• Home
  • History
  • Annotate
  • only in /frameworks/compile/libbcc/runtime/
NameDateSize

..21-Nov-20124 KiB

.gitignore21-Nov-201225

Android.mk21-Nov-20122.5 KiB

BlocksRuntime/21-Nov-20124 KiB

cmake/21-Nov-20124 KiB

CMakeLists.txt21-Nov-20121.7 KiB

CREDITS.TXT21-Nov-2012759

lib/21-Nov-20124 KiB

LICENSE.TXT21-Nov-20122.8 KiB

make/21-Nov-20124 KiB

Makefile21-Nov-20127.4 KiB

README.txt21-Nov-201214 KiB

RuntimeDoc.rst21-Nov-20127.6 KiB

test/21-Nov-20124 KiB

www/21-Nov-20124 KiB

README.txt

1Compiler-RT
2================================
3
4This directory and its subdirectories contain source code for the compiler
5support routines.
6
7Compiler-RT is open source software. You may freely distribute it under the
8terms of the license agreement found in LICENSE.txt.
9
10================================
11
12This is a replacement library for libgcc.  Each function is contained
13in its own file.  Each function has a corresponding unit test under
14test/Unit.
15
16A rudimentary script to test each file is in the file called
17test/Unit/test.
18
19Here is the specification for this library:
20
21http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23Here is a synopsis of the contents of this library:
24
25typedef      int si_int;
26typedef unsigned su_int;
27
28typedef          long long di_int;
29typedef unsigned long long du_int;
30
31// Integral bit manipulation
32
33di_int __ashldi3(di_int a, si_int b);      // a << b
34ti_int __ashlti3(ti_int a, si_int b);      // a << b
35
36di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
37ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
38di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
39ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
40
41si_int __clzsi2(si_int a);  // count leading zeros
42si_int __clzdi2(di_int a);  // count leading zeros
43si_int __clzti2(ti_int a);  // count leading zeros
44si_int __ctzsi2(si_int a);  // count trailing zeros
45si_int __ctzdi2(di_int a);  // count trailing zeros
46si_int __ctzti2(ti_int a);  // count trailing zeros
47
48si_int __ffsdi2(di_int a);  // find least significant 1 bit
49si_int __ffsti2(ti_int a);  // find least significant 1 bit
50
51si_int __paritysi2(si_int a);  // bit parity
52si_int __paritydi2(di_int a);  // bit parity
53si_int __parityti2(ti_int a);  // bit parity
54
55si_int __popcountsi2(si_int a);  // bit population
56si_int __popcountdi2(di_int a);  // bit population
57si_int __popcountti2(ti_int a);  // bit population
58
59uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
60uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
61
62// Integral arithmetic
63
64di_int __negdi2    (di_int a);                         // -a
65ti_int __negti2    (ti_int a);                         // -a
66di_int __muldi3    (di_int a, di_int b);               // a * b
67ti_int __multi3    (ti_int a, ti_int b);               // a * b
68si_int __divsi3    (si_int a, si_int b);               // a / b   signed
69di_int __divdi3    (di_int a, di_int b);               // a / b   signed
70ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
71su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
72du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
73tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
74si_int __modsi3    (si_int a, si_int b);               // a % b   signed
75di_int __moddi3    (di_int a, di_int b);               // a % b   signed
76ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
77su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
78du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
79tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
80du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b
81tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b
82
83//  Integral arithmetic with trapping overflow
84
85si_int __absvsi2(si_int a);           // abs(a)
86di_int __absvdi2(di_int a);           // abs(a)
87ti_int __absvti2(ti_int a);           // abs(a)
88
89si_int __negvsi2(si_int a);           // -a
90di_int __negvdi2(di_int a);           // -a
91ti_int __negvti2(ti_int a);           // -a
92
93si_int __addvsi3(si_int a, si_int b);  // a + b
94di_int __addvdi3(di_int a, di_int b);  // a + b
95ti_int __addvti3(ti_int a, ti_int b);  // a + b
96
97si_int __subvsi3(si_int a, si_int b);  // a - b
98di_int __subvdi3(di_int a, di_int b);  // a - b
99ti_int __subvti3(ti_int a, ti_int b);  // a - b
100
101si_int __mulvsi3(si_int a, si_int b);  // a * b
102di_int __mulvdi3(di_int a, di_int b);  // a * b
103ti_int __mulvti3(ti_int a, ti_int b);  // a * b
104
105//  Integral comparison: a  < b -> 0
106//                       a == b -> 1
107//                       a  > b -> 2
108
109si_int __cmpdi2 (di_int a, di_int b);
110si_int __cmpti2 (ti_int a, ti_int b);
111si_int __ucmpdi2(du_int a, du_int b);
112si_int __ucmpti2(tu_int a, tu_int b);
113
114//  Integral / floating point conversion
115
116di_int __fixsfdi(      float a);
117di_int __fixdfdi(     double a);
118di_int __fixxfdi(long double a);
119
120ti_int __fixsfti(      float a);
121ti_int __fixdfti(     double a);
122ti_int __fixxfti(long double a);
123uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
124
125su_int __fixunssfsi(      float a);
126su_int __fixunsdfsi(     double a);
127su_int __fixunsxfsi(long double a);
128
129du_int __fixunssfdi(      float a);
130du_int __fixunsdfdi(     double a);
131du_int __fixunsxfdi(long double a);
132
133tu_int __fixunssfti(      float a);
134tu_int __fixunsdfti(     double a);
135tu_int __fixunsxfti(long double a);
136uint64_t __fixunstfdi(long double input);  // ppc only
137
138float       __floatdisf(di_int a);
139double      __floatdidf(di_int a);
140long double __floatdixf(di_int a);
141long double __floatditf(int64_t a);        // ppc only
142
143float       __floattisf(ti_int a);
144double      __floattidf(ti_int a);
145long double __floattixf(ti_int a);
146
147float       __floatundisf(du_int a);
148double      __floatundidf(du_int a);
149long double __floatundixf(du_int a);
150long double __floatunditf(uint64_t a);     // ppc only
151
152float       __floatuntisf(tu_int a);
153double      __floatuntidf(tu_int a);
154long double __floatuntixf(tu_int a);
155
156//  Floating point raised to integer power
157
158float       __powisf2(      float a, si_int b);  // a ^ b
159double      __powidf2(     double a, si_int b);  // a ^ b
160long double __powixf2(long double a, si_int b);  // a ^ b
161long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
162
163//  Complex arithmetic
164
165//  (a + ib) * (c + id)
166
167      float _Complex __mulsc3( float a,  float b,  float c,  float d);
168     double _Complex __muldc3(double a, double b, double c, double d);
169long double _Complex __mulxc3(long double a, long double b,
170                              long double c, long double d);
171long double _Complex __multc3(long double a, long double b,
172                              long double c, long double d); // ppc only
173
174//  (a + ib) / (c + id)
175
176      float _Complex __divsc3( float a,  float b,  float c,  float d);
177     double _Complex __divdc3(double a, double b, double c, double d);
178long double _Complex __divxc3(long double a, long double b,
179                              long double c, long double d);
180long double _Complex __divtc3(long double a, long double b,
181                              long double c, long double d);  // ppc only
182
183
184//         Runtime support
185
186// __clear_cache() is used to tell process that new instructions have been
187// written to an address range.  Necessary on processors that do not have
188// a unified instuction and data cache.
189void __clear_cache(void* start, void* end);
190
191// __enable_execute_stack() is used with nested functions when a trampoline
192// function is written onto the stack and that page range needs to be made
193// executable.
194void __enable_execute_stack(void* addr);
195
196// __gcc_personality_v0() is normally only called by the system unwinder.
197// C code (as opposed to C++) normally does not need a personality function
198// because there are no catch clauses or destructors to be run.  But there
199// is a C language extension __attribute__((cleanup(func))) which marks local
200// variables as needing the cleanup function "func" to be run when the
201// variable goes out of scope.  That includes when an exception is thrown,
202// so a personality handler is needed.  
203_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
204         uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
205         _Unwind_Context_t context);
206
207// for use with some implementations of assert() in <assert.h>
208void __eprintf(const char* format, const char* assertion_expression,
209				const char* line, const char* file);
210				
211
212
213//   Power PC specific functions
214
215// There is no C interface to the saveFP/restFP functions.  They are helper
216// functions called by the prolog and epilog of functions that need to save
217// a number of non-volatile float point registers.  
218saveFP
219restFP
220
221// PowerPC has a standard template for trampoline functions.  This function
222// generates a custom trampoline function with the specific realFunc
223// and localsPtr values.
224void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
225                                const void* realFunc, void* localsPtr);
226
227// adds two 128-bit double-double precision values ( x + y )
228long double __gcc_qadd(long double x, long double y);  
229
230// subtracts two 128-bit double-double precision values ( x - y )
231long double __gcc_qsub(long double x, long double y); 
232
233// multiples two 128-bit double-double precision values ( x * y )
234long double __gcc_qmul(long double x, long double y);  
235
236// divides two 128-bit double-double precision values ( x / y )
237long double __gcc_qdiv(long double a, long double b);  
238
239
240//    ARM specific functions
241
242// There is no C interface to the switch* functions.  These helper functions
243// are only needed by Thumb1 code for efficient switch table generation.
244switch16
245switch32
246switch8
247switchu8
248
249// There is no C interface to the *_vfp_d8_d15_regs functions.  There are
250// called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
251// SJLJ for exceptions, each function with a catch clause or destuctors needs
252// to save and restore all registers in it prolog and epliog.  But there is 
253// no way to access vector and high float registers from thumb1 code, so the 
254// compiler must add call outs to these helper functions in the prolog and 
255// epilog.
256restore_vfp_d8_d15_regs
257save_vfp_d8_d15_regs
258
259
260// Note: long ago ARM processors did not have floating point hardware support.
261// Floating point was done in software and floating point parameters were 
262// passed in integer registers.  When hardware support was added for floating
263// point, new *vfp functions were added to do the same operations but with 
264// floating point parameters in floating point registers.
265
266
267// Undocumented functions
268
269float  __addsf3vfp(float a, float b);   // Appears to return a + b
270double __adddf3vfp(double a, double b); // Appears to return a + b
271float  __divsf3vfp(float a, float b);   // Appears to return a / b
272double __divdf3vfp(double a, double b); // Appears to return a / b
273int    __eqsf2vfp(float a, float b);    // Appears to return  one
274                                        //     iff a == b and neither is NaN.
275int    __eqdf2vfp(double a, double b);  // Appears to return  one
276                                        //     iff a == b and neither is NaN.
277double __extendsfdf2vfp(float a);       // Appears to convert from
278                                        //     float to double.
279int    __fixdfsivfp(double a);          // Appears to convert from
280                                        //     double to int.
281int    __fixsfsivfp(float a);           // Appears to convert from
282                                        //     float to int.
283unsigned int __fixunssfsivfp(float a);  // Appears to convert from
284                                        //     float to unsigned int.
285unsigned int __fixunsdfsivfp(double a); // Appears to convert from
286                                        //     double to unsigned int.
287double __floatsidfvfp(int a);           // Appears to convert from
288                                        //     int to double.
289float __floatsisfvfp(int a);            // Appears to convert from
290                                        //     int to float.
291double __floatunssidfvfp(unsigned int a); // Appears to convert from
292                                        //     unisgned int to double.
293float __floatunssisfvfp(unsigned int a); // Appears to convert from
294                                        //     unisgned int to float.
295int __gedf2vfp(double a, double b);     // Appears to return __gedf2
296                                        //     (a >= b)
297int __gesf2vfp(float a, float b);       // Appears to return __gesf2
298                                        //     (a >= b)
299int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
300                                        //     (a > b)
301int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
302                                        //     (a > b)
303int __ledf2vfp(double a, double b);     // Appears to return __ledf2
304                                        //     (a <= b)
305int __lesf2vfp(float a, float b);       // Appears to return __lesf2
306                                        //     (a <= b)
307int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
308                                        //     (a < b)
309int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
310                                        //     (a < b)
311double __muldf3vfp(double a, double b); // Appears to return a * b
312float __mulsf3vfp(float a, float b);    // Appears to return a * b
313int __nedf2vfp(double a, double b);     // Appears to return __nedf2
314                                        //     (a != b)
315double __negdf2vfp(double a);           // Appears to return -a
316float __negsf2vfp(float a);             // Appears to return -a
317float __negsf2vfp(float a);             // Appears to return -a
318double __subdf3vfp(double a, double b); // Appears to return a - b
319float __subsf3vfp(float a, float b);    // Appears to return a - b
320float __truncdfsf2vfp(double a);        // Appears to convert from
321                                        //     double to float.
322int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
323int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
324
325
326Preconditions are listed for each function at the definition when there are any.
327Any preconditions reflect the specification at
328http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
329
330Assumptions are listed in "int_lib.h", and in individual files.  Where possible
331assumptions are checked at compile time.
332