SntpClient.java revision bf7de397279519e0144ceb7264003bc2accbb092
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.net;
18
19import android.os.SystemClock;
20import android.util.Config;
21import android.util.Log;
22
23import java.io.IOException;
24import java.net.DatagramPacket;
25import java.net.DatagramSocket;
26import java.net.InetAddress;
27
28/**
29 * {@hide}
30 *
31 * Simple SNTP client class for retrieving network time.
32 *
33 * Sample usage:
34 * <pre>SntpClient client = new SntpClient();
35 * if (client.requestTime("time.foo.com")) {
36 *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
37 * }
38 * </pre>
39 */
40public class SntpClient
41{
42    private static final String TAG = "SntpClient";
43
44    private static final int REFERENCE_TIME_OFFSET = 16;
45    private static final int ORIGINATE_TIME_OFFSET = 24;
46    private static final int RECEIVE_TIME_OFFSET = 32;
47    private static final int TRANSMIT_TIME_OFFSET = 40;
48    private static final int NTP_PACKET_SIZE = 48;
49
50    private static final int NTP_PORT = 123;
51    private static final int NTP_MODE_CLIENT = 3;
52    private static final int NTP_VERSION = 3;
53
54    // Number of seconds between Jan 1, 1900 and Jan 1, 1970
55    // 70 years plus 17 leap days
56    private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
57
58    // system time computed from NTP server response
59    private long mNtpTime;
60
61    // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
62    private long mNtpTimeReference;
63
64    // round trip time in milliseconds
65    private long mRoundTripTime;
66
67    /**
68     * Sends an SNTP request to the given host and processes the response.
69     *
70     * @param host host name of the server.
71     * @param timeout network timeout in milliseconds.
72     * @return true if the transaction was successful.
73     */
74    public boolean requestTime(String host, int timeout) {
75        try {
76            DatagramSocket socket = new DatagramSocket();
77            socket.setSoTimeout(timeout);
78            InetAddress address = InetAddress.getByName(host);
79            byte[] buffer = new byte[NTP_PACKET_SIZE];
80            DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT);
81
82            // set mode = 3 (client) and version = 3
83            // mode is in low 3 bits of first byte
84            // version is in bits 3-5 of first byte
85            buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
86
87            // get current time and write it to the request packet
88            long requestTime = System.currentTimeMillis();
89            long requestTicks = SystemClock.elapsedRealtime();
90            writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
91
92            socket.send(request);
93
94            // read the response
95            DatagramPacket response = new DatagramPacket(buffer, buffer.length);
96            socket.receive(response);
97            long responseTicks = SystemClock.elapsedRealtime();
98            long responseTime = requestTime + (responseTicks - requestTicks);
99            socket.close();
100
101            // extract the results
102            long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
103            long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
104            long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
105            long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
106            // receiveTime = originateTime + transit + skew
107            // responseTime = transmitTime + transit - skew
108            // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
109            //             = ((originateTime + transit + skew - originateTime) +
110            //                (transmitTime - (transmitTime + transit - skew)))/2
111            //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
112            //             = (transit + skew - transit + skew)/2
113            //             = (2 * skew)/2 = skew
114            long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
115            // if (Config.LOGD) Log.d(TAG, "round trip: " + roundTripTime + " ms");
116            // if (Config.LOGD) Log.d(TAG, "clock offset: " + clockOffset + " ms");
117
118            // save our results - use the times on this side of the network latency
119            // (response rather than request time)
120            mNtpTime = responseTime + clockOffset;
121            mNtpTimeReference = responseTicks;
122            mRoundTripTime = roundTripTime;
123        } catch (Exception e) {
124            if (Config.LOGD) Log.d(TAG, "request time failed: " + e);
125            return false;
126        }
127
128        return true;
129    }
130
131    /**
132     * Returns the time computed from the NTP transaction.
133     *
134     * @return time value computed from NTP server response.
135     */
136    public long getNtpTime() {
137        return mNtpTime;
138    }
139
140    /**
141     * Returns the reference clock value (value of SystemClock.elapsedRealtime())
142     * corresponding to the NTP time.
143     *
144     * @return reference clock corresponding to the NTP time.
145     */
146    public long getNtpTimeReference() {
147        return mNtpTimeReference;
148    }
149
150    /**
151     * Returns the round trip time of the NTP transaction
152     *
153     * @return round trip time in milliseconds.
154     */
155    public long getRoundTripTime() {
156        return mRoundTripTime;
157    }
158
159    /**
160     * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
161     */
162    private long read32(byte[] buffer, int offset) {
163        byte b0 = buffer[offset];
164        byte b1 = buffer[offset+1];
165        byte b2 = buffer[offset+2];
166        byte b3 = buffer[offset+3];
167
168        // convert signed bytes to unsigned values
169        int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
170        int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
171        int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
172        int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
173
174        return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
175    }
176
177    /**
178     * Reads the NTP time stamp at the given offset in the buffer and returns
179     * it as a system time (milliseconds since January 1, 1970).
180     */
181    private long readTimeStamp(byte[] buffer, int offset) {
182        long seconds = read32(buffer, offset);
183        long fraction = read32(buffer, offset + 4);
184        return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
185    }
186
187    /**
188     * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
189     * at the given offset in the buffer.
190     */
191    private void writeTimeStamp(byte[] buffer, int offset, long time) {
192        long seconds = time / 1000L;
193        long milliseconds = time - seconds * 1000L;
194        seconds += OFFSET_1900_TO_1970;
195
196        // write seconds in big endian format
197        buffer[offset++] = (byte)(seconds >> 24);
198        buffer[offset++] = (byte)(seconds >> 16);
199        buffer[offset++] = (byte)(seconds >> 8);
200        buffer[offset++] = (byte)(seconds >> 0);
201
202        long fraction = milliseconds * 0x100000000L / 1000L;
203        // write fraction in big endian format
204        buffer[offset++] = (byte)(fraction >> 24);
205        buffer[offset++] = (byte)(fraction >> 16);
206        buffer[offset++] = (byte)(fraction >> 8);
207        // low order bits should be random data
208        buffer[offset++] = (byte)(Math.random() * 255.0);
209    }
210}
211