {
363                    uint32_t vlr = fastTrack->mVolumeProvider->getVolumeLR();
364                    mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
365                            (void *)(vlr & 0xFFFF));
366                    mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
367                            (void *)(vlr >> 16));
368                }
369                // FIXME The current implementation of framesReady() for fast tracks
370                // takes a tryLock, which can block
371                // up to 1 ms.  If enough active tracks all blocked in sequence, this would result
372                // in the overall fast mix cycle being delayed.  Should use a non-blocking FIFO.
373                size_t framesReady = fastTrack->mBufferProvider->framesReady();
374#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
375                // I wish we had formatted trace names
376                char traceName[16];
377                strcpy(traceName, "framesReady");
378                traceName[11] = i + (i < 10 ? '0' : 'A' - 10);
379                traceName[12] = '\0';
380                ATRACE_INT(traceName, framesReady);
381#endif
382                FastTrackDump *ftDump = &dumpState->mTracks[i];
383                FastTrackUnderruns underruns = ftDump->mUnderruns;
384                if (framesReady < frameCount) {
385                    if (framesReady == 0) {
386                        underruns.mBitFields.mEmpty++;
387                        underruns.mBitFields.mMostRecent = UNDERRUN_EMPTY;
388                        mixer->disable(name);
389                    } else {
390                        // allow mixing partial buffer
391                        underruns.mBitFields.mPartial++;
392                        underruns.mBitFields.mMostRecent = UNDERRUN_PARTIAL;
393                        mixer->enable(name);
394                    }
395                } else {
396                    underruns.mBitFields.mFull++;
397                    underruns.mBitFields.mMostRecent = UNDERRUN_FULL;
398                    mixer->enable(name);
399                }
400                ftDump->mUnderruns = underruns;
401                ftDump->mFramesReady = framesReady;
402            }
403
404            int64_t pts;
405            if (outputSink == NULL || (OK != outputSink->getNextWriteTimestamp(&pts)))
406                pts = AudioBufferProvider::kInvalidPTS;
407
408            // process() is CPU-bound
409            mixer->process(pts);
410            mixBufferState = MIXED;
411        } else if (mixBufferState == MIXED) {
412            mixBufferState = UNDEFINED;
413        }
414        bool attemptedWrite = false;
415        //bool didFullWrite = false;    // dumpsys could display a count of partial writes
416        if ((command & FastMixerState::WRITE) && (outputSink != NULL) && (mixBuffer != NULL)) {
417            if (mixBufferState == UNDEFINED) {
418                memset(mixBuffer, 0, frameCount * 2 * sizeof(short));
419                mixBufferState = ZEROED;
420            }
421            if (teeSink != NULL) {
422                (void) teeSink->write(mixBuffer, frameCount);
423            }
424            // FIXME write() is non-blocking and lock-free for a properly implemented NBAIO sink,
425            //       but this code should be modified to handle both non-blocking and blocking sinks
426            dumpState->mWriteSequence++;
427#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
428            Tracer::traceBegin(ATRACE_TAG, "write");
429#endif
430            ssize_t framesWritten = outputSink->write(mixBuffer, frameCount);
431#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
432            Tracer::traceEnd(ATRACE_TAG);
433#endif
434            dumpState->mWriteSequence++;
435            if (framesWritten >= 0) {
436                ALOG_ASSERT(framesWritten <= frameCount);
437                dumpState->mFramesWritten += framesWritten;
438                //if ((size_t) framesWritten == frameCount) {
439                //    didFullWrite = true;
440                //}
441            } else {
442                dumpState->mWriteErrors++;
443            }
444            attemptedWrite = true;
445            // FIXME count # of writes blocked excessively, CPU usage, etc. for dump
446        }
447
448        // To be exactly periodic, compute the next sleep time based on current time.
449        // This code doesn't have long-term stability when the sink is non-blocking.
450        // FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
451        struct timespec newTs;
452        int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
453        if (rc == 0) {
454            if (oldTsValid) {
455                time_t sec = newTs.tv_sec - oldTs.tv_sec;
456                long nsec = newTs.tv_nsec - oldTs.tv_nsec;
457                ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
458                        "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
459                        oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
460                if (nsec < 0) {
461                    --sec;
462                    nsec += 1000000000;
463                }
464                // To avoid an initial underrun on fast tracks after exiting standby,
465                // do not start pulling data from tracks and mixing until warmup is complete.
466                // Warmup is considered complete after the earlier of:
467                //      MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs
468                //      MAX_WARMUP_CYCLES write() attempts.
469                // This is overly conservative, but to get better accuracy requires a new HAL API.
470                if (!isWarm && attemptedWrite) {
471                    measuredWarmupTs.tv_sec += sec;
472                    measuredWarmupTs.tv_nsec += nsec;
473                    if (measuredWarmupTs.tv_nsec >= 1000000000) {
474                        measuredWarmupTs.tv_sec++;
475                        measuredWarmupTs.tv_nsec -= 1000000000;
476                    }
477                    ++warmupCycles;
478                    if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) ||
479                            (warmupCycles >= MAX_WARMUP_CYCLES)) {
480                        isWarm = true;
481                        dumpState->mMeasuredWarmupTs = measuredWarmupTs;
482                        dumpState->mWarmupCycles = warmupCycles;
483                    }
484                }
485                sleepNs = -1;
486              if (isWarm) {
487                if (sec > 0 || nsec > underrunNs) {
488#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
489                    ScopedTrace st(ATRACE_TAG, "underrun");
490#endif
491                    // FIXME only log occasionally
492                    ALOGV("underrun: time since last cycle %d.%03ld sec",
493                            (int) sec, nsec / 1000000L);
494                    dumpState->mUnderruns++;
495                    ignoreNextOverrun = true;
496                } else if (nsec < overrunNs) {
497                    if (ignoreNextOverrun) {
498                        ignoreNextOverrun = false;
499                    } else {
500                        // FIXME only log occasionally
501                        ALOGV("overrun: time since last cycle %d.%03ld sec",
502                                (int) sec, nsec / 1000000L);
503                        dumpState->mOverruns++;
504                    }
505                    // This forces a minimum cycle time. It:
506                    //   - compensates for an audio HAL with jitter due to sample rate conversion
507                    //   - works with a variable buffer depth audio HAL that never pulls at a rate
508                    //     < than overrunNs per buffer.
509                    //   - recovers from overrun immediately after underrun
510                    // It doesn't work with a non-blocking audio HAL.
511                    sleepNs = forceNs - nsec;
512                } else {
513                    ignoreNextOverrun = false;
514                }
515              }
516#ifdef FAST_MIXER_STATISTICS
517              if (isWarm) {
518                // advance the FIFO queue bounds
519                size_t i = bounds & (FastMixerDumpState::kSamplingN - 1);
520                bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF);
521                if (full) {
522                    bounds += 0x10000;
523                } else if (!(bounds & (FastMixerDumpState::kSamplingN - 1))) {
524                    full = true;
525                }
526                // compute the delta value of clock_gettime(CLOCK_MONOTONIC)
527                uint32_t monotonicNs = nsec;
528                if (sec > 0 && sec < 4) {
529                    monotonicNs += sec * 1000000000;
530                }
531                // compute the raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
532                uint32_t loadNs = 0;
533                struct timespec newLoad;
534                rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
535                if (rc == 0) {
536                    if (oldLoadValid) {
537                        sec = newLoad.tv_sec - oldLoad.tv_sec;
538                        nsec = newLoad.tv_nsec - oldLoad.tv_nsec;
539                        if (nsec < 0) {
540                            --sec;
541                            nsec += 1000000000;
542                        }
543                        loadNs = nsec;
544                        if (sec > 0 && sec < 4) {
545                            loadNs += sec * 1000000000;
546                        }
547                    } else {
548                        // first time through the loop
549                        oldLoadValid = true;
550                    }
551                    oldLoad = newLoad;
552                }
553#ifdef CPU_FREQUENCY_STATISTICS
554                // get the absolute value of CPU clock frequency in kHz
555                int cpuNum = sched_getcpu();
556                uint32_t kHz = tcu.getCpukHz(cpuNum);
557                kHz = (kHz << 4) | (cpuNum & 0xF);
558#endif
559                // save values in FIFO queues for dumpsys
560                // these stores #1, #2, #3 are not atomic with respect to each other,
561                // or with respect to store #4 below
562                dumpState->mMonotonicNs[i] = monotonicNs;
563                dumpState->mLoadNs[i] = loadNs;
564#ifdef CPU_FREQUENCY_STATISTICS
565                dumpState->mCpukHz[i] = kHz;
566#endif
567                // this store #4 is not atomic with respect to stores #1, #2, #3 above, but
568                // the newest open and oldest closed halves are atomic with respect to each other
569                dumpState->mBounds = bounds;
570#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
571                ATRACE_INT("cycle_ms", monotonicNs / 1000000);
572                ATRACE_INT("load_us", loadNs / 1000);
573#endif
574              }
575#endif
576            } else {
577                // first time through the loop
578                oldTsValid = true;
579                sleepNs = periodNs;
580                ignoreNextOverrun = true;
581            }
582            oldTs = newTs;
583        } else {
584            // monotonic clock is broken
585            oldTsValid = false;
586            sleepNs = periodNs;
587        }
588
589
590    }   // for (;;)
591
592    // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
593}
594
595FastMixerDumpState::FastMixerDumpState() :
596    mCommand(FastMixerState::INITIAL), mWriteSequence(0), mFramesWritten(0),
597    mNumTracks(0), mWriteErrors(0), mUnderruns(0), mOverruns(0),
598    mSampleRate(0), mFrameCount(0), /* mMeasuredWarmupTs({0, 0}), */ mWarmupCycles(0),
599    mTrackMask(0)
600#ifdef FAST_MIXER_STATISTICS
601    , mBounds(0)
602#endif
603{
604    mMeasuredWarmupTs.tv_sec = 0;
605    mMeasuredWarmupTs.tv_nsec = 0;
606    // sample arrays aren't accessed atomically with respect to the bounds,
607    // so clearing reduces chance for dumpsys to read random uninitialized samples
608    memset(&mMonotonicNs, 0, sizeof(mMonotonicNs));
609    memset(&mLoadNs, 0, sizeof(mLoadNs));
610#ifdef CPU_FREQUENCY_STATISTICS
611    memset(&mCpukHz, 0, sizeof(mCpukHz));
612#endif
613}
614
615FastMixerDumpState::~FastMixerDumpState()
616{
617}
618
619// helper function called by qsort()
620static int compare_uint32_t(const void *pa, const void *pb)
621{
622    uint32_t a = *(const uint32_t *)pa;
623    uint32_t b = *(const uint32_t *)pb;
624    if (a < b) {
625        return -1;
626    } else if (a > b) {
627        return 1;
628    } else {
629        return 0;
630    }
631}
632
633void FastMixerDumpState::dump(int fd)
634{
635    if (mCommand == FastMixerState::INITIAL) {
636        fdprintf(fd, "FastMixer not initialized\n");
637        return;
638    }
639#define COMMAND_MAX 32
640    char string[COMMAND_MAX];
641    switch (mCommand) {
642    case FastMixerState::INITIAL:
643        strcpy(string, "INITIAL");
644        break;
645    case FastMixerState::HOT_IDLE:
646        strcpy(string, "HOT_IDLE");
647        break;
648    case FastMixerState::COLD_IDLE:
649        strcpy(string, "COLD_IDLE");
650        break;
651    case FastMixerState::EXIT:
652        strcpy(string, "EXIT");
653        break;
654    case FastMixerState::MIX:
655        strcpy(string, "MIX");
656        break;
657    case FastMixerState::WRITE:
658        strcpy(string, "WRITE");
659        break;
660    case FastMixerState::MIX_WRITE:
661        strcpy(string, "MIX_WRITE");
662        break;
663    default:
664        snprintf(string, COMMAND_MAX, "%d", mCommand);
665        break;
666    }
667    double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1000.0) +
668            (mMeasuredWarmupTs.tv_nsec / 1000000.0);
669    double mixPeriodSec = (double) mFrameCount / (double) mSampleRate;
670    fdprintf(fd, "FastMixer command=%s writeSequence=%u framesWritten=%u\n"
671                 "          numTracks=%u writeErrors=%u underruns=%u overruns=%u\n"
672                 "          sampleRate=%u frameCount=%u measuredWarmup=%.3g ms, warmupCycles=%u\n"
673                 "          mixPeriod=%.2f ms\n",
674                 string, mWriteSequence, mFramesWritten,
675                 mNumTracks, mWriteErrors, mUnderruns, mOverruns,
676                 mSampleRate, mFrameCount, measuredWarmupMs, mWarmupCycles,
677                 mixPeriodSec * 1e3);
678#ifdef FAST_MIXER_STATISTICS
679    // find the interval of valid samples
680    uint32_t bounds = mBounds;
681    uint32_t newestOpen = bounds & 0xFFFF;
682    uint32_t oldestClosed = bounds >> 16;
683    uint32_t n = (newestOpen - oldestClosed) & 0xFFFF;
684    if (n > kSamplingN) {
685        ALOGE("too many samples %u", n);
686        n = kSamplingN;
687    }
688    // statistics for monotonic (wall clock) time, thread raw CPU load in time, CPU clock frequency,
689    // and adjusted CPU load in MHz normalized for CPU clock frequency
690    CentralTendencyStatistics wall, loadNs;
691#ifdef CPU_FREQUENCY_STATISTICS
692    CentralTendencyStatistics kHz, loadMHz;
693    uint32_t previousCpukHz = 0;
694#endif
695    // Assuming a normal distribution for cycle times, three standard deviations on either side of
696    // the mean account for 99.73% of the population.  So if we take each tail to be 1/1000 of the
697    // sample set, we get 99.8% combined, or close to three standard deviations.
698    static const uint32_t kTailDenominator = 1000;
699    uint32_t *tail = n >= kTailDenominator ? new uint32_t[n] : NULL;
700    // loop over all the samples
701    for (uint32_t j = 0; j < n; ++j) {
702        size_t i = oldestClosed++ & (kSamplingN - 1);
703        uint32_t wallNs = mMonotonicNs[i];
704        if (tail != NULL) {
705            tail[j] = wallNs;
706        }
707        wall.sample(wallNs);
708        uint32_t sampleLoadNs = mLoadNs[i];
709        loadNs.sample(sampleLoadNs);
710#ifdef CPU_FREQUENCY_STATISTICS
711        uint32_t sampleCpukHz = mCpukHz[i];
712        // skip bad kHz samples
713        if ((sampleCpukHz & ~0xF) != 0) {
714            kHz.sample(sampleCpukHz >> 4);
715            if (sampleCpukHz == previousCpukHz) {
716                double megacycles = (double) sampleLoadNs * (double) (sampleCpukHz >> 4) * 1e-12;
717                double adjMHz = megacycles / mixPeriodSec;  // _not_ wallNs * 1e9
718                loadMHz.sample(adjMHz);
719            }
720        }
721        previousCpukHz = sampleCpukHz;
722#endif
723    }
724    fdprintf(fd, "Simple moving statistics over last %.1f seconds:\n", wall.n() * mixPeriodSec);
725    fdprintf(fd, "  wall clock time in ms per mix cycle:\n"
726                 "    mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
727                 wall.mean()*1e-6, wall.minimum()*1e-6, wall.maximum()*1e-6, wall.stddev()*1e-6);
728    fdprintf(fd, "  raw CPU load in us per mix cycle:\n"
729                 "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
730                 loadNs.mean()*1e-3, loadNs.minimum()*1e-3, loadNs.maximum()*1e-3,
731                 loadNs.stddev()*1e-3);
732#ifdef CPU_FREQUENCY_STATISTICS
733    fdprintf(fd, "  CPU clock frequency in MHz:\n"
734                 "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
735                 kHz.mean()*1e-3, kHz.minimum()*1e-3, kHz.maximum()*1e-3, kHz.stddev()*1e-3);
736    fdprintf(fd, "  adjusted CPU load in MHz (i.e. normalized for CPU clock frequency):\n"
737                 "    mean=%.1f min=%.1f max=%.1f stddev=%.1f\n",
738                 loadMHz.mean(), loadMHz.minimum(), loadMHz.maximum(), loadMHz.stddev());
739#endif
740    if (tail != NULL) {
741        qsort(tail, n, sizeof(uint32_t), compare_uint32_t);
742        // assume same number of tail samples on each side, left and right
743        uint32_t count = n / kTailDenominator;
744        CentralTendencyStatistics left, right;
745        for (uint32_t i = 0; i < count; ++i) {
746            left.sample(tail[i]);
747            right.sample(tail[n - (i + 1)]);
748        }
749        fdprintf(fd, "Distribution of mix cycle times in ms for the tails (> ~3 stddev outliers):\n"
750                     "  left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n"
751                     "  right tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
752                     left.mean()*1e-6, left.minimum()*1e-6, left.maximum()*1e-6, left.stddev()*1e-6,
753                     right.mean()*1e-6, right.minimum()*1e-6, right.maximum()*1e-6,
754                     right.stddev()*1e-6);
755        delete[] tail;
756    }
757#endif
758    // The active track mask and track states are updated non-atomically.
759    // So if we relied on isActive to decide whether to display,
760    // then we might display an obsolete track or omit an active track.
761    // Instead we always display all tracks, with an indication
762    // of whether we think the track is active.
763    uint32_t trackMask = mTrackMask;
764    fdprintf(fd, "Fast tracks: kMaxFastTracks=%u activeMask=%#x\n",
765            FastMixerState::kMaxFastTracks, trackMask);
766    fdprintf(fd, "Index Active Full Partial Empty  Recent Ready\n");
767    for (uint32_t i = 0; i < FastMixerState::kMaxFastTracks; ++i, trackMask >>= 1) {
768        bool isActive = trackMask & 1;
769        const FastTrackDump *ftDump = &mTracks[i];
770        const FastTrackUnderruns& underruns = ftDump->mUnderruns;
771        const char *mostRecent;
772        switch (underruns.mBitFields.mMostRecent) {
773        case UNDERRUN_FULL:
774            mostRecent = "full";
775            break;
776        case UNDERRUN_PARTIAL:
777            mostRecent = "partial";
778            break;
779        case UNDERRUN_EMPTY:
780            mostRecent = "empty";
781            break;
782        default:
783            mostRecent = "?";
784            break;
785        }
786        fdprintf(fd, "%5u %6s %4u %7u %5u %7s %5u\n", i, isActive ? "yes" : "no",
787                (underruns.mBitFields.mFull) & UNDERRUN_MASK,
788                (underruns.mBitFields.mPartial) & UNDERRUN_MASK,
789                (underruns.mBitFields.mEmpty) & UNDERRUN_MASK,
790                mostRecent, ftDump->mFramesReady);
791    }
792}
793
794}   // namespace android
795