SensorManager.java revision 43c87e44fc0d7d7b37e039752c0dec093e227381
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.os.Looper;
20import android.os.Process;
21import android.os.RemoteException;
22import android.os.Handler;
23import android.os.Message;
24import android.os.ServiceManager;
25import android.util.Log;
26import android.util.SparseArray;
27import android.view.IRotationWatcher;
28import android.view.IWindowManager;
29import android.view.Surface;
30
31import java.util.ArrayList;
32import java.util.Collections;
33import java.util.HashMap;
34import java.util.List;
35
36/**
37 * <p>
38 * SensorManager lets you access the device's {@link android.hardware.Sensor
39 * sensors}. Get an instance of this class by calling
40 * {@link android.content.Context#getSystemService(java.lang.String)
41 * Context.getSystemService()} with the argument
42 * {@link android.content.Context#SENSOR_SERVICE}.
43 * </p>
44 * <p>
45 * Always make sure to disable sensors you don't need, especially when your
46 * activity is paused. Failing to do so can drain the battery in just a few
47 * hours. Note that the system will <i>not</i> disable sensors automatically when
48 * the screen turns off.
49 * </p>
50 *
51 * <pre class="prettyprint">
52 * public class SensorActivity extends Activity, implements SensorEventListener {
53 *     private final SensorManager mSensorManager;
54 *     private final Sensor mAccelerometer;
55 *
56 *     public SensorActivity() {
57 *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
58 *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
59 *     }
60 *
61 *     protected void onResume() {
62 *         super.onResume();
63 *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
64 *     }
65 *
66 *     protected void onPause() {
67 *         super.onPause();
68 *         mSensorManager.unregisterListener(this);
69 *     }
70 *
71 *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
72 *     }
73 *
74 *     public void onSensorChanged(SensorEvent event) {
75 *     }
76 * }
77 * </pre>
78 *
79 * @see SensorEventListener
80 * @see SensorEvent
81 * @see Sensor
82 *
83 */
84public class SensorManager
85{
86    private static final String TAG = "SensorManager";
87    private static final float[] mTempMatrix = new float[16];
88
89    /* NOTE: sensor IDs must be a power of 2 */
90
91    /**
92     * A constant describing an orientation sensor. See
93     * {@link android.hardware.SensorListener SensorListener} for more details.
94     *
95     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
96     */
97    @Deprecated
98    public static final int SENSOR_ORIENTATION = 1 << 0;
99
100    /**
101     * A constant describing an accelerometer. See
102     * {@link android.hardware.SensorListener SensorListener} for more details.
103     *
104     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
105     */
106    @Deprecated
107    public static final int SENSOR_ACCELEROMETER = 1 << 1;
108
109    /**
110     * A constant describing a temperature sensor See
111     * {@link android.hardware.SensorListener SensorListener} for more details.
112     *
113     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
114     */
115    @Deprecated
116    public static final int SENSOR_TEMPERATURE = 1 << 2;
117
118    /**
119     * A constant describing a magnetic sensor See
120     * {@link android.hardware.SensorListener SensorListener} for more details.
121     *
122     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
123     */
124    @Deprecated
125    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
126
127    /**
128     * A constant describing an ambient light sensor See
129     * {@link android.hardware.SensorListener SensorListener} for more details.
130     *
131     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
132     */
133    @Deprecated
134    public static final int SENSOR_LIGHT = 1 << 4;
135
136    /**
137     * A constant describing a proximity sensor See
138     * {@link android.hardware.SensorListener SensorListener} for more details.
139     *
140     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
141     */
142    @Deprecated
143    public static final int SENSOR_PROXIMITY = 1 << 5;
144
145    /**
146     * A constant describing a Tricorder See
147     * {@link android.hardware.SensorListener SensorListener} for more details.
148     *
149     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
150     */
151    @Deprecated
152    public static final int SENSOR_TRICORDER = 1 << 6;
153
154    /**
155     * A constant describing an orientation sensor. See
156     * {@link android.hardware.SensorListener SensorListener} for more details.
157     *
158     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
159     */
160    @Deprecated
161    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
162
163    /**
164     * A constant that includes all sensors
165     *
166     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
167     */
168    @Deprecated
169    public static final int SENSOR_ALL = 0x7F;
170
171    /**
172     * Smallest sensor ID
173     *
174     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
175     */
176    @Deprecated
177    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
178
179    /**
180     * Largest sensor ID
181     *
182     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
183     */
184    @Deprecated
185    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
186
187
188    /**
189     * Index of the X value in the array returned by
190     * {@link android.hardware.SensorListener#onSensorChanged}
191     *
192     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
193     */
194    @Deprecated
195    public static final int DATA_X = 0;
196
197    /**
198     * Index of the Y value in the array returned by
199     * {@link android.hardware.SensorListener#onSensorChanged}
200     *
201     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
202     */
203    @Deprecated
204    public static final int DATA_Y = 1;
205
206    /**
207     * Index of the Z value in the array returned by
208     * {@link android.hardware.SensorListener#onSensorChanged}
209     *
210     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
211     */
212    @Deprecated
213    public static final int DATA_Z = 2;
214
215    /**
216     * Offset to the untransformed values in the array returned by
217     * {@link android.hardware.SensorListener#onSensorChanged}
218     *
219     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
220     */
221    @Deprecated
222    public static final int RAW_DATA_INDEX = 3;
223
224    /**
225     * Index of the untransformed X value in the array returned by
226     * {@link android.hardware.SensorListener#onSensorChanged}
227     *
228     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
229     */
230    @Deprecated
231    public static final int RAW_DATA_X = 3;
232
233    /**
234     * Index of the untransformed Y value in the array returned by
235     * {@link android.hardware.SensorListener#onSensorChanged}
236     *
237     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
238     */
239    @Deprecated
240    public static final int RAW_DATA_Y = 4;
241
242    /**
243     * Index of the untransformed Z value in the array returned by
244     * {@link android.hardware.SensorListener#onSensorChanged}
245     *
246     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
247     */
248    @Deprecated
249    public static final int RAW_DATA_Z = 5;
250
251    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
252    public static final float STANDARD_GRAVITY = 9.80665f;
253
254    /** Sun's gravity in SI units (m/s^2) */
255    public static final float GRAVITY_SUN             = 275.0f;
256    /** Mercury's gravity in SI units (m/s^2) */
257    public static final float GRAVITY_MERCURY         = 3.70f;
258    /** Venus' gravity in SI units (m/s^2) */
259    public static final float GRAVITY_VENUS           = 8.87f;
260    /** Earth's gravity in SI units (m/s^2) */
261    public static final float GRAVITY_EARTH           = 9.80665f;
262    /** The Moon's gravity in SI units (m/s^2) */
263    public static final float GRAVITY_MOON            = 1.6f;
264    /** Mars' gravity in SI units (m/s^2) */
265    public static final float GRAVITY_MARS            = 3.71f;
266    /** Jupiter's gravity in SI units (m/s^2) */
267    public static final float GRAVITY_JUPITER         = 23.12f;
268    /** Saturn's gravity in SI units (m/s^2) */
269    public static final float GRAVITY_SATURN          = 8.96f;
270    /** Uranus' gravity in SI units (m/s^2) */
271    public static final float GRAVITY_URANUS          = 8.69f;
272    /** Neptune's gravity in SI units (m/s^2) */
273    public static final float GRAVITY_NEPTUNE         = 11.0f;
274    /** Pluto's gravity in SI units (m/s^2) */
275    public static final float GRAVITY_PLUTO           = 0.6f;
276    /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
277    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
278    /** Gravity on the island */
279    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
280
281
282    /** Maximum magnetic field on Earth's surface */
283    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
284    /** Minimum magnetic field on Earth's surface */
285    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
286
287
288    /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
289    public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
290
291
292    /** Maximum luminance of sunlight in lux */
293    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
294    /** luminance of sunlight in lux */
295    public static final float LIGHT_SUNLIGHT     = 110000.0f;
296    /** luminance in shade in lux */
297    public static final float LIGHT_SHADE        = 20000.0f;
298    /** luminance under an overcast sky in lux */
299    public static final float LIGHT_OVERCAST     = 10000.0f;
300    /** luminance at sunrise in lux */
301    public static final float LIGHT_SUNRISE      = 400.0f;
302    /** luminance under a cloudy sky in lux */
303    public static final float LIGHT_CLOUDY       = 100.0f;
304    /** luminance at night with full moon in lux */
305    public static final float LIGHT_FULLMOON     = 0.25f;
306    /** luminance at night with no moon in lux*/
307    public static final float LIGHT_NO_MOON      = 0.001f;
308
309
310    /** get sensor data as fast as possible */
311    public static final int SENSOR_DELAY_FASTEST = 0;
312    /** rate suitable for games */
313    public static final int SENSOR_DELAY_GAME = 1;
314    /** rate suitable for the user interface  */
315    public static final int SENSOR_DELAY_UI = 2;
316    /** rate (default) suitable for screen orientation changes */
317    public static final int SENSOR_DELAY_NORMAL = 3;
318
319
320    /**
321     * The values returned by this sensor cannot be trusted, calibration is
322     * needed or the environment doesn't allow readings
323     */
324    public static final int SENSOR_STATUS_UNRELIABLE = 0;
325
326    /**
327     * This sensor is reporting data with low accuracy, calibration with the
328     * environment is needed
329     */
330    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
331
332    /**
333     * This sensor is reporting data with an average level of accuracy,
334     * calibration with the environment may improve the readings
335     */
336    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
337
338    /** This sensor is reporting data with maximum accuracy */
339    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
340
341    /** see {@link #remapCoordinateSystem} */
342    public static final int AXIS_X = 1;
343    /** see {@link #remapCoordinateSystem} */
344    public static final int AXIS_Y = 2;
345    /** see {@link #remapCoordinateSystem} */
346    public static final int AXIS_Z = 3;
347    /** see {@link #remapCoordinateSystem} */
348    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
349    /** see {@link #remapCoordinateSystem} */
350    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
351    /** see {@link #remapCoordinateSystem} */
352    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
353
354    /*-----------------------------------------------------------------------*/
355
356    Looper mMainLooper;
357    @SuppressWarnings("deprecation")
358    private HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
359        new HashMap<SensorListener, LegacyListener>();
360
361    /*-----------------------------------------------------------------------*/
362
363    private static final int SENSOR_DISABLE = -1;
364    private static boolean sSensorModuleInitialized = false;
365    private static ArrayList<Sensor> sFullSensorsList = new ArrayList<Sensor>();
366    private static SparseArray<List<Sensor>> sSensorListByType = new SparseArray<List<Sensor>>();
367    private static IWindowManager sWindowManager;
368    private static int sRotation = Surface.ROTATION_0;
369    /* The thread and the sensor list are global to the process
370     * but the actual thread is spawned on demand */
371    private static SensorThread sSensorThread;
372    private static int sQueue;
373
374    // Used within this module from outside SensorManager, don't make private
375    static SparseArray<Sensor> sHandleToSensor = new SparseArray<Sensor>();
376    static final ArrayList<ListenerDelegate> sListeners =
377        new ArrayList<ListenerDelegate>();
378
379    /*-----------------------------------------------------------------------*/
380
381    static private class SensorThread {
382
383        Thread mThread;
384        boolean mSensorsReady;
385
386        SensorThread() {
387        }
388
389        @Override
390        protected void finalize() {
391        }
392
393        // must be called with sListeners lock
394        boolean startLocked() {
395            try {
396                if (mThread == null) {
397                    mSensorsReady = false;
398                    SensorThreadRunnable runnable = new SensorThreadRunnable();
399                    Thread thread = new Thread(runnable, SensorThread.class.getName());
400                    thread.start();
401                    synchronized (runnable) {
402                        while (mSensorsReady == false) {
403                            runnable.wait();
404                        }
405                    }
406                    mThread = thread;
407                }
408            } catch (InterruptedException e) {
409            }
410            return mThread == null ? false : true;
411        }
412
413        private class SensorThreadRunnable implements Runnable {
414            SensorThreadRunnable() {
415            }
416
417            private boolean open() {
418                // NOTE: this cannot synchronize on sListeners, since
419                // it's held in the main thread at least until we
420                // return from here.
421                sQueue = sensors_create_queue();
422                return true;
423            }
424
425            public void run() {
426                //Log.d(TAG, "entering main sensor thread");
427                final float[] values = new float[3];
428                final int[] status = new int[1];
429                final long timestamp[] = new long[1];
430                Process.setThreadPriority(Process.THREAD_PRIORITY_URGENT_DISPLAY);
431
432                if (!open()) {
433                    return;
434                }
435
436                synchronized (this) {
437                    // we've open the driver, we're ready to open the sensors
438                    mSensorsReady = true;
439                    this.notify();
440                }
441
442                while (true) {
443                    // wait for an event
444                    final int sensor = sensors_data_poll(sQueue, values, status, timestamp);
445
446                    int accuracy = status[0];
447                    synchronized (sListeners) {
448                        if (sensor == -1 || sListeners.isEmpty()) {
449                            if (sensor == -1) {
450                                // we lost the connection to the event stream. this happens
451                                // when the last listener is removed.
452                                Log.d(TAG, "_sensors_data_poll() failed, we bail out.");
453                            }
454
455                            // we have no more listeners or polling failed, terminate the thread
456                            sensors_destroy_queue(sQueue);
457                            sQueue = 0;
458                            mThread = null;
459                            break;
460                        }
461                        final Sensor sensorObject = sHandleToSensor.get(sensor);
462                        if (sensorObject != null) {
463                            // report the sensor event to all listeners that
464                            // care about it.
465                            final int size = sListeners.size();
466                            for (int i=0 ; i<size ; i++) {
467                                ListenerDelegate listener = sListeners.get(i);
468                                if (listener.hasSensor(sensorObject)) {
469                                    // this is asynchronous (okay to call
470                                    // with sListeners lock held).
471                                    listener.onSensorChangedLocked(sensorObject,
472                                            values, timestamp, accuracy);
473                                }
474                            }
475                        }
476                    }
477                }
478                //Log.d(TAG, "exiting main sensor thread");
479            }
480        }
481    }
482
483    /*-----------------------------------------------------------------------*/
484
485    private class ListenerDelegate {
486        final SensorEventListener mSensorEventListener;
487        private final ArrayList<Sensor> mSensorList = new ArrayList<Sensor>();
488        private final Handler mHandler;
489        private SensorEvent mValuesPool;
490        public int mSensors;
491
492        ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) {
493            mSensorEventListener = listener;
494            Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
495            // currently we create one Handler instance per listener, but we could
496            // have one per looper (we'd need to pass the ListenerDelegate
497            // instance to handleMessage and keep track of them separately).
498            mHandler = new Handler(looper) {
499                @Override
500                public void handleMessage(Message msg) {
501                    SensorEvent t = (SensorEvent)msg.obj;
502                    if (t.accuracy >= 0) {
503                        mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy);
504                    }
505                    mSensorEventListener.onSensorChanged(t);
506                    returnToPool(t);
507                }
508            };
509            addSensor(sensor);
510        }
511
512        protected SensorEvent createSensorEvent() {
513            // maximal size for all legacy events is 3
514            return new SensorEvent(3);
515        }
516
517        protected SensorEvent getFromPool() {
518            SensorEvent t = null;
519            synchronized (this) {
520                // remove the array from the pool
521                t = mValuesPool;
522                mValuesPool = null;
523            }
524            if (t == null) {
525                // the pool was empty, we need a new one
526                t = createSensorEvent();
527            }
528            return t;
529        }
530
531        protected void returnToPool(SensorEvent t) {
532            synchronized (this) {
533                // put back the array into the pool
534                if (mValuesPool == null) {
535                    mValuesPool = t;
536                }
537            }
538        }
539
540        Object getListener() {
541            return mSensorEventListener;
542        }
543
544        int addSensor(Sensor sensor) {
545            mSensors |= 1<<sensor.getHandle();
546            mSensorList.add(sensor);
547            return mSensors;
548        }
549        int removeSensor(Sensor sensor) {
550            mSensors &= ~(1<<sensor.getHandle());
551            mSensorList.remove(sensor);
552            return mSensors;
553        }
554        boolean hasSensor(Sensor sensor) {
555            return ((mSensors & (1<<sensor.getHandle())) != 0);
556        }
557        List<Sensor> getSensors() {
558            return mSensorList;
559        }
560
561        void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) {
562            SensorEvent t = getFromPool();
563            final float[] v = t.values;
564            v[0] = values[0];
565            v[1] = values[1];
566            v[2] = values[2];
567            t.timestamp = timestamp[0];
568            t.accuracy = accuracy;
569            t.sensor = sensor;
570            Message msg = Message.obtain();
571            msg.what = 0;
572            msg.obj = t;
573            mHandler.sendMessage(msg);
574        }
575    }
576
577    /**
578     * {@hide}
579     */
580    public SensorManager(Looper mainLooper) {
581        mMainLooper = mainLooper;
582
583
584        synchronized(sListeners) {
585            if (!sSensorModuleInitialized) {
586                sSensorModuleInitialized = true;
587
588                nativeClassInit();
589
590                sWindowManager = IWindowManager.Stub.asInterface(
591                        ServiceManager.getService("window"));
592                if (sWindowManager != null) {
593                    // if it's null we're running in the system process
594                    // which won't get the rotated values
595                    try {
596                        sRotation = sWindowManager.watchRotation(
597                                new IRotationWatcher.Stub() {
598                                    public void onRotationChanged(int rotation) {
599                                        SensorManager.this.onRotationChanged(rotation);
600                                    }
601                                }
602                        );
603                    } catch (RemoteException e) {
604                    }
605                }
606
607                // initialize the sensor list
608                sensors_module_init();
609                final ArrayList<Sensor> fullList = sFullSensorsList;
610                int i = 0;
611                do {
612                    Sensor sensor = new Sensor();
613                    i = sensors_module_get_next_sensor(sensor, i);
614
615                    if (i>=0) {
616                        //Log.d(TAG, "found sensor: " + sensor.getName() +
617                        //        ", handle=" + sensor.getHandle());
618                        sensor.setLegacyType(getLegacySensorType(sensor.getType()));
619                        fullList.add(sensor);
620                        sHandleToSensor.append(sensor.getHandle(), sensor);
621                    }
622                } while (i>0);
623
624                sSensorThread = new SensorThread();
625            }
626        }
627    }
628
629    private int getLegacySensorType(int type) {
630        switch (type) {
631            case Sensor.TYPE_ACCELEROMETER:
632                return SENSOR_ACCELEROMETER;
633            case Sensor.TYPE_MAGNETIC_FIELD:
634                return SENSOR_MAGNETIC_FIELD;
635            case Sensor.TYPE_ORIENTATION:
636                return SENSOR_ORIENTATION_RAW;
637            case Sensor.TYPE_TEMPERATURE:
638                return SENSOR_TEMPERATURE;
639        }
640        return 0;
641    }
642
643    /**
644     * @return available sensors.
645     * @deprecated This method is deprecated, use
646     *             {@link SensorManager#getSensorList(int)} instead
647     */
648    @Deprecated
649    public int getSensors() {
650        int result = 0;
651        final ArrayList<Sensor> fullList = sFullSensorsList;
652        for (Sensor i : fullList) {
653            switch (i.getType()) {
654                case Sensor.TYPE_ACCELEROMETER:
655                    result |= SensorManager.SENSOR_ACCELEROMETER;
656                    break;
657                case Sensor.TYPE_MAGNETIC_FIELD:
658                    result |= SensorManager.SENSOR_MAGNETIC_FIELD;
659                    break;
660                case Sensor.TYPE_ORIENTATION:
661                    result |= SensorManager.SENSOR_ORIENTATION |
662                    SensorManager.SENSOR_ORIENTATION_RAW;
663                    break;
664            }
665        }
666        return result;
667    }
668
669    /**
670     * Use this method to get the list of available sensors of a certain type.
671     * Make multiple calls to get sensors of different types or use
672     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
673     * sensors.
674     *
675     * @param type
676     *        of sensors requested
677     *
678     * @return a list of sensors matching the asked type.
679     *
680     * @see #getDefaultSensor(int)
681     * @see Sensor
682     */
683    public List<Sensor> getSensorList(int type) {
684        // cache the returned lists the first time
685        List<Sensor> list;
686        final ArrayList<Sensor> fullList = sFullSensorsList;
687        synchronized(fullList) {
688            list = sSensorListByType.get(type);
689            if (list == null) {
690                if (type == Sensor.TYPE_ALL) {
691                    list = fullList;
692                } else {
693                    list = new ArrayList<Sensor>();
694                    for (Sensor i : fullList) {
695                        if (i.getType() == type)
696                            list.add(i);
697                    }
698                }
699                list = Collections.unmodifiableList(list);
700                sSensorListByType.append(type, list);
701            }
702        }
703        return list;
704    }
705
706    /**
707     * Use this method to get the default sensor for a given type. Note that the
708     * returned sensor could be a composite sensor, and its data could be
709     * averaged or filtered. If you need to access the raw sensors use
710     * {@link SensorManager#getSensorList(int) getSensorList}.
711     *
712     * @param type
713     *        of sensors requested
714     *
715     * @return the default sensors matching the asked type.
716     *
717     * @see #getSensorList(int)
718     * @see Sensor
719     */
720    public Sensor getDefaultSensor(int type) {
721        // TODO: need to be smarter, for now, just return the 1st sensor
722        List<Sensor> l = getSensorList(type);
723        return l.isEmpty() ? null : l.get(0);
724    }
725
726    /**
727     * Registers a listener for given sensors.
728     *
729     * @deprecated This method is deprecated, use
730     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
731     *             instead.
732     *
733     * @param listener
734     *        sensor listener object
735     *
736     * @param sensors
737     *        a bit masks of the sensors to register to
738     *
739     * @return <code>true</code> if the sensor is supported and successfully
740     *         enabled
741     */
742    @Deprecated
743    public boolean registerListener(SensorListener listener, int sensors) {
744        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
745    }
746
747    /**
748     * Registers a SensorListener for given sensors.
749     *
750     * @deprecated This method is deprecated, use
751     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
752     *             instead.
753     *
754     * @param listener
755     *        sensor listener object
756     *
757     * @param sensors
758     *        a bit masks of the sensors to register to
759     *
760     * @param rate
761     *        rate of events. This is only a hint to the system. events may be
762     *        received faster or slower than the specified rate. Usually events
763     *        are received faster. The value must be one of
764     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
765     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
766     *
767     * @return <code>true</code> if the sensor is supported and successfully
768     *         enabled
769     */
770    @Deprecated
771    public boolean registerListener(SensorListener listener, int sensors, int rate) {
772        if (listener == null) {
773            return false;
774        }
775        boolean result = false;
776        result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
777                listener, sensors, rate) || result;
778        result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
779                listener, sensors, rate) || result;
780        result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
781                listener, sensors, rate) || result;
782        result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
783                listener, sensors, rate) || result;
784        result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
785                listener, sensors, rate) || result;
786        return result;
787    }
788
789    @SuppressWarnings("deprecation")
790    private boolean registerLegacyListener(int legacyType, int type,
791            SensorListener listener, int sensors, int rate)
792    {
793        if (listener == null) {
794            return false;
795        }
796        boolean result = false;
797        // Are we activating this legacy sensor?
798        if ((sensors & legacyType) != 0) {
799            // if so, find a suitable Sensor
800            Sensor sensor = getDefaultSensor(type);
801            if (sensor != null) {
802                // If we don't already have one, create a LegacyListener
803                // to wrap this listener and process the events as
804                // they are expected by legacy apps.
805                LegacyListener legacyListener = null;
806                synchronized (mLegacyListenersMap) {
807                    legacyListener = mLegacyListenersMap.get(listener);
808                    if (legacyListener == null) {
809                        // we didn't find a LegacyListener for this client,
810                        // create one, and put it in our list.
811                        legacyListener = new LegacyListener(listener);
812                        mLegacyListenersMap.put(listener, legacyListener);
813                    }
814                }
815                // register this legacy sensor with this legacy listener
816                legacyListener.registerSensor(legacyType);
817                // and finally, register the legacy listener with the new apis
818                result = registerListener(legacyListener, sensor, rate);
819            }
820        }
821        return result;
822    }
823
824    /**
825     * Unregisters a listener for the sensors with which it is registered.
826     *
827     * @deprecated This method is deprecated, use
828     *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
829     *             instead.
830     *
831     * @param listener
832     *        a SensorListener object
833     *
834     * @param sensors
835     *        a bit masks of the sensors to unregister from
836     */
837    @Deprecated
838    public void unregisterListener(SensorListener listener, int sensors) {
839        unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
840                listener, sensors);
841        unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
842                listener, sensors);
843        unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
844                listener, sensors);
845        unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
846                listener, sensors);
847        unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
848                listener, sensors);
849    }
850
851    @SuppressWarnings("deprecation")
852    private void unregisterLegacyListener(int legacyType, int type,
853            SensorListener listener, int sensors)
854    {
855        if (listener == null) {
856            return;
857        }
858        // do we know about this listener?
859        LegacyListener legacyListener = null;
860        synchronized (mLegacyListenersMap) {
861            legacyListener = mLegacyListenersMap.get(listener);
862        }
863        if (legacyListener != null) {
864            // Are we deactivating this legacy sensor?
865            if ((sensors & legacyType) != 0) {
866                // if so, find the corresponding Sensor
867                Sensor sensor = getDefaultSensor(type);
868                if (sensor != null) {
869                    // unregister this legacy sensor and if we don't
870                    // need the corresponding Sensor, unregister it too
871                    if (legacyListener.unregisterSensor(legacyType)) {
872                        // corresponding sensor not needed, unregister
873                        unregisterListener(legacyListener, sensor);
874                        // finally check if we still need the legacyListener
875                        // in our mapping, if not, get rid of it too.
876                        synchronized(sListeners) {
877                            boolean found = false;
878                            for (ListenerDelegate i : sListeners) {
879                                if (i.getListener() == legacyListener) {
880                                    found = true;
881                                    break;
882                                }
883                            }
884                            if (!found) {
885                                synchronized (mLegacyListenersMap) {
886                                    mLegacyListenersMap.remove(listener);
887                                }
888                            }
889                        }
890                    }
891                }
892            }
893        }
894    }
895
896    /**
897     * Unregisters a listener for all sensors.
898     *
899     * @deprecated This method is deprecated, use
900     *             {@link SensorManager#unregisterListener(SensorEventListener)}
901     *             instead.
902     *
903     * @param listener
904     *        a SensorListener object
905     */
906    @Deprecated
907    public void unregisterListener(SensorListener listener) {
908        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
909    }
910
911    /**
912     * Unregisters a listener for the sensors with which it is registered.
913     *
914     * @param listener
915     *        a SensorEventListener object
916     *
917     * @param sensor
918     *        the sensor to unregister from
919     *
920     * @see #unregisterListener(SensorEventListener)
921     * @see #registerListener(SensorEventListener, Sensor, int)
922     *
923     */
924    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
925        unregisterListener((Object)listener, sensor);
926    }
927
928    /**
929     * Unregisters a listener for all sensors.
930     *
931     * @param listener
932     *        a SensorListener object
933     *
934     * @see #unregisterListener(SensorEventListener, Sensor)
935     * @see #registerListener(SensorEventListener, Sensor, int)
936     *
937     */
938    public void unregisterListener(SensorEventListener listener) {
939        unregisterListener((Object)listener);
940    }
941
942    /**
943     * Registers a {@link android.hardware.SensorEventListener
944     * SensorEventListener} for the given sensor.
945     *
946     * @param listener
947     *        A {@link android.hardware.SensorEventListener SensorEventListener}
948     *        object.
949     *
950     * @param sensor
951     *        The {@link android.hardware.Sensor Sensor} to register to.
952     *
953     * @param rate
954     *        The rate {@link android.hardware.SensorEvent sensor events} are
955     *        delivered at. This is only a hint to the system. Events may be
956     *        received faster or slower than the specified rate. Usually events
957     *        are received faster. The value must be one of
958     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
959     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}
960     *        or, the desired delay between events in microsecond.
961     *
962     * @return <code>true</code> if the sensor is supported and successfully
963     *         enabled.
964     *
965     * @see #registerListener(SensorEventListener, Sensor, int, Handler)
966     * @see #unregisterListener(SensorEventListener)
967     * @see #unregisterListener(SensorEventListener, Sensor)
968     *
969     */
970    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) {
971        return registerListener(listener, sensor, rate, null);
972    }
973
974    /**
975     * Registers a {@link android.hardware.SensorEventListener
976     * SensorEventListener} for the given sensor.
977     *
978     * @param listener
979     *        A {@link android.hardware.SensorEventListener SensorEventListener}
980     *        object.
981     *
982     * @param sensor
983     *        The {@link android.hardware.Sensor Sensor} to register to.
984     *
985     * @param rate
986     *        The rate {@link android.hardware.SensorEvent sensor events} are
987     *        delivered at. This is only a hint to the system. Events may be
988     *        received faster or slower than the specified rate. Usually events
989     *        are received faster. The value must be one of
990     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
991     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
992     *        or, the desired delay between events in microsecond.
993     *
994     * @param handler
995     *        The {@link android.os.Handler Handler} the
996     *        {@link android.hardware.SensorEvent sensor events} will be
997     *        delivered to.
998     *
999     * @return true if the sensor is supported and successfully enabled.
1000     *
1001     * @see #registerListener(SensorEventListener, Sensor, int)
1002     * @see #unregisterListener(SensorEventListener)
1003     * @see #unregisterListener(SensorEventListener, Sensor)
1004     *
1005     */
1006    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate,
1007            Handler handler) {
1008        if (listener == null || sensor == null) {
1009            return false;
1010        }
1011        boolean result;
1012        int delay = -1;
1013        switch (rate) {
1014            case SENSOR_DELAY_FASTEST:
1015                delay = 0;
1016                break;
1017            case SENSOR_DELAY_GAME:
1018                delay = 20000;
1019                break;
1020            case SENSOR_DELAY_UI:
1021                delay = 60000;
1022                break;
1023            case SENSOR_DELAY_NORMAL:
1024                delay = 200000;
1025                break;
1026            default:
1027                delay = rate;
1028                break;
1029        }
1030
1031        synchronized (sListeners) {
1032            ListenerDelegate l = null;
1033            for (ListenerDelegate i : sListeners) {
1034                if (i.getListener() == listener) {
1035                    l = i;
1036                    break;
1037                }
1038            }
1039
1040            String name = sensor.getName();
1041            int handle = sensor.getHandle();
1042            if (l == null) {
1043                result = false;
1044                l = new ListenerDelegate(listener, sensor, handler);
1045                sListeners.add(l);
1046                if (!sListeners.isEmpty()) {
1047                    result = sSensorThread.startLocked();
1048                    if (result) {
1049                        result = sensors_enable_sensor(sQueue, name, handle, delay);
1050                        if (!result) {
1051                            // there was an error, remove the listeners
1052                            sListeners.remove(l);
1053                        }
1054                    }
1055                }
1056            } else {
1057                result = sensors_enable_sensor(sQueue, name, handle, delay);
1058                if (result) {
1059                    l.addSensor(sensor);
1060                }
1061            }
1062        }
1063        return result;
1064    }
1065
1066    private void unregisterListener(Object listener, Sensor sensor) {
1067        if (listener == null || sensor == null) {
1068            return;
1069        }
1070        synchronized (sListeners) {
1071            final int size = sListeners.size();
1072            for (int i=0 ; i<size ; i++) {
1073                ListenerDelegate l = sListeners.get(i);
1074                if (l.getListener() == listener) {
1075                    // disable these sensors
1076                    String name = sensor.getName();
1077                    int handle = sensor.getHandle();
1078                    sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE);
1079                    // if we have no more sensors enabled on this listener,
1080                    // take it off the list.
1081                    if (l.removeSensor(sensor) == 0) {
1082                        sListeners.remove(i);
1083                    }
1084                    break;
1085                }
1086            }
1087        }
1088    }
1089
1090    private void unregisterListener(Object listener) {
1091        if (listener == null) {
1092            return;
1093        }
1094        synchronized (sListeners) {
1095            final int size = sListeners.size();
1096            for (int i=0 ; i<size ; i++) {
1097                ListenerDelegate l = sListeners.get(i);
1098                if (l.getListener() == listener) {
1099                    // disable all sensors for this listener
1100                    for (Sensor sensor : l.getSensors()) {
1101                        String name = sensor.getName();
1102                        int handle = sensor.getHandle();
1103                        sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE);
1104                    }
1105                    sListeners.remove(i);
1106                    break;
1107                }
1108            }
1109        }
1110    }
1111
1112    /**
1113     * <p>
1114     * Computes the inclination matrix <b>I</b> as well as the rotation matrix
1115     * <b>R</b> transforming a vector from the device coordinate system to the
1116     * world's coordinate system which is defined as a direct orthonormal basis,
1117     * where:
1118     * </p>
1119     *
1120     * <ul>
1121     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
1122     * the ground at the device's current location and roughly points East).</li>
1123     * <li>Y is tangential to the ground at the device's current location and
1124     * points towards the magnetic North Pole.</li>
1125     * <li>Z points towards the sky and is perpendicular to the ground.</li>
1126     * </ul>
1127     *
1128     * <p>
1129     * <center><img src="../../../images/axis_globe.png"
1130     * alt="Sensors coordinate-system diagram." border="0" /></center>
1131     * </p>
1132     *
1133     * <p>
1134     * <hr>
1135     * <p>
1136     * By definition:
1137     * <p>
1138     * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1139     * <p>
1140     * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
1141     * geomagnetic field)
1142     * <p>
1143     * <b>R</b> is the identity matrix when the device is aligned with the
1144     * world's coordinate system, that is, when the device's X axis points
1145     * toward East, the Y axis points to the North Pole and the device is facing
1146     * the sky.
1147     *
1148     * <p>
1149     * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
1150     * the same coordinate space as gravity (the world's coordinate space).
1151     * <b>I</b> is a simple rotation around the X axis. The inclination angle in
1152     * radians can be computed with {@link #getInclination}.
1153     * <hr>
1154     *
1155     * <p>
1156     * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
1157     * on the length of the passed array:
1158     * <p>
1159     * <u>If the array length is 16:</u>
1160     *
1161     * <pre>
1162     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1163     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1164     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1165     *   \  M[12]   M[13]   M[14]   M[15]  /
1166     *</pre>
1167     *
1168     * This matrix is ready to be used by OpenGL ES's
1169     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1170     * glLoadMatrixf(float[], int)}.
1171     * <p>
1172     * Note that because OpenGL matrices are column-major matrices you must
1173     * transpose the matrix before using it. However, since the matrix is a
1174     * rotation matrix, its transpose is also its inverse, conveniently, it is
1175     * often the inverse of the rotation that is needed for rendering; it can
1176     * therefore be used with OpenGL ES directly.
1177     * <p>
1178     * Also note that the returned matrices always have this form:
1179     *
1180     * <pre>
1181     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1182     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1183     *   |  M[ 8]   M[ 9]   M[10]   0  |
1184     *   \      0       0       0   1  /
1185     *</pre>
1186     *
1187     * <p>
1188     * <u>If the array length is 9:</u>
1189     *
1190     * <pre>
1191     *   /  M[ 0]   M[ 1]   M[ 2]  \
1192     *   |  M[ 3]   M[ 4]   M[ 5]  |
1193     *   \  M[ 6]   M[ 7]   M[ 8]  /
1194     *</pre>
1195     *
1196     * <hr>
1197     * <p>
1198     * The inverse of each matrix can be computed easily by taking its
1199     * transpose.
1200     *
1201     * <p>
1202     * The matrices returned by this function are meaningful only when the
1203     * device is not free-falling and it is not close to the magnetic north. If
1204     * the device is accelerating, or placed into a strong magnetic field, the
1205     * returned matrices may be inaccurate.
1206     *
1207     * @param R
1208     *        is an array of 9 floats holding the rotation matrix <b>R</b> when
1209     *        this function returns. R can be null.
1210     *        <p>
1211     *
1212     * @param I
1213     *        is an array of 9 floats holding the rotation matrix <b>I</b> when
1214     *        this function returns. I can be null.
1215     *        <p>
1216     *
1217     * @param gravity
1218     *        is an array of 3 floats containing the gravity vector expressed in
1219     *        the device's coordinate. You can simply use the
1220     *        {@link android.hardware.SensorEvent#values values} returned by a
1221     *        {@link android.hardware.SensorEvent SensorEvent} of a
1222     *        {@link android.hardware.Sensor Sensor} of type
1223     *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
1224     *        TYPE_ACCELEROMETER}.
1225     *        <p>
1226     *
1227     * @param geomagnetic
1228     *        is an array of 3 floats containing the geomagnetic vector
1229     *        expressed in the device's coordinate. You can simply use the
1230     *        {@link android.hardware.SensorEvent#values values} returned by a
1231     *        {@link android.hardware.SensorEvent SensorEvent} of a
1232     *        {@link android.hardware.Sensor Sensor} of type
1233     *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
1234     *        TYPE_MAGNETIC_FIELD}.
1235     *
1236     * @return <code>true</code> on success, <code>false</code> on failure (for
1237     *         instance, if the device is in free fall). On failure the output
1238     *         matrices are not modified.
1239     *
1240     * @see #getInclination(float[])
1241     * @see #getOrientation(float[], float[])
1242     * @see #remapCoordinateSystem(float[], int, int, float[])
1243     */
1244
1245    public static boolean getRotationMatrix(float[] R, float[] I,
1246            float[] gravity, float[] geomagnetic) {
1247        // TODO: move this to native code for efficiency
1248        float Ax = gravity[0];
1249        float Ay = gravity[1];
1250        float Az = gravity[2];
1251        final float Ex = geomagnetic[0];
1252        final float Ey = geomagnetic[1];
1253        final float Ez = geomagnetic[2];
1254        float Hx = Ey*Az - Ez*Ay;
1255        float Hy = Ez*Ax - Ex*Az;
1256        float Hz = Ex*Ay - Ey*Ax;
1257        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1258        if (normH < 0.1f) {
1259            // device is close to free fall (or in space?), or close to
1260            // magnetic north pole. Typical values are  > 100.
1261            return false;
1262        }
1263        final float invH = 1.0f / normH;
1264        Hx *= invH;
1265        Hy *= invH;
1266        Hz *= invH;
1267        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1268        Ax *= invA;
1269        Ay *= invA;
1270        Az *= invA;
1271        final float Mx = Ay*Hz - Az*Hy;
1272        final float My = Az*Hx - Ax*Hz;
1273        final float Mz = Ax*Hy - Ay*Hx;
1274        if (R != null) {
1275            if (R.length == 9) {
1276                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1277                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1278                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1279            } else if (R.length == 16) {
1280                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1281                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1282                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1283                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1284            }
1285        }
1286        if (I != null) {
1287            // compute the inclination matrix by projecting the geomagnetic
1288            // vector onto the Z (gravity) and X (horizontal component
1289            // of geomagnetic vector) axes.
1290            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1291            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1292            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1293            if (I.length == 9) {
1294                I[0] = 1;     I[1] = 0;     I[2] = 0;
1295                I[3] = 0;     I[4] = c;     I[5] = s;
1296                I[6] = 0;     I[7] =-s;     I[8] = c;
1297            } else if (I.length == 16) {
1298                I[0] = 1;     I[1] = 0;     I[2] = 0;
1299                I[4] = 0;     I[5] = c;     I[6] = s;
1300                I[8] = 0;     I[9] =-s;     I[10]= c;
1301                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1302                I[15] = 1;
1303            }
1304        }
1305        return true;
1306    }
1307
1308    /**
1309     * Computes the geomagnetic inclination angle in radians from the
1310     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1311     *
1312     * @param I
1313     *        inclination matrix see {@link #getRotationMatrix}.
1314     *
1315     * @return The geomagnetic inclination angle in radians.
1316     *
1317     * @see #getRotationMatrix(float[], float[], float[], float[])
1318     * @see #getOrientation(float[], float[])
1319     * @see GeomagneticField
1320     *
1321     */
1322    public static float getInclination(float[] I) {
1323        if (I.length == 9) {
1324            return (float)Math.atan2(I[5], I[4]);
1325        } else {
1326            return (float)Math.atan2(I[6], I[5]);
1327        }
1328    }
1329
1330    /**
1331     * <p>
1332     * Rotates the supplied rotation matrix so it is expressed in a different
1333     * coordinate system. This is typically used when an application needs to
1334     * compute the three orientation angles of the device (see
1335     * {@link #getOrientation}) in a different coordinate system.
1336     * </p>
1337     *
1338     * <p>
1339     * When the rotation matrix is used for drawing (for instance with OpenGL
1340     * ES), it usually <b>doesn't need</b> to be transformed by this function,
1341     * unless the screen is physically rotated, in which case you can use
1342     * {@link android.view.Display#getRotation() Display.getRotation()} to
1343     * retrieve the current rotation of the screen. Note that because the user
1344     * is generally free to rotate their screen, you often should consider the
1345     * rotation in deciding the parameters to use here.
1346     * </p>
1347     *
1348     * <p>
1349     * <u>Examples:</u>
1350     * <p>
1351     *
1352     * <ul>
1353     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1354     * reality application where the rotation angles are needed:</li>
1355     *
1356     * <p>
1357     * <ul>
1358     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1359     * </ul>
1360     * </p>
1361     *
1362     * <li>Using the device as a mechanical compass when rotation is
1363     * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1364     *
1365     * <p>
1366     * <ul>
1367     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1368     * </ul>
1369     * </p>
1370     *
1371     * Beware of the above example. This call is needed only to account for a
1372     * rotation from its natural orientation when calculating the rotation
1373     * angles (see {@link #getOrientation}). If the rotation matrix is also used
1374     * for rendering, it may not need to be transformed, for instance if your
1375     * {@link android.app.Activity Activity} is running in landscape mode.
1376     * </ul>
1377     *
1378     * <p>
1379     * Since the resulting coordinate system is orthonormal, only two axes need
1380     * to be specified.
1381     *
1382     * @param inR
1383     *        the rotation matrix to be transformed. Usually it is the matrix
1384     *        returned by {@link #getRotationMatrix}.
1385     *
1386     * @param X
1387     *        defines on which world axis and direction the X axis of the device
1388     *        is mapped.
1389     *
1390     * @param Y
1391     *        defines on which world axis and direction the Y axis of the device
1392     *        is mapped.
1393     *
1394     * @param outR
1395     *        the transformed rotation matrix. inR and outR can be the same
1396     *        array, but it is not recommended for performance reason.
1397     *
1398     * @return <code>true</code> on success. <code>false</code> if the input
1399     *         parameters are incorrect, for instance if X and Y define the same
1400     *         axis. Or if inR and outR don't have the same length.
1401     *
1402     * @see #getRotationMatrix(float[], float[], float[], float[])
1403     */
1404
1405    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1406            float[] outR)
1407    {
1408        if (inR == outR) {
1409            final float[] temp = mTempMatrix;
1410            synchronized(temp) {
1411                // we don't expect to have a lot of contention
1412                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1413                    final int size = outR.length;
1414                    for (int i=0 ; i<size ; i++)
1415                        outR[i] = temp[i];
1416                    return true;
1417                }
1418            }
1419        }
1420        return remapCoordinateSystemImpl(inR, X, Y, outR);
1421    }
1422
1423    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1424            float[] outR)
1425    {
1426        /*
1427         * X and Y define a rotation matrix 'r':
1428         *
1429         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1430         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1431         *                              r[0] ^ r[1]
1432         *
1433         * where the 3rd line is the vector product of the first 2 lines
1434         *
1435         */
1436
1437        final int length = outR.length;
1438        if (inR.length != length)
1439            return false;   // invalid parameter
1440        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1441            return false;   // invalid parameter
1442        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1443            return false;   // no axis specified
1444        if ((X & 0x3) == (Y & 0x3))
1445            return false;   // same axis specified
1446
1447        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1448        // this can be calculated by exclusive-or'ing X and Y; except for
1449        // the sign inversion (+/-) which is calculated below.
1450        int Z = X ^ Y;
1451
1452        // extract the axis (remove the sign), offset in the range 0 to 2.
1453        final int x = (X & 0x3)-1;
1454        final int y = (Y & 0x3)-1;
1455        final int z = (Z & 0x3)-1;
1456
1457        // compute the sign of Z (whether it needs to be inverted)
1458        final int axis_y = (z+1)%3;
1459        final int axis_z = (z+2)%3;
1460        if (((x^axis_y)|(y^axis_z)) != 0)
1461            Z ^= 0x80;
1462
1463        final boolean sx = (X>=0x80);
1464        final boolean sy = (Y>=0x80);
1465        final boolean sz = (Z>=0x80);
1466
1467        // Perform R * r, in avoiding actual muls and adds.
1468        final int rowLength = ((length==16)?4:3);
1469        for (int j=0 ; j<3 ; j++) {
1470            final int offset = j*rowLength;
1471            for (int i=0 ; i<3 ; i++) {
1472                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1473                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1474                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1475            }
1476        }
1477        if (length == 16) {
1478            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1479            outR[15] = 1;
1480        }
1481        return true;
1482    }
1483
1484    /**
1485     * Computes the device's orientation based on the rotation matrix.
1486     * <p>
1487     * When it returns, the array values is filled with the result:
1488     * <ul>
1489     * <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
1490     * <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
1491     * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
1492     * </ul>
1493     * <p>
1494     * <center><img src="../../../images/axis_device.png"
1495     * alt="Sensors coordinate-system diagram." border="0" /></center>
1496     * </p>
1497     * <p>
1498     * All three angles above are in <b>radians</b> and <b>positive</b> in the
1499     * <b>counter-clockwise</b> direction.
1500     *
1501     * @param R
1502     *        rotation matrix see {@link #getRotationMatrix}.
1503     *
1504     * @param values
1505     *        an array of 3 floats to hold the result.
1506     *
1507     * @return The array values passed as argument.
1508     *
1509     * @see #getRotationMatrix(float[], float[], float[], float[])
1510     * @see GeomagneticField
1511     */
1512    public static float[] getOrientation(float[] R, float values[]) {
1513        /*
1514         * 4x4 (length=16) case:
1515         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1516         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1517         *   |  R[ 8]   R[ 9]   R[10]   0  |
1518         *   \      0       0       0   1  /
1519         *
1520         * 3x3 (length=9) case:
1521         *   /  R[ 0]   R[ 1]   R[ 2]  \
1522         *   |  R[ 3]   R[ 4]   R[ 5]  |
1523         *   \  R[ 6]   R[ 7]   R[ 8]  /
1524         *
1525         */
1526        if (R.length == 9) {
1527            values[0] = (float)Math.atan2(R[1], R[4]);
1528            values[1] = (float)Math.asin(-R[7]);
1529            values[2] = (float)Math.atan2(-R[6], R[8]);
1530        } else {
1531            values[0] = (float)Math.atan2(R[1], R[5]);
1532            values[1] = (float)Math.asin(-R[9]);
1533            values[2] = (float)Math.atan2(-R[8], R[10]);
1534        }
1535        return values;
1536    }
1537
1538    /**
1539     * Computes the Altitude in meters from the atmospheric pressure and the
1540     * pressure at sea level.
1541     * <p>
1542     * Typically the atmospheric pressure is read from a
1543     * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1544     * known, usually it can be retrieved from airport databases in the
1545     * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
1546     * as an approximation, but absolute altitudes won't be accurate.
1547     * </p>
1548     * <p>
1549     * To calculate altitude differences, you must calculate the difference
1550     * between the altitudes at both points. If you don't know the altitude
1551     * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
1552     * which will give good results considering the range of pressure typically
1553     * involved.
1554     * </p>
1555     * <p>
1556     * <code><ul>
1557     *  float altitude_difference =
1558     *      getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
1559     *      - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
1560     * </ul></code>
1561     * </p>
1562     *
1563     * @param p0 pressure at sea level
1564     * @param p atmospheric pressure
1565     * @return Altitude in meters
1566     */
1567   public static float getAltitude(float p0, float p) {
1568        final float coef = 1.0f / 5.255f;
1569        return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef));
1570    }
1571
1572
1573   /**
1574     * {@hide}
1575     */
1576    public void onRotationChanged(int rotation) {
1577        synchronized(sListeners) {
1578            sRotation  = rotation;
1579        }
1580    }
1581
1582    static int getRotation() {
1583        synchronized(sListeners) {
1584            return sRotation;
1585        }
1586    }
1587
1588    private class LegacyListener implements SensorEventListener {
1589        private float mValues[] = new float[6];
1590        @SuppressWarnings("deprecation")
1591        private SensorListener mTarget;
1592        private int mSensors;
1593        private final LmsFilter mYawfilter = new LmsFilter();
1594
1595        @SuppressWarnings("deprecation")
1596        LegacyListener(SensorListener target) {
1597            mTarget = target;
1598            mSensors = 0;
1599        }
1600
1601        void registerSensor(int legacyType) {
1602            mSensors |= legacyType;
1603        }
1604
1605        boolean unregisterSensor(int legacyType) {
1606            mSensors &= ~legacyType;
1607            int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW;
1608            if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) {
1609                return false;
1610            }
1611            return true;
1612        }
1613
1614        @SuppressWarnings("deprecation")
1615        public void onAccuracyChanged(Sensor sensor, int accuracy) {
1616            try {
1617                mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy);
1618            } catch (AbstractMethodError e) {
1619                // old app that doesn't implement this method
1620                // just ignore it.
1621            }
1622        }
1623
1624        @SuppressWarnings("deprecation")
1625        public void onSensorChanged(SensorEvent event) {
1626            final float v[] = mValues;
1627            v[0] = event.values[0];
1628            v[1] = event.values[1];
1629            v[2] = event.values[2];
1630            int legacyType = event.sensor.getLegacyType();
1631            mapSensorDataToWindow(legacyType, v, SensorManager.getRotation());
1632            if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) {
1633                if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) {
1634                    mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v);
1635                }
1636                if ((mSensors & SENSOR_ORIENTATION)!=0) {
1637                    v[0] = mYawfilter.filter(event.timestamp, v[0]);
1638                    mTarget.onSensorChanged(SENSOR_ORIENTATION, v);
1639                }
1640            } else {
1641                mTarget.onSensorChanged(legacyType, v);
1642            }
1643        }
1644
1645        /*
1646         * Helper function to convert the specified sensor's data to the windows's
1647         * coordinate space from the device's coordinate space.
1648         *
1649         * output: 3,4,5: values in the old API format
1650         *         0,1,2: transformed values in the old API format
1651         *
1652         */
1653        private void mapSensorDataToWindow(int sensor,
1654                float[] values, int orientation) {
1655            float x = values[0];
1656            float y = values[1];
1657            float z = values[2];
1658
1659            switch (sensor) {
1660                case SensorManager.SENSOR_ORIENTATION:
1661                case SensorManager.SENSOR_ORIENTATION_RAW:
1662                    z = -z;
1663                    break;
1664                case SensorManager.SENSOR_ACCELEROMETER:
1665                    x = -x;
1666                    y = -y;
1667                    z = -z;
1668                    break;
1669                case SensorManager.SENSOR_MAGNETIC_FIELD:
1670                    x = -x;
1671                    y = -y;
1672                    break;
1673            }
1674            values[0] = x;
1675            values[1] = y;
1676            values[2] = z;
1677            values[3] = x;
1678            values[4] = y;
1679            values[5] = z;
1680
1681            if ((orientation & Surface.ROTATION_90) != 0) {
1682                // handles 90 and 270 rotation
1683                switch (sensor) {
1684                    case SENSOR_ACCELEROMETER:
1685                    case SENSOR_MAGNETIC_FIELD:
1686                        values[0] =-y;
1687                        values[1] = x;
1688                        values[2] = z;
1689                        break;
1690                    case SENSOR_ORIENTATION:
1691                    case SENSOR_ORIENTATION_RAW:
1692                        values[0] = x + ((x < 270) ? 90 : -270);
1693                        values[1] = z;
1694                        values[2] = y;
1695                        break;
1696                }
1697            }
1698            if ((orientation & Surface.ROTATION_180) != 0) {
1699                x = values[0];
1700                y = values[1];
1701                z = values[2];
1702                // handles 180 (flip) and 270 (flip + 90) rotation
1703                switch (sensor) {
1704                    case SENSOR_ACCELEROMETER:
1705                    case SENSOR_MAGNETIC_FIELD:
1706                        values[0] =-x;
1707                        values[1] =-y;
1708                        values[2] = z;
1709                        break;
1710                    case SENSOR_ORIENTATION:
1711                    case SENSOR_ORIENTATION_RAW:
1712                        values[0] = (x >= 180) ? (x - 180) : (x + 180);
1713                        values[1] =-y;
1714                        values[2] =-z;
1715                        break;
1716                }
1717            }
1718        }
1719    }
1720
1721    class LmsFilter {
1722        private static final int SENSORS_RATE_MS = 20;
1723        private static final int COUNT = 12;
1724        private static final float PREDICTION_RATIO = 1.0f/3.0f;
1725        private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO;
1726        private float mV[] = new float[COUNT*2];
1727        private float mT[] = new float[COUNT*2];
1728        private int mIndex;
1729
1730        public LmsFilter() {
1731            mIndex = COUNT;
1732        }
1733
1734        public float filter(long time, float in) {
1735            float v = in;
1736            final float ns = 1.0f / 1000000000.0f;
1737            final float t = time*ns;
1738            float v1 = mV[mIndex];
1739            if ((v-v1) > 180) {
1740                v -= 360;
1741            } else if ((v1-v) > 180) {
1742                v += 360;
1743            }
1744            /* Manage the circular buffer, we write the data twice spaced
1745             * by COUNT values, so that we don't have to copy the array
1746             * when it's full
1747             */
1748            mIndex++;
1749            if (mIndex >= COUNT*2)
1750                mIndex = COUNT;
1751            mV[mIndex] = v;
1752            mT[mIndex] = t;
1753            mV[mIndex-COUNT] = v;
1754            mT[mIndex-COUNT] = t;
1755
1756            float A, B, C, D, E;
1757            float a, b;
1758            int i;
1759
1760            A = B = C = D = E = 0;
1761            for (i=0 ; i<COUNT-1 ; i++) {
1762                final int j = mIndex - 1 - i;
1763                final float Z = mV[j];
1764                final float T = 0.5f*(mT[j] + mT[j+1]) - t;
1765                float dT = mT[j] - mT[j+1];
1766                dT *= dT;
1767                A += Z*dT;
1768                B += T*(T*dT);
1769                C +=   (T*dT);
1770                D += Z*(T*dT);
1771                E += dT;
1772            }
1773            b = (A*B + C*D) / (E*B + C*C);
1774            a = (E*b - A) / C;
1775            float f = b + PREDICTION_TIME*a;
1776
1777            // Normalize
1778            f *= (1.0f / 360.0f);
1779            if (((f>=0)?f:-f) >= 0.5f)
1780                f = f - (float)Math.ceil(f + 0.5f) + 1.0f;
1781            if (f < 0)
1782                f += 1.0f;
1783            f *= 360.0f;
1784            return f;
1785        }
1786    }
1787
1788
1789    /** Helper function to compute the angle change between two rotation matrices.
1790     *  Given a current rotation matrix (R) and a previous rotation matrix
1791     *  (prevR) computes the rotation around the x,y, and z axes which
1792     *  transforms prevR to R.
1793     *  outputs a 3 element vector containing the x,y, and z angle
1794     *  change at indexes 0, 1, and 2 respectively.
1795     * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
1796     * depending on the length of the passed array:
1797     * <p>If the array length is 9, then the array elements represent this matrix
1798     * <pre>
1799     *   /  R[ 0]   R[ 1]   R[ 2]   \
1800     *   |  R[ 3]   R[ 4]   R[ 5]   |
1801     *   \  R[ 6]   R[ 7]   R[ 8]   /
1802     *</pre>
1803     * <p>If the array length is 16, then the array elements represent this matrix
1804     * <pre>
1805     *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
1806     *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
1807     *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
1808     *   \  R[12]   R[13]   R[14]   R[15]  /
1809     *</pre>
1810     * @param R current rotation matrix
1811     * @param prevR previous rotation matrix
1812     * @param angleChange an array of floats in which the angle change is stored
1813     */
1814
1815    public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) {
1816        float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0;
1817        float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0;
1818        float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0;
1819        int i, j, k;
1820
1821        if(R.length == 9) {
1822            ri0 = R[0];
1823            ri1 = R[1];
1824            ri2 = R[2];
1825            ri3 = R[3];
1826            ri4 = R[4];
1827            ri5 = R[5];
1828            ri6 = R[6];
1829            ri7 = R[7];
1830            ri8 = R[8];
1831        } else if(R.length == 16) {
1832            ri0 = R[0];
1833            ri1 = R[1];
1834            ri2 = R[2];
1835            ri3 = R[4];
1836            ri4 = R[5];
1837            ri5 = R[6];
1838            ri6 = R[8];
1839            ri7 = R[9];
1840            ri8 = R[10];
1841        }
1842
1843        if(prevR.length == 9) {
1844            pri0 = R[0];
1845            pri1 = R[1];
1846            pri2 = R[2];
1847            pri3 = R[3];
1848            pri4 = R[4];
1849            pri5 = R[5];
1850            pri6 = R[6];
1851            pri7 = R[7];
1852            pri8 = R[8];
1853        } else if(prevR.length == 16) {
1854            pri0 = R[0];
1855            pri1 = R[1];
1856            pri2 = R[2];
1857            pri3 = R[4];
1858            pri4 = R[5];
1859            pri5 = R[6];
1860            pri6 = R[8];
1861            pri7 = R[9];
1862            pri8 = R[10];
1863        }
1864
1865        // calculate the parts of the rotation difference matrix we need
1866        // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
1867
1868        rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
1869        rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
1870        rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
1871        rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
1872        rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
1873
1874        angleChange[0] = (float)Math.atan2(rd1, rd4);
1875        angleChange[1] = (float)Math.asin(-rd7);
1876        angleChange[2] = (float)Math.atan2(-rd6, rd8);
1877
1878    }
1879
1880    /** Helper function to convert a rotation vector to a rotation matrix.
1881     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
1882     *  9  or 16 element rotation matrix in the array R.  R must have length 9 or 16.
1883     *  If R.length == 9, the following matrix is returned:
1884     * <pre>
1885     *   /  R[ 0]   R[ 1]   R[ 2]   \
1886     *   |  R[ 3]   R[ 4]   R[ 5]   |
1887     *   \  R[ 6]   R[ 7]   R[ 8]   /
1888     *</pre>
1889     * If R.length == 16, the following matrix is returned:
1890     * <pre>
1891     *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1892     *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1893     *   |  R[ 8]   R[ 9]   R[10]   0  |
1894     *   \  0       0       0       1  /
1895     *</pre>
1896     *  @param rotationVector the rotation vector to convert
1897     *  @param R an array of floats in which to store the rotation matrix
1898     */
1899    public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
1900        float q0 = (float)Math.sqrt(1 - rotationVector[0]*rotationVector[0] -
1901                                    rotationVector[1]*rotationVector[1] -
1902                                    rotationVector[2]*rotationVector[2]);
1903        float q1 = rotationVector[0];
1904        float q2 = rotationVector[1];
1905        float q3 = rotationVector[2];
1906
1907        float sq_q1 = 2 * q1 * q1;
1908        float sq_q2 = 2 * q2 * q2;
1909        float sq_q3 = 2 * q3 * q3;
1910        float q1_q2 = 2 * q1 * q2;
1911        float q3_q0 = 2 * q3 * q0;
1912        float q1_q3 = 2 * q1 * q3;
1913        float q2_q0 = 2 * q2 * q0;
1914        float q2_q3 = 2 * q2 * q3;
1915        float q1_q0 = 2 * q1 * q0;
1916
1917        if(R.length == 9) {
1918            R[0] = 1 - sq_q2 - sq_q3;
1919            R[1] = q1_q2 - q3_q0;
1920            R[2] = q1_q3 + q2_q0;
1921
1922            R[3] = q1_q2 + q3_q0;
1923            R[4] = 1 - sq_q1 - sq_q3;
1924            R[5] = q2_q3 - q1_q0;
1925
1926            R[6] = q1_q3 - q2_q0;
1927            R[7] = q2_q3 + q1_q0;
1928            R[8] = 1 - sq_q1 - sq_q2;
1929        } else if (R.length == 16) {
1930            R[0] = 1 - sq_q2 - sq_q3;
1931            R[1] = q1_q2 - q3_q0;
1932            R[2] = q1_q3 + q2_q0;
1933            R[3] = 0.0f;
1934
1935            R[4] = q1_q2 + q3_q0;
1936            R[5] = 1 - sq_q1 - sq_q3;
1937            R[6] = q2_q3 - q1_q0;
1938            R[7] = 0.0f;
1939
1940            R[8] = q1_q3 - q2_q0;
1941            R[9] = q2_q3 + q1_q0;
1942            R[10] = 1 - sq_q1 - sq_q2;
1943            R[11] = 0.0f;
1944
1945            R[12] = R[13] = R[14] = 0.0f;
1946            R[15] = 1.0f;
1947        }
1948    }
1949
1950    /** Helper function to convert a rotation vector to a normalized quaternion.
1951     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
1952     *  quaternion in the array Q.  The quaternion is stored as [w, x, y, z]
1953     *  @param rv the rotation vector to convert
1954     *  @param Q an array of floats in which to store the computed quaternion
1955     */
1956    public static void getQuaternionFromVector(float[] Q, float[] rv) {
1957        float w = (float)Math.sqrt(1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2]);
1958        //In this case, the w component of the quaternion is known to be a positive number
1959
1960        Q[0] = w;
1961        Q[1] = rv[0];
1962        Q[2] = rv[1];
1963        Q[3] = rv[2];
1964    }
1965
1966    private static native void nativeClassInit();
1967
1968    private static native int sensors_module_init();
1969    private static native int sensors_module_get_next_sensor(Sensor sensor, int next);
1970
1971    // Used within this module from outside SensorManager, don't make private
1972    static native int sensors_create_queue();
1973    static native void sensors_destroy_queue(int queue);
1974    static native boolean sensors_enable_sensor(int queue, String name, int sensor, int enable);
1975    static native int sensors_data_poll(int queue, float[] values, int[] status, long[] timestamp);
1976}
1977