SensorEvent.java revision d11ee90b6ed54421f0016ffb7de77e5c812bc17f
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19/**
20 * <p>
21 * This class represents a {@link android.hardware.Sensor Sensor} event and
22 * holds informations such as the sensor's type, the time-stamp, accuracy and of
23 * course the sensor's {@link SensorEvent#values data}.
24 * </p>
25 *
26 * <p>
27 * <u>Definition of the coordinate system used by the SensorEvent API.</u>
28 * </p>
29 *
30 * <p>
31 * The coordinate-system is defined relative to the screen of the phone in its
32 * default orientation. The axes are not swapped when the device's screen
33 * orientation changes.
34 * </p>
35 *
36 * <p>
37 * The X axis is horizontal and points to the right, the Y axis is vertical and
38 * points up and the Z axis points towards the outside of the front face of the
39 * screen. In this system, coordinates behind the screen have negative Z values.
40 * </p>
41 *
42 * <p>
43 * <center><img src="../../../images/axis_device.png"
44 * alt="Sensors coordinate-system diagram." border="0" /></center>
45 * </p>
46 *
47 * <p>
48 * <b>Note:</b> This coordinate system is different from the one used in the
49 * Android 2D APIs where the origin is in the top-left corner.
50 * </p>
51 *
52 * @see SensorManager
53 * @see SensorEvent
54 * @see Sensor
55 *
56 */
57
58public class SensorEvent {
59    /**
60     * <p>
61     * The length and contents of the {@link #values values} array depends on
62     * which {@link android.hardware.Sensor sensor} type is being monitored (see
63     * also {@link SensorEvent} for a definition of the coordinate system used).
64     * </p>
65     *
66     * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
67     * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
68     *
69     * <ul>
70     * <p>
71     * values[0]: Acceleration minus Gx on the x-axis
72     * </p>
73     * <p>
74     * values[1]: Acceleration minus Gy on the y-axis
75     * </p>
76     * <p>
77     * values[2]: Acceleration minus Gz on the z-axis
78     * </p>
79     * </ul>
80     *
81     * <p>
82     * A sensor of this type measures the acceleration applied to the device
83     * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
84     * sensor itself (<b>Fs</b>) using the relation:
85     * </p>
86     *
87     * <b><center>Ad = - &#8721;Fs / mass</center></b>
88     *
89     * <p>
90     * In particular, the force of gravity is always influencing the measured
91     * acceleration:
92     * </p>
93     *
94     * <b><center>Ad = -g - &#8721;F / mass</center></b>
95     *
96     * <p>
97     * For this reason, when the device is sitting on a table (and obviously not
98     * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
99     * m/s^2
100     * </p>
101     *
102     * <p>
103     * Similarly, when the device is in free-fall and therefore dangerously
104     * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
105     * magnitude of 0 m/s^2.
106     * </p>
107     *
108     * <p>
109     * It should be apparent that in order to measure the real acceleration of
110     * the device, the contribution of the force of gravity must be eliminated.
111     * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
112     * <i>low-pass</i> filter can be used to isolate the force of gravity.
113     * </p>
114     *
115     * <pre class="prettyprint">
116     *
117     *     public void onSensorChanged(SensorEvent event)
118     *     {
119     *          // alpha is calculated as t / (t + dT)
120     *          // with t, the low-pass filter's time-constant
121     *          // and dT, the event delivery rate
122     *
123     *          final float alpha = 0.8;
124     *
125     *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
126     *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
127     *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
128     *
129     *          linear_acceleration[0] = event.values[0] - gravity[0];
130     *          linear_acceleration[1] = event.values[1] - gravity[1];
131     *          linear_acceleration[2] = event.values[2] - gravity[2];
132     *     }
133     * </pre>
134     *
135     * <p>
136     * <u>Examples</u>:
137     * <ul>
138     * <li>When the device lies flat on a table and is pushed on its left side
139     * toward the right, the x acceleration value is positive.</li>
140     *
141     * <li>When the device lies flat on a table, the acceleration value is
142     * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
143     * the force of gravity (-9.81 m/s^2).</li>
144     *
145     * <li>When the device lies flat on a table and is pushed toward the sky
146     * with an acceleration of A m/s^2, the acceleration value is equal to
147     * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
148     * minus the force of gravity (-9.81 m/s^2).</li>
149     * </ul>
150     *
151     *
152     * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
153     * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
154     * All values are in micro-Tesla (uT) and measure the ambient magnetic field
155     * in the X, Y and Z axis.
156     *
157     * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:</h4>
158     *  All values are in radians/second and measure the rate of rotation
159     *  around the X, Y and Z axis. The coordinate system is the same as is
160     *  used for the acceleration sensor.  Rotation is positive in the counter-clockwise
161     *  direction.  That is, an observer looking from some positive location on the x, y.
162     *  or z axis at a device positioned on the origin would report positive rotation
163     *  if the device appeared to be rotating counter clockwise.  Note that this is the
164     *  standard mathematical definition of positive rotation and does not agree with the
165     *  definition of roll given earlier.
166     *
167     * <ul>
168     * <p>
169     * values[0]: Angular speed around the x-axis
170     * </p>
171     * <p>
172     * values[1]: Angular speed around the y-axis
173     * </p>
174     * <p>
175     * values[2]: Angular speed around the z-axis
176     * </p>
177     * </ul>
178     * <p>
179     * Typically the output of the gyroscope is integrated over time to calculate
180     * an angle, for example:
181     * </p>
182     * <pre class="prettyprint">
183     *     private static final float NS2S = 1.0f / 1000000000.0f;
184     *     private float timestamp;
185     *     public void onSensorChanged(SensorEvent event)
186     *     {
187     *          if (timestamp != 0) {
188     *              final float dT = (event.timestamp - timestamp) * NS2S;
189     *              angle[0] += event.values[0] * dT;
190     *              angle[1] += event.values[1] * dT;
191     *              angle[2] += event.values[2] * dT;
192     *          }
193     *          timestamp = event.timestamp;
194     *     }
195     * </pre>
196     *
197     * <p>In practice, the gyroscope noise and offset will introduce some errors which need
198     * to be compensated for. This is usually done using the information from other
199     * sensors, but is beyond the scope of this document.</p>
200     *
201     * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
202     * <ul>
203     * <p>
204     * values[0]: Ambient light level in SI lux units
205     * </ul>
206     *
207     * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
208     * </h4>
209     *
210     * <ul>
211     * <p>
212     * values[0]: Proximity sensor distance measured in centimeters
213     * </ul>
214     *
215     * <p>
216     * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
217     * <i>far</i> measurement. In this case, the sensor should report its
218     * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
219     * the <i>far</i> state and a lesser value in the <i>near</i> state.
220     * </p>
221     *
222     *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
223     *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
224     *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
225     *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
226     *  to that of the accelerometer.</p>
227     *
228     *  <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
229     *  A three dimensional vector indicating acceleration along each device axis, not including
230     *  gravity.  All values have units of m/s^2.  The coordinate system is the same as is used by the
231     *  acceleration sensor.
232     *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
233     *  following relation:</p>
234     *   <p><ul>acceleration = gravity + linear-acceleration</ul></p>
235     *
236     *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
237     *  <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
238     *  and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
239     *  &lt;x, y, z>.</p>
240     *  <p>The three elements of the rotation vector are
241     *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
242     *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
243     *  direction of the axis of rotation.</p>
244     *  </p>The three elements of the rotation vector are equal to
245     *  the last three components of a <b>unit</b> quaternion
246     *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
247     *  <p>Elements of the rotation vector are unitless.
248     *  The x,y, and z axis are defined in the same way as the acceleration
249     *  sensor.</p>
250     * <ul>
251     * <p>
252     * values[0]: x*sin(&#952/2)
253     * </p>
254     * <p>
255     * values[1]: y*sin(&#952/2)
256     * </p>
257     * <p>
258     * values[2]: z*sin(&#952/2)
259     * </p>
260     * <p>
261     * values[3]: cos(&#952/2) <i>(optional: only if value.length = 4)</i>
262     * </p>
263     * </ul>
264     *
265     * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
266     * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
267     *
268     * <ul>
269     * <p>
270     * values[0]: Azimuth, angle between the magnetic north direction and the
271     * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
272     * 270=West
273     * </p>
274     *
275     * <p>
276     * values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
277     * values when the z-axis moves <b>toward</b> the y-axis.
278     * </p>
279     *
280     * <p>
281     * values[2]: Roll, rotation around y-axis (-90 to 90), with positive values
282     * when the x-axis moves <b>toward</b> the z-axis.
283     * </p>
284     * </ul>
285     *
286     * <p>
287     * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
288     * used in aviation where the X axis is along the long side of the plane
289     * (tail to nose).
290     * </p>
291     *
292     * <p>
293     * <b>Note:</b> This sensor type exists for legacy reasons, please use
294     * {@link android.hardware.SensorManager#getRotationMatrix
295     * getRotationMatrix()} in conjunction with
296     * {@link android.hardware.SensorManager#remapCoordinateSystem
297     * remapCoordinateSystem()} and
298     * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
299     * compute these values instead.
300     * </p>
301     *
302     * <p>
303     * <b>Important note:</b> For historical reasons the roll angle is positive
304     * in the clockwise direction (mathematically speaking, it should be
305     * positive in the counter-clockwise direction).
306     * </p>
307     *
308     * @see SensorEvent
309     * @see GeomagneticField
310     */
311
312    public final float[] values;
313
314    /**
315     * The sensor that generated this event. See
316     * {@link android.hardware.SensorManager SensorManager} for details.
317     */
318   public Sensor sensor;
319
320    /**
321     * The accuracy of this event. See {@link android.hardware.SensorManager
322     * SensorManager} for details.
323     */
324    public int accuracy;
325
326
327    /**
328     * The time in nanosecond at which the event happened
329     */
330    public long timestamp;
331
332
333    SensorEvent(int size) {
334        values = new float[size];
335    }
336}
337