texturing.cpp revision 2bef93cc20155c3a59cdbb22c564c4b385b2c160
1/* libs/pixelflinger/codeflinger/texturing.cpp
2**
3** Copyright 2006, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18#include <assert.h>
19#include <stdint.h>
20#include <stdlib.h>
21#include <stdio.h>
22#include <sys/types.h>
23
24#include <cutils/log.h>
25
26#include "codeflinger/GGLAssembler.h"
27
28#ifdef __ARM_ARCH__
29#include <machine/cpu-features.h>
30#endif
31
32namespace android {
33
34// ---------------------------------------------------------------------------
35
36// iterators are initialized like this:
37// (intToFixedCenter(x) * dx)>>16 + x0
38// ((x<<16 + 0x8000) * dx)>>16 + x0
39// ((x<<16)*dx + (0x8000*dx))>>16 + x0
40// ( (x*dx) + dx>>1 ) + x0
41// (x*dx) + (dx>>1 + x0)
42
43void GGLAssembler::init_iterated_color(fragment_parts_t& parts, const reg_t& x)
44{
45    context_t const* c = mBuilderContext.c;
46    const needs_t& needs = mBuilderContext.needs;
47
48    if (mSmooth) {
49        // NOTE: we could take this case in the mDithering + !mSmooth case,
50        // but this would use up to 4 more registers for the color components
51        // for only a little added quality.
52        // Currently, this causes the system to run out of registers in
53        // some case (see issue #719496)
54
55        comment("compute initial iterated color (smooth and/or dither case)");
56
57        parts.iterated_packed = 0;
58        parts.packed = 0;
59
60        // 0x1: color component
61        // 0x2: iterators
62        const int optReload = mOptLevel >> 1;
63        if (optReload >= 3)         parts.reload = 0; // reload nothing
64        else if (optReload == 2)    parts.reload = 2; // reload iterators
65        else if (optReload == 1)    parts.reload = 1; // reload colors
66        else if (optReload <= 0)    parts.reload = 3; // reload both
67
68        if (!mSmooth) {
69            // we're not smoothing (just dithering), we never have to
70            // reload the iterators
71            parts.reload &= ~2;
72        }
73
74        Scratch scratches(registerFile());
75        const int t0 = (parts.reload & 1) ? scratches.obtain() : 0;
76        const int t1 = (parts.reload & 2) ? scratches.obtain() : 0;
77        for (int i=0 ; i<4 ; i++) {
78            if (!mInfo[i].iterated)
79                continue;
80
81            // this component exists in the destination and is not replaced
82            // by a texture unit.
83            const int c = (parts.reload & 1) ? t0 : obtainReg();
84            if (i==0) CONTEXT_LOAD(c, iterators.ydady);
85            if (i==1) CONTEXT_LOAD(c, iterators.ydrdy);
86            if (i==2) CONTEXT_LOAD(c, iterators.ydgdy);
87            if (i==3) CONTEXT_LOAD(c, iterators.ydbdy);
88            parts.argb[i].reg = c;
89
90            if (mInfo[i].smooth) {
91                parts.argb_dx[i].reg = (parts.reload & 2) ? t1 : obtainReg();
92                const int dvdx = parts.argb_dx[i].reg;
93                CONTEXT_LOAD(dvdx, generated_vars.argb[i].dx);
94                MLA(AL, 0, c, x.reg, dvdx, c);
95
96                // adjust the color iterator to make sure it won't overflow
97                if (!mAA) {
98                    // this is not needed when we're using anti-aliasing
99                    // because we will (have to) clamp the components
100                    // anyway.
101                    int end = scratches.obtain();
102                    MOV(AL, 0, end, reg_imm(parts.count.reg, LSR, 16));
103                    MLA(AL, 1, end, dvdx, end, c);
104                    SUB(MI, 0, c, c, end);
105                    BIC(AL, 0, c, c, reg_imm(c, ASR, 31));
106                    scratches.recycle(end);
107                }
108            }
109
110            if (parts.reload & 1) {
111                CONTEXT_STORE(c, generated_vars.argb[i].c);
112            }
113        }
114    } else {
115        // We're not smoothed, so we can
116        // just use a packed version of the color and extract the
117        // components as needed (or not at all if we don't blend)
118
119        // figure out if we need the iterated color
120        int load = 0;
121        for (int i=0 ; i<4 ; i++) {
122            component_info_t& info = mInfo[i];
123            if ((info.inDest || info.needed) && !info.replaced)
124                load |= 1;
125        }
126
127        parts.iterated_packed = 1;
128        parts.packed = (!mTextureMachine.mask && !mBlending
129                && !mFog && !mDithering);
130        parts.reload = 0;
131        if (load || parts.packed) {
132            if (mBlending || mDithering || mInfo[GGLFormat::ALPHA].needed) {
133                comment("load initial iterated color (8888 packed)");
134                parts.iterated.setTo(obtainReg(),
135                        &(c->formats[GGL_PIXEL_FORMAT_RGBA_8888]));
136                CONTEXT_LOAD(parts.iterated.reg, packed8888);
137            } else {
138                comment("load initial iterated color (dest format packed)");
139
140                parts.iterated.setTo(obtainReg(), &mCbFormat);
141
142                // pre-mask the iterated color
143                const int bits = parts.iterated.size();
144                const uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1;
145                uint32_t mask = 0;
146                if (mMasking) {
147                    for (int i=0 ; i<4 ; i++) {
148                        const int component_mask = 1<<i;
149                        const int h = parts.iterated.format.c[i].h;
150                        const int l = parts.iterated.format.c[i].l;
151                        if (h && (!(mMasking & component_mask))) {
152                            mask |= ((1<<(h-l))-1) << l;
153                        }
154                    }
155                }
156
157                if (mMasking && ((mask & size)==0)) {
158                    // none of the components are present in the mask
159                } else {
160                    CONTEXT_LOAD(parts.iterated.reg, packed);
161                    if (mCbFormat.size == 1) {
162                        AND(AL, 0, parts.iterated.reg,
163                                parts.iterated.reg, imm(0xFF));
164                    } else if (mCbFormat.size == 2) {
165                        MOV(AL, 0, parts.iterated.reg,
166                                reg_imm(parts.iterated.reg, LSR, 16));
167                    }
168                }
169
170                // pre-mask the iterated color
171                if (mMasking) {
172                    build_and_immediate(parts.iterated.reg, parts.iterated.reg,
173                            mask, bits);
174                }
175            }
176        }
177    }
178}
179
180void GGLAssembler::build_iterated_color(
181        component_t& fragment,
182        const fragment_parts_t& parts,
183        int component,
184        Scratch& regs)
185{
186    fragment.setTo( regs.obtain(), 0, 32, CORRUPTIBLE);
187
188    if (!mInfo[component].iterated)
189        return;
190
191    if (parts.iterated_packed) {
192        // iterated colors are packed, extract the one we need
193        extract(fragment, parts.iterated, component);
194    } else {
195        fragment.h = GGL_COLOR_BITS;
196        fragment.l = GGL_COLOR_BITS - 8;
197        fragment.flags |= CLEAR_LO;
198        // iterated colors are held in their own register,
199        // (smooth and/or dithering case)
200        if (parts.reload==3) {
201            // this implies mSmooth
202            Scratch scratches(registerFile());
203            int dx = scratches.obtain();
204            CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c);
205            CONTEXT_LOAD(dx, generated_vars.argb[component].dx);
206            ADD(AL, 0, dx, fragment.reg, dx);
207            CONTEXT_STORE(dx, generated_vars.argb[component].c);
208        } else if (parts.reload & 1) {
209            CONTEXT_LOAD(fragment.reg, generated_vars.argb[component].c);
210        } else {
211            // we don't reload, so simply rename the register and mark as
212            // non CORRUPTIBLE so that the texture env or blending code
213            // won't modify this (renamed) register
214            regs.recycle(fragment.reg);
215            fragment.reg = parts.argb[component].reg;
216            fragment.flags &= ~CORRUPTIBLE;
217        }
218        if (mInfo[component].smooth && mAA) {
219            // when using smooth shading AND anti-aliasing, we need to clamp
220            // the iterators because there is always an extra pixel on the
221            // edges, which most of the time will cause an overflow
222            // (since technically its outside of the domain).
223            BIC(AL, 0, fragment.reg, fragment.reg,
224                    reg_imm(fragment.reg, ASR, 31));
225            component_sat(fragment);
226        }
227    }
228}
229
230// ---------------------------------------------------------------------------
231
232void GGLAssembler::decodeLogicOpNeeds(const needs_t& needs)
233{
234    // gather some informations about the components we need to process...
235    const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR;
236    switch(opcode) {
237    case GGL_COPY:
238        mLogicOp = 0;
239        break;
240    case GGL_CLEAR:
241    case GGL_SET:
242        mLogicOp = LOGIC_OP;
243        break;
244    case GGL_AND:
245    case GGL_AND_REVERSE:
246    case GGL_AND_INVERTED:
247    case GGL_XOR:
248    case GGL_OR:
249    case GGL_NOR:
250    case GGL_EQUIV:
251    case GGL_OR_REVERSE:
252    case GGL_OR_INVERTED:
253    case GGL_NAND:
254        mLogicOp = LOGIC_OP|LOGIC_OP_SRC|LOGIC_OP_DST;
255        break;
256    case GGL_NOOP:
257    case GGL_INVERT:
258        mLogicOp = LOGIC_OP|LOGIC_OP_DST;
259        break;
260    case GGL_COPY_INVERTED:
261        mLogicOp = LOGIC_OP|LOGIC_OP_SRC;
262        break;
263    };
264}
265
266void GGLAssembler::decodeTMUNeeds(const needs_t& needs, context_t const* c)
267{
268    uint8_t replaced=0;
269    mTextureMachine.mask = 0;
270    mTextureMachine.activeUnits = 0;
271    for (int i=GGL_TEXTURE_UNIT_COUNT-1 ; i>=0 ; i--) {
272        texture_unit_t& tmu = mTextureMachine.tmu[i];
273        if (replaced == 0xF) {
274            // all components are replaced, skip this TMU.
275            tmu.format_idx = 0;
276            tmu.mask = 0;
277            tmu.replaced = replaced;
278            continue;
279        }
280        tmu.format_idx = GGL_READ_NEEDS(T_FORMAT, needs.t[i]);
281        tmu.format = c->formats[tmu.format_idx];
282        tmu.bits = tmu.format.size*8;
283        tmu.swrap = GGL_READ_NEEDS(T_S_WRAP, needs.t[i]);
284        tmu.twrap = GGL_READ_NEEDS(T_T_WRAP, needs.t[i]);
285        tmu.env = ggl_needs_to_env(GGL_READ_NEEDS(T_ENV, needs.t[i]));
286        tmu.pot = GGL_READ_NEEDS(T_POT, needs.t[i]);
287        tmu.linear = GGL_READ_NEEDS(T_LINEAR, needs.t[i])
288                && tmu.format.size!=3; // XXX: only 8, 16 and 32 modes for now
289
290        // 5551 linear filtering is not supported
291        if (tmu.format_idx == GGL_PIXEL_FORMAT_RGBA_5551)
292            tmu.linear = 0;
293
294        tmu.mask = 0;
295        tmu.replaced = replaced;
296
297        if (tmu.format_idx) {
298            mTextureMachine.activeUnits++;
299            if (tmu.format.c[0].h)    tmu.mask |= 0x1;
300            if (tmu.format.c[1].h)    tmu.mask |= 0x2;
301            if (tmu.format.c[2].h)    tmu.mask |= 0x4;
302            if (tmu.format.c[3].h)    tmu.mask |= 0x8;
303            if (tmu.env == GGL_REPLACE) {
304                replaced |= tmu.mask;
305            } else if (tmu.env == GGL_DECAL) {
306                if (!tmu.format.c[GGLFormat::ALPHA].h) {
307                    // if we don't have alpha, decal does nothing
308                    tmu.mask = 0;
309                } else {
310                    // decal always ignores At
311                    tmu.mask &= ~(1<<GGLFormat::ALPHA);
312                }
313            }
314        }
315        mTextureMachine.mask |= tmu.mask;
316        //printf("%d: mask=%08lx, replaced=%08lx\n",
317        //    i, int(tmu.mask), int(tmu.replaced));
318    }
319    mTextureMachine.replaced = replaced;
320    mTextureMachine.directTexture = 0;
321    //printf("replaced=%08lx\n", mTextureMachine.replaced);
322}
323
324
325void GGLAssembler::init_textures(
326        tex_coord_t* coords,
327        const reg_t& x, const reg_t& y)
328{
329    context_t const* c = mBuilderContext.c;
330    const needs_t& needs = mBuilderContext.needs;
331    int Rctx = mBuilderContext.Rctx;
332    int Rx = x.reg;
333    int Ry = y.reg;
334
335    if (mTextureMachine.mask) {
336        comment("compute texture coordinates");
337    }
338
339    // init texture coordinates for each tmu
340    const int cb_format_idx = GGL_READ_NEEDS(CB_FORMAT, needs.n);
341    const bool multiTexture = mTextureMachine.activeUnits > 1;
342    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
343        const texture_unit_t& tmu = mTextureMachine.tmu[i];
344        if (tmu.format_idx == 0)
345            continue;
346        if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
347            (tmu.twrap == GGL_NEEDS_WRAP_11))
348        {
349            // 1:1 texture
350            pointer_t& txPtr = coords[i].ptr;
351            txPtr.setTo(obtainReg(), tmu.bits);
352            CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydsdy);
353            ADD(AL, 0, Rx, Rx, reg_imm(txPtr.reg, ASR, 16));    // x += (s>>16)
354            CONTEXT_LOAD(txPtr.reg, state.texture[i].iterators.ydtdy);
355            ADD(AL, 0, Ry, Ry, reg_imm(txPtr.reg, ASR, 16));    // y += (t>>16)
356            // merge base & offset
357            CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].stride);
358            SMLABB(AL, Rx, Ry, txPtr.reg, Rx);               // x+y*stride
359            CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].data);
360            base_offset(txPtr, txPtr, Rx);
361        } else {
362            Scratch scratches(registerFile());
363            reg_t& s = coords[i].s;
364            reg_t& t = coords[i].t;
365            // s = (x * dsdx)>>16 + ydsdy
366            // s = (x * dsdx)>>16 + (y*dsdy)>>16 + s0
367            // t = (x * dtdx)>>16 + ydtdy
368            // t = (x * dtdx)>>16 + (y*dtdy)>>16 + t0
369            s.setTo(obtainReg());
370            t.setTo(obtainReg());
371            const int need_w = GGL_READ_NEEDS(W, needs.n);
372            if (need_w) {
373                CONTEXT_LOAD(s.reg, state.texture[i].iterators.ydsdy);
374                CONTEXT_LOAD(t.reg, state.texture[i].iterators.ydtdy);
375            } else {
376                int ydsdy = scratches.obtain();
377                int ydtdy = scratches.obtain();
378                CONTEXT_LOAD(s.reg, generated_vars.texture[i].dsdx);
379                CONTEXT_LOAD(ydsdy, state.texture[i].iterators.ydsdy);
380                CONTEXT_LOAD(t.reg, generated_vars.texture[i].dtdx);
381                CONTEXT_LOAD(ydtdy, state.texture[i].iterators.ydtdy);
382                MLA(AL, 0, s.reg, Rx, s.reg, ydsdy);
383                MLA(AL, 0, t.reg, Rx, t.reg, ydtdy);
384            }
385
386            if ((mOptLevel&1)==0) {
387                CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]);
388                CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]);
389                recycleReg(s.reg);
390                recycleReg(t.reg);
391            }
392        }
393
394        // direct texture?
395        if (!multiTexture && !mBlending && !mDithering && !mFog &&
396            cb_format_idx == tmu.format_idx && !tmu.linear &&
397            mTextureMachine.replaced == tmu.mask)
398        {
399                mTextureMachine.directTexture = i + 1;
400        }
401    }
402}
403
404void GGLAssembler::build_textures(  fragment_parts_t& parts,
405                                    Scratch& regs)
406{
407    context_t const* c = mBuilderContext.c;
408    const needs_t& needs = mBuilderContext.needs;
409    int Rctx = mBuilderContext.Rctx;
410
411    // We don't have a way to spill registers automatically
412    // spill depth and AA regs, when we know we may have to.
413    // build the spill list...
414    uint32_t spill_list = 0;
415    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
416        const texture_unit_t& tmu = mTextureMachine.tmu[i];
417        if (tmu.format_idx == 0)
418            continue;
419        if (tmu.linear) {
420            // we may run out of register if we have linear filtering
421            // at 1 or 4 bytes / pixel on any texture unit.
422            if (tmu.format.size == 1) {
423                // if depth and AA enabled, we'll run out of 1 register
424                if (parts.z.reg > 0 && parts.covPtr.reg > 0)
425                    spill_list |= 1<<parts.covPtr.reg;
426            }
427            if (tmu.format.size == 4) {
428                // if depth or AA enabled, we'll run out of 1 or 2 registers
429                if (parts.z.reg > 0)
430                    spill_list |= 1<<parts.z.reg;
431                if (parts.covPtr.reg > 0)
432                    spill_list |= 1<<parts.covPtr.reg;
433            }
434        }
435    }
436
437    Spill spill(registerFile(), *this, spill_list);
438
439    const bool multiTexture = mTextureMachine.activeUnits > 1;
440    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
441        const texture_unit_t& tmu = mTextureMachine.tmu[i];
442        if (tmu.format_idx == 0)
443            continue;
444
445        pointer_t& txPtr = parts.coords[i].ptr;
446        pixel_t& texel = parts.texel[i];
447
448        // repeat...
449        if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
450            (tmu.twrap == GGL_NEEDS_WRAP_11))
451        { // 1:1 textures
452            comment("fetch texel");
453            texel.setTo(regs.obtain(), &tmu.format);
454            load(txPtr, texel, WRITE_BACK);
455        } else {
456            Scratch scratches(registerFile());
457            reg_t& s = parts.coords[i].s;
458            reg_t& t = parts.coords[i].t;
459            if ((mOptLevel&1)==0) {
460                comment("reload s/t (multitexture or linear filtering)");
461                s.reg = scratches.obtain();
462                t.reg = scratches.obtain();
463                CONTEXT_LOAD(s.reg, generated_vars.texture[i].spill[0]);
464                CONTEXT_LOAD(t.reg, generated_vars.texture[i].spill[1]);
465            }
466
467            comment("compute repeat/clamp");
468            int u       = scratches.obtain();
469            int v       = scratches.obtain();
470            int width   = scratches.obtain();
471            int height  = scratches.obtain();
472            int U = 0;
473            int V = 0;
474
475            CONTEXT_LOAD(width,  generated_vars.texture[i].width);
476            CONTEXT_LOAD(height, generated_vars.texture[i].height);
477
478            int FRAC_BITS = 0;
479            if (tmu.linear) {
480                // linear interpolation
481                if (tmu.format.size == 1) {
482                    // for 8-bits textures, we can afford
483                    // 7 bits of fractional precision at no
484                    // additional cost (we can't do 8 bits
485                    // because filter8 uses signed 16 bits muls)
486                    FRAC_BITS = 7;
487                } else if (tmu.format.size == 2) {
488                    // filter16() is internally limited to 4 bits, so:
489                    // FRAC_BITS=2 generates less instructions,
490                    // FRAC_BITS=3,4,5 creates unpleasant artifacts,
491                    // FRAC_BITS=6+ looks good
492                    FRAC_BITS = 6;
493                } else if (tmu.format.size == 4) {
494                    // filter32() is internally limited to 8 bits, so:
495                    // FRAC_BITS=4 looks good
496                    // FRAC_BITS=5+ looks better, but generates 3 extra ipp
497                    FRAC_BITS = 6;
498                } else {
499                    // for all other cases we use 4 bits.
500                    FRAC_BITS = 4;
501                }
502            }
503            wrapping(u, s.reg, width,  tmu.swrap, FRAC_BITS);
504            wrapping(v, t.reg, height, tmu.twrap, FRAC_BITS);
505
506            if (tmu.linear) {
507                comment("compute linear filtering offsets");
508                // pixel size scale
509                const int shift = 31 - gglClz(tmu.format.size);
510                U = scratches.obtain();
511                V = scratches.obtain();
512
513                // sample the texel center
514                SUB(AL, 0, u, u, imm(1<<(FRAC_BITS-1)));
515                SUB(AL, 0, v, v, imm(1<<(FRAC_BITS-1)));
516
517                // get the fractionnal part of U,V
518                AND(AL, 0, U, u, imm((1<<FRAC_BITS)-1));
519                AND(AL, 0, V, v, imm((1<<FRAC_BITS)-1));
520
521                // compute width-1 and height-1
522                SUB(AL, 0, width,  width,  imm(1));
523                SUB(AL, 0, height, height, imm(1));
524
525                // get the integer part of U,V and clamp/wrap
526                // and compute offset to the next texel
527                if (tmu.swrap == GGL_NEEDS_WRAP_REPEAT) {
528                    // u has already been REPEATed
529                    MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS));
530                    MOV(MI, 0, u, width);
531                    CMP(AL, u, width);
532                    MOV(LT, 0, width, imm(1 << shift));
533                    if (shift)
534                        MOV(GE, 0, width, reg_imm(width, LSL, shift));
535                    RSB(GE, 0, width, width, imm(0));
536                } else {
537                    // u has not been CLAMPed yet
538                    // algorithm:
539                    // if ((u>>4) >= width)
540                    //      u = width<<4
541                    //      width = 0
542                    // else
543                    //      width = 1<<shift
544                    // u = u>>4; // get integer part
545                    // if (u<0)
546                    //      u = 0
547                    //      width = 0
548                    // generated_vars.rt = width
549
550                    CMP(AL, width, reg_imm(u, ASR, FRAC_BITS));
551                    MOV(LE, 0, u, reg_imm(width, LSL, FRAC_BITS));
552                    MOV(LE, 0, width, imm(0));
553                    MOV(GT, 0, width, imm(1 << shift));
554                    MOV(AL, 1, u, reg_imm(u, ASR, FRAC_BITS));
555                    MOV(MI, 0, u, imm(0));
556                    MOV(MI, 0, width, imm(0));
557                }
558                CONTEXT_STORE(width, generated_vars.rt);
559
560                const int stride = width;
561                CONTEXT_LOAD(stride, generated_vars.texture[i].stride);
562                if (tmu.twrap == GGL_NEEDS_WRAP_REPEAT) {
563                    // v has already been REPEATed
564                    MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS));
565                    MOV(MI, 0, v, height);
566                    CMP(AL, v, height);
567                    MOV(LT, 0, height, imm(1 << shift));
568                    if (shift)
569                        MOV(GE, 0, height, reg_imm(height, LSL, shift));
570                    RSB(GE, 0, height, height, imm(0));
571                    MUL(AL, 0, height, stride, height);
572                } else {
573                    // v has not been CLAMPed yet
574                    CMP(AL, height, reg_imm(v, ASR, FRAC_BITS));
575                    MOV(LE, 0, v, reg_imm(height, LSL, FRAC_BITS));
576                    MOV(LE, 0, height, imm(0));
577                    if (shift) {
578                        MOV(GT, 0, height, reg_imm(stride, LSL, shift));
579                    } else {
580                        MOV(GT, 0, height, stride);
581                    }
582                    MOV(AL, 1, v, reg_imm(v, ASR, FRAC_BITS));
583                    MOV(MI, 0, v, imm(0));
584                    MOV(MI, 0, height, imm(0));
585                }
586                CONTEXT_STORE(height, generated_vars.lb);
587            }
588
589            scratches.recycle(width);
590            scratches.recycle(height);
591
592            // iterate texture coordinates...
593            comment("iterate s,t");
594            int dsdx = scratches.obtain();
595            int dtdx = scratches.obtain();
596            CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx);
597            CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx);
598            ADD(AL, 0, s.reg, s.reg, dsdx);
599            ADD(AL, 0, t.reg, t.reg, dtdx);
600            if ((mOptLevel&1)==0) {
601                CONTEXT_STORE(s.reg, generated_vars.texture[i].spill[0]);
602                CONTEXT_STORE(t.reg, generated_vars.texture[i].spill[1]);
603                scratches.recycle(s.reg);
604                scratches.recycle(t.reg);
605            }
606            scratches.recycle(dsdx);
607            scratches.recycle(dtdx);
608
609            // merge base & offset...
610            comment("merge base & offset");
611            texel.setTo(regs.obtain(), &tmu.format);
612            txPtr.setTo(texel.reg, tmu.bits);
613            int stride = scratches.obtain();
614            CONTEXT_LOAD(stride,    generated_vars.texture[i].stride);
615            CONTEXT_LOAD(txPtr.reg, generated_vars.texture[i].data);
616            SMLABB(AL, u, v, stride, u);    // u+v*stride
617            base_offset(txPtr, txPtr, u);
618
619            // load texel
620            if (!tmu.linear) {
621                comment("fetch texel");
622                load(txPtr, texel, 0);
623            } else {
624                // recycle registers we don't need anymore
625                scratches.recycle(u);
626                scratches.recycle(v);
627                scratches.recycle(stride);
628
629                comment("fetch texel, bilinear");
630                switch (tmu.format.size) {
631                case 1:  filter8(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
632                case 2: filter16(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
633                case 3: filter24(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
634                case 4: filter32(parts, texel, tmu, U, V, txPtr, FRAC_BITS); break;
635                }
636            }
637        }
638    }
639}
640
641void GGLAssembler::build_iterate_texture_coordinates(
642    const fragment_parts_t& parts)
643{
644    const bool multiTexture = mTextureMachine.activeUnits > 1;
645    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT; i++) {
646        const texture_unit_t& tmu = mTextureMachine.tmu[i];
647        if (tmu.format_idx == 0)
648            continue;
649
650        if ((tmu.swrap == GGL_NEEDS_WRAP_11) &&
651            (tmu.twrap == GGL_NEEDS_WRAP_11))
652        { // 1:1 textures
653            const pointer_t& txPtr = parts.coords[i].ptr;
654            ADD(AL, 0, txPtr.reg, txPtr.reg, imm(txPtr.size>>3));
655        } else {
656            Scratch scratches(registerFile());
657            int s = parts.coords[i].s.reg;
658            int t = parts.coords[i].t.reg;
659            if ((mOptLevel&1)==0) {
660                s = scratches.obtain();
661                t = scratches.obtain();
662                CONTEXT_LOAD(s, generated_vars.texture[i].spill[0]);
663                CONTEXT_LOAD(t, generated_vars.texture[i].spill[1]);
664            }
665            int dsdx = scratches.obtain();
666            int dtdx = scratches.obtain();
667            CONTEXT_LOAD(dsdx, generated_vars.texture[i].dsdx);
668            CONTEXT_LOAD(dtdx, generated_vars.texture[i].dtdx);
669            ADD(AL, 0, s, s, dsdx);
670            ADD(AL, 0, t, t, dtdx);
671            if ((mOptLevel&1)==0) {
672                CONTEXT_STORE(s, generated_vars.texture[i].spill[0]);
673                CONTEXT_STORE(t, generated_vars.texture[i].spill[1]);
674            }
675        }
676    }
677}
678
679void GGLAssembler::filter8(
680        const fragment_parts_t& parts,
681        pixel_t& texel, const texture_unit_t& tmu,
682        int U, int V, pointer_t& txPtr,
683        int FRAC_BITS)
684{
685    if (tmu.format.components != GGL_ALPHA &&
686        tmu.format.components != GGL_LUMINANCE)
687    {
688        // this is a packed format, and we don't support
689        // linear filtering (it's probably RGB 332)
690        // Should not happen with OpenGL|ES
691        LDRB(AL, texel.reg, txPtr.reg);
692        return;
693    }
694
695    // ------------------------
696    // about ~22 cycles / pixel
697    Scratch scratches(registerFile());
698
699    int pixel= scratches.obtain();
700    int d    = scratches.obtain();
701    int u    = scratches.obtain();
702    int k    = scratches.obtain();
703    int rt   = scratches.obtain();
704    int lb   = scratches.obtain();
705
706    // RB -> U * V
707
708    CONTEXT_LOAD(rt, generated_vars.rt);
709    CONTEXT_LOAD(lb, generated_vars.lb);
710
711    int offset = pixel;
712    ADD(AL, 0, offset, lb, rt);
713    LDRB(AL, pixel, txPtr.reg, reg_scale_pre(offset));
714    SMULBB(AL, u, U, V);
715    SMULBB(AL, d, pixel, u);
716    RSB(AL, 0, k, u, imm(1<<(FRAC_BITS*2)));
717
718    // LB -> (1-U) * V
719    RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
720    LDRB(AL, pixel, txPtr.reg, reg_scale_pre(lb));
721    SMULBB(AL, u, U, V);
722    SMLABB(AL, d, pixel, u, d);
723    SUB(AL, 0, k, k, u);
724
725    // LT -> (1-U)*(1-V)
726    RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
727    LDRB(AL, pixel, txPtr.reg);
728    SMULBB(AL, u, U, V);
729    SMLABB(AL, d, pixel, u, d);
730
731    // RT -> U*(1-V)
732    LDRB(AL, pixel, txPtr.reg, reg_scale_pre(rt));
733    SUB(AL, 0, u, k, u);
734    SMLABB(AL, texel.reg, pixel, u, d);
735
736    for (int i=0 ; i<4 ; i++) {
737        if (!texel.format.c[i].h) continue;
738        texel.format.c[i].h = FRAC_BITS*2+8;
739        texel.format.c[i].l = FRAC_BITS*2; // keeping 8 bits in enough
740    }
741    texel.format.size = 4;
742    texel.format.bitsPerPixel = 32;
743    texel.flags |= CLEAR_LO;
744}
745
746void GGLAssembler::filter16(
747        const fragment_parts_t& parts,
748        pixel_t& texel, const texture_unit_t& tmu,
749        int U, int V, pointer_t& txPtr,
750        int FRAC_BITS)
751{
752    // compute the mask
753    // XXX: it would be nice if the mask below could be computed
754    // automatically.
755    uint32_t mask = 0;
756    int shift = 0;
757    int prec = 0;
758    switch (tmu.format_idx) {
759        case GGL_PIXEL_FORMAT_RGB_565:
760            // source: 00000ggg.ggg00000 | rrrrr000.000bbbbb
761            // result: gggggggg.gggrrrrr | rrrrr0bb.bbbbbbbb
762            mask = 0x07E0F81F;
763            shift = 16;
764            prec = 5;
765            break;
766        case GGL_PIXEL_FORMAT_RGBA_4444:
767            // 0000,1111,0000,1111 | 0000,1111,0000,1111
768            mask = 0x0F0F0F0F;
769            shift = 12;
770            prec = 4;
771            break;
772        case GGL_PIXEL_FORMAT_LA_88:
773            // 0000,0000,1111,1111 | 0000,0000,1111,1111
774            // AALL -> 00AA | 00LL
775            mask = 0x00FF00FF;
776            shift = 8;
777            prec = 8;
778            break;
779        default:
780            // unsupported format, do something sensical...
781            LOGE("Unsupported 16-bits texture format (%d)", tmu.format_idx);
782            LDRH(AL, texel.reg, txPtr.reg);
783            return;
784    }
785
786    const int adjust = FRAC_BITS*2 - prec;
787    const int round  = 0;
788
789    // update the texel format
790    texel.format.size = 4;
791    texel.format.bitsPerPixel = 32;
792    texel.flags |= CLEAR_HI|CLEAR_LO;
793    for (int i=0 ; i<4 ; i++) {
794        if (!texel.format.c[i].h) continue;
795        const uint32_t offset = (mask & tmu.format.mask(i)) ? 0 : shift;
796        texel.format.c[i].h = tmu.format.c[i].h + offset + prec;
797        texel.format.c[i].l = texel.format.c[i].h - (tmu.format.bits(i) + prec);
798    }
799
800    // ------------------------
801    // about ~40 cycles / pixel
802    Scratch scratches(registerFile());
803
804    int pixel= scratches.obtain();
805    int d    = scratches.obtain();
806    int u    = scratches.obtain();
807    int k    = scratches.obtain();
808
809    // RB -> U * V
810    int offset = pixel;
811    CONTEXT_LOAD(offset, generated_vars.rt);
812    CONTEXT_LOAD(u, generated_vars.lb);
813    ADD(AL, 0, offset, offset, u);
814
815    LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
816    SMULBB(AL, u, U, V);
817    ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
818    build_and_immediate(pixel, pixel, mask, 32);
819    if (adjust) {
820        if (round)
821            ADD(AL, 0, u, u, imm(1<<(adjust-1)));
822        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
823    }
824    MUL(AL, 0, d, pixel, u);
825    RSB(AL, 0, k, u, imm(1<<prec));
826
827    // LB -> (1-U) * V
828    CONTEXT_LOAD(offset, generated_vars.lb);
829    RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
830    LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
831    SMULBB(AL, u, U, V);
832    ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
833    build_and_immediate(pixel, pixel, mask, 32);
834    if (adjust) {
835        if (round)
836            ADD(AL, 0, u, u, imm(1<<(adjust-1)));
837        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
838    }
839    MLA(AL, 0, d, pixel, u, d);
840    SUB(AL, 0, k, k, u);
841
842    // LT -> (1-U)*(1-V)
843    RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
844    LDRH(AL, pixel, txPtr.reg);
845    SMULBB(AL, u, U, V);
846    ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
847    build_and_immediate(pixel, pixel, mask, 32);
848    if (adjust) {
849        if (round)
850            ADD(AL, 0, u, u, imm(1<<(adjust-1)));
851        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
852    }
853    MLA(AL, 0, d, pixel, u, d);
854
855    // RT -> U*(1-V)
856    CONTEXT_LOAD(offset, generated_vars.rt);
857    LDRH(AL, pixel, txPtr.reg, reg_pre(offset));
858    SUB(AL, 0, u, k, u);
859    ORR(AL, 0, pixel, pixel, reg_imm(pixel, LSL, shift));
860    build_and_immediate(pixel, pixel, mask, 32);
861    MLA(AL, 0, texel.reg, pixel, u, d);
862}
863
864void GGLAssembler::filter24(
865        const fragment_parts_t& parts,
866        pixel_t& texel, const texture_unit_t& tmu,
867        int U, int V, pointer_t& txPtr,
868        int FRAC_BITS)
869{
870    // not supported yet (currently disabled)
871    load(txPtr, texel, 0);
872}
873
874#if __ARM_ARCH__ >= 6
875// ARMv6 version, using UXTB16, and scheduled for Cortex-A8 pipeline
876void GGLAssembler::filter32(
877        const fragment_parts_t& parts,
878        pixel_t& texel, const texture_unit_t& tmu,
879        int U, int V, pointer_t& txPtr,
880        int FRAC_BITS)
881{
882    const int adjust = FRAC_BITS*2 - 8;
883    const int round  = 0;
884    const int prescale = 16 - adjust;
885
886    Scratch scratches(registerFile());
887
888    int pixel= scratches.obtain();
889    int dh   = scratches.obtain();
890    int u    = scratches.obtain();
891    int k    = scratches.obtain();
892
893    int temp = scratches.obtain();
894    int dl   = scratches.obtain();
895
896    int offsetrt = scratches.obtain();
897    int offsetlb = scratches.obtain();
898
899    int pixellb = offsetlb;
900
901    // RB -> U * V
902    CONTEXT_LOAD(offsetrt, generated_vars.rt);
903    CONTEXT_LOAD(offsetlb, generated_vars.lb);
904    if(!round) {
905        MOV(AL, 0, U, reg_imm(U, LSL, prescale));
906    }
907    ADD(AL, 0, u, offsetrt, offsetlb);
908
909    LDR(AL, pixel, txPtr.reg, reg_scale_pre(u));
910    if (round) {
911        SMULBB(AL, u, U, V);
912        RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
913    } else {
914        SMULWB(AL, u, U, V);
915        RSB(AL, 0, U, U, imm(1<<(FRAC_BITS+prescale)));
916    }
917    UXTB16(AL, temp, pixel, 0);
918    if (round) {
919        ADD(AL, 0, u, u, imm(1<<(adjust-1)));
920        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
921    }
922    LDR(AL, pixellb, txPtr.reg, reg_scale_pre(offsetlb));
923    MUL(AL, 0, dh, temp, u);
924    UXTB16(AL, temp, pixel, 8);
925    MUL(AL, 0, dl, temp, u);
926    RSB(AL, 0, k, u, imm(0x100));
927
928    // LB -> (1-U) * V
929    if (round) {
930        SMULBB(AL, u, U, V);
931    } else {
932        SMULWB(AL, u, U, V);
933    }
934    UXTB16(AL, temp, pixellb, 0);
935    if (round) {
936        ADD(AL, 0, u, u, imm(1<<(adjust-1)));
937        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
938    }
939    MLA(AL, 0, dh, temp, u, dh);
940    UXTB16(AL, temp, pixellb, 8);
941    MLA(AL, 0, dl, temp, u, dl);
942    SUB(AL, 0, k, k, u);
943
944    // LT -> (1-U)*(1-V)
945    RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
946    LDR(AL, pixel, txPtr.reg);
947    if (round) {
948        SMULBB(AL, u, U, V);
949    } else {
950        SMULWB(AL, u, U, V);
951    }
952    UXTB16(AL, temp, pixel, 0);
953    if (round) {
954        ADD(AL, 0, u, u, imm(1<<(adjust-1)));
955        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
956    }
957    MLA(AL, 0, dh, temp, u, dh);
958    UXTB16(AL, temp, pixel, 8);
959    MLA(AL, 0, dl, temp, u, dl);
960
961    // RT -> U*(1-V)
962    LDR(AL, pixel, txPtr.reg, reg_scale_pre(offsetrt));
963    SUB(AL, 0, u, k, u);
964    UXTB16(AL, temp, pixel, 0);
965    MLA(AL, 0, dh, temp, u, dh);
966    UXTB16(AL, temp, pixel, 8);
967    MLA(AL, 0, dl, temp, u, dl);
968
969    UXTB16(AL, dh, dh, 8);
970    UXTB16(AL, dl, dl, 8);
971    ORR(AL, 0, texel.reg, dh, reg_imm(dl, LSL, 8));
972}
973#else
974void GGLAssembler::filter32(
975        const fragment_parts_t& parts,
976        pixel_t& texel, const texture_unit_t& tmu,
977        int U, int V, pointer_t& txPtr,
978        int FRAC_BITS)
979{
980    const int adjust = FRAC_BITS*2 - 8;
981    const int round  = 0;
982
983    // ------------------------
984    // about ~38 cycles / pixel
985    Scratch scratches(registerFile());
986
987    int pixel= scratches.obtain();
988    int dh   = scratches.obtain();
989    int u    = scratches.obtain();
990    int k    = scratches.obtain();
991
992    int temp = scratches.obtain();
993    int dl   = scratches.obtain();
994    int mask = scratches.obtain();
995
996    MOV(AL, 0, mask, imm(0xFF));
997    ORR(AL, 0, mask, mask, imm(0xFF0000));
998
999    // RB -> U * V
1000    int offset = pixel;
1001    CONTEXT_LOAD(offset, generated_vars.rt);
1002    CONTEXT_LOAD(u, generated_vars.lb);
1003    ADD(AL, 0, offset, offset, u);
1004
1005    LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
1006    SMULBB(AL, u, U, V);
1007    AND(AL, 0, temp, mask, pixel);
1008    if (adjust) {
1009        if (round)
1010            ADD(AL, 0, u, u, imm(1<<(adjust-1)));
1011        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
1012    }
1013    MUL(AL, 0, dh, temp, u);
1014    AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
1015    MUL(AL, 0, dl, temp, u);
1016    RSB(AL, 0, k, u, imm(0x100));
1017
1018    // LB -> (1-U) * V
1019    CONTEXT_LOAD(offset, generated_vars.lb);
1020    RSB(AL, 0, U, U, imm(1<<FRAC_BITS));
1021    LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
1022    SMULBB(AL, u, U, V);
1023    AND(AL, 0, temp, mask, pixel);
1024    if (adjust) {
1025        if (round)
1026            ADD(AL, 0, u, u, imm(1<<(adjust-1)));
1027        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
1028    }
1029    MLA(AL, 0, dh, temp, u, dh);
1030    AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
1031    MLA(AL, 0, dl, temp, u, dl);
1032    SUB(AL, 0, k, k, u);
1033
1034    // LT -> (1-U)*(1-V)
1035    RSB(AL, 0, V, V, imm(1<<FRAC_BITS));
1036    LDR(AL, pixel, txPtr.reg);
1037    SMULBB(AL, u, U, V);
1038    AND(AL, 0, temp, mask, pixel);
1039    if (adjust) {
1040        if (round)
1041            ADD(AL, 0, u, u, imm(1<<(adjust-1)));
1042        MOV(AL, 0, u, reg_imm(u, LSR, adjust));
1043    }
1044    MLA(AL, 0, dh, temp, u, dh);
1045    AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
1046    MLA(AL, 0, dl, temp, u, dl);
1047
1048    // RT -> U*(1-V)
1049    CONTEXT_LOAD(offset, generated_vars.rt);
1050    LDR(AL, pixel, txPtr.reg, reg_scale_pre(offset));
1051    SUB(AL, 0, u, k, u);
1052    AND(AL, 0, temp, mask, pixel);
1053    MLA(AL, 0, dh, temp, u, dh);
1054    AND(AL, 0, temp, mask, reg_imm(pixel, LSR, 8));
1055    MLA(AL, 0, dl, temp, u, dl);
1056
1057    AND(AL, 0, dh, mask, reg_imm(dh, LSR, 8));
1058    AND(AL, 0, dl, dl, reg_imm(mask, LSL, 8));
1059    ORR(AL, 0, texel.reg, dh, dl);
1060}
1061#endif
1062
1063void GGLAssembler::build_texture_environment(
1064        component_t& fragment,
1065        const fragment_parts_t& parts,
1066        int component,
1067        Scratch& regs)
1068{
1069    const uint32_t component_mask = 1<<component;
1070    const bool multiTexture = mTextureMachine.activeUnits > 1;
1071    for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) {
1072        texture_unit_t& tmu = mTextureMachine.tmu[i];
1073
1074        if (tmu.mask & component_mask) {
1075            // replace or modulate with this texture
1076            if ((tmu.replaced & component_mask) == 0) {
1077                // not replaced by a later tmu...
1078
1079                Scratch scratches(registerFile());
1080                pixel_t texel(parts.texel[i]);
1081                if (multiTexture &&
1082                    tmu.swrap == GGL_NEEDS_WRAP_11 &&
1083                    tmu.twrap == GGL_NEEDS_WRAP_11)
1084                {
1085                    texel.reg = scratches.obtain();
1086                    texel.flags |= CORRUPTIBLE;
1087                    comment("fetch texel (multitexture 1:1)");
1088                    load(parts.coords[i].ptr, texel, WRITE_BACK);
1089                 }
1090
1091                component_t incoming(fragment);
1092                modify(fragment, regs);
1093
1094                switch (tmu.env) {
1095                case GGL_REPLACE:
1096                    extract(fragment, texel, component);
1097                    break;
1098                case GGL_MODULATE:
1099                    modulate(fragment, incoming, texel, component);
1100                    break;
1101                case GGL_DECAL:
1102                    decal(fragment, incoming, texel, component);
1103                    break;
1104                case GGL_BLEND:
1105                    blend(fragment, incoming, texel, component, i);
1106                    break;
1107                case GGL_ADD:
1108                    add(fragment, incoming, texel, component);
1109                    break;
1110                }
1111            }
1112        }
1113    }
1114}
1115
1116// ---------------------------------------------------------------------------
1117
1118void GGLAssembler::wrapping(
1119            int d,
1120            int coord, int size,
1121            int tx_wrap, int tx_linear)
1122{
1123    // notes:
1124    // if tx_linear is set, we need 4 extra bits of precision on the result
1125    // SMULL/UMULL is 3 cycles
1126    Scratch scratches(registerFile());
1127    int c = coord;
1128    if (tx_wrap == GGL_NEEDS_WRAP_REPEAT) {
1129        // UMULL takes 4 cycles (interlocked), and we can get away with
1130        // 2 cycles using SMULWB, but we're loosing 16 bits of precision
1131        // out of 32 (this is not a problem because the iterator keeps
1132        // its full precision)
1133        // UMULL(AL, 0, size, d, c, size);
1134        // note: we can't use SMULTB because it's signed.
1135        MOV(AL, 0, d, reg_imm(c, LSR, 16-tx_linear));
1136        SMULWB(AL, d, d, size);
1137    } else if (tx_wrap == GGL_NEEDS_WRAP_CLAMP_TO_EDGE) {
1138        if (tx_linear) {
1139            // 1 cycle
1140            MOV(AL, 0, d, reg_imm(coord, ASR, 16-tx_linear));
1141        } else {
1142            // 4 cycles (common case)
1143            MOV(AL, 0, d, reg_imm(coord, ASR, 16));
1144            BIC(AL, 0, d, d, reg_imm(d, ASR, 31));
1145            CMP(AL, d, size);
1146            SUB(GE, 0, d, size, imm(1));
1147        }
1148    }
1149}
1150
1151// ---------------------------------------------------------------------------
1152
1153void GGLAssembler::modulate(
1154        component_t& dest,
1155        const component_t& incoming,
1156        const pixel_t& incomingTexel, int component)
1157{
1158    Scratch locals(registerFile());
1159    integer_t texel(locals.obtain(), 32, CORRUPTIBLE);
1160    extract(texel, incomingTexel, component);
1161
1162    const int Nt = texel.size();
1163        // Nt should always be less than 10 bits because it comes
1164        // from the TMU.
1165
1166    int Ni = incoming.size();
1167        // Ni could be big because it comes from previous MODULATEs
1168
1169    if (Nt == 1) {
1170        // texel acts as a bit-mask
1171        // dest = incoming & ((texel << incoming.h)-texel)
1172        RSB(AL, 0, dest.reg, texel.reg, reg_imm(texel.reg, LSL, incoming.h));
1173        AND(AL, 0, dest.reg, dest.reg, incoming.reg);
1174        dest.l = incoming.l;
1175        dest.h = incoming.h;
1176        dest.flags |= (incoming.flags & CLEAR_LO);
1177    } else if (Ni == 1) {
1178        MOV(AL, 0, dest.reg, reg_imm(incoming.reg, LSL, 31-incoming.h));
1179        AND(AL, 0, dest.reg, texel.reg, reg_imm(dest.reg, ASR, 31));
1180        dest.l = 0;
1181        dest.h = Nt;
1182    } else {
1183        int inReg = incoming.reg;
1184        int shift = incoming.l;
1185        if ((Nt + Ni) > 32) {
1186            // we will overflow, reduce the precision of Ni to 8 bits
1187            // (Note Nt cannot be more than 10 bits which happens with
1188            // 565 textures and GGL_LINEAR)
1189            shift += Ni-8;
1190            Ni = 8;
1191        }
1192
1193        // modulate by the component with the lowest precision
1194        if (Nt >= Ni) {
1195            if (shift) {
1196                // XXX: we should be able to avoid this shift
1197                // when shift==16 && Nt<16 && Ni<16, in which
1198                // we could use SMULBT below.
1199                MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift));
1200                inReg = dest.reg;
1201                shift = 0;
1202            }
1203            // operation:           (Cf*Ct)/((1<<Ni)-1)
1204            // approximated with:   Cf*(Ct + Ct>>(Ni-1))>>Ni
1205            // this operation doesn't change texel's size
1206            ADD(AL, 0, dest.reg, inReg, reg_imm(inReg, LSR, Ni-1));
1207            if (Nt<16 && Ni<16) SMULBB(AL, dest.reg, texel.reg, dest.reg);
1208            else                MUL(AL, 0, dest.reg, texel.reg, dest.reg);
1209            dest.l = Ni;
1210            dest.h = Nt + Ni;
1211        } else {
1212            if (shift && (shift != 16)) {
1213                // if shift==16, we can use 16-bits mul instructions later
1214                MOV(AL, 0, dest.reg, reg_imm(inReg, LSR, shift));
1215                inReg = dest.reg;
1216                shift = 0;
1217            }
1218            // operation:           (Cf*Ct)/((1<<Nt)-1)
1219            // approximated with:   Ct*(Cf + Cf>>(Nt-1))>>Nt
1220            // this operation doesn't change incoming's size
1221            Scratch scratches(registerFile());
1222            int t = (texel.flags & CORRUPTIBLE) ? texel.reg : dest.reg;
1223            if (t == inReg)
1224                t = scratches.obtain();
1225            ADD(AL, 0, t, texel.reg, reg_imm(texel.reg, LSR, Nt-1));
1226            if (Nt<16 && Ni<16) {
1227                if (shift==16)  SMULBT(AL, dest.reg, t, inReg);
1228                else            SMULBB(AL, dest.reg, t, inReg);
1229            } else              MUL(AL, 0, dest.reg, t, inReg);
1230            dest.l = Nt;
1231            dest.h = Nt + Ni;
1232        }
1233
1234        // low bits are not valid
1235        dest.flags |= CLEAR_LO;
1236
1237        // no need to keep more than 8 bits/component
1238        if (dest.size() > 8)
1239            dest.l = dest.h-8;
1240    }
1241}
1242
1243void GGLAssembler::decal(
1244        component_t& dest,
1245        const component_t& incoming,
1246        const pixel_t& incomingTexel, int component)
1247{
1248    // RGBA:
1249    // Cv = Cf*(1 - At) + Ct*At = Cf + (Ct - Cf)*At
1250    // Av = Af
1251    Scratch locals(registerFile());
1252    integer_t texel(locals.obtain(), 32, CORRUPTIBLE);
1253    integer_t factor(locals.obtain(), 32, CORRUPTIBLE);
1254    extract(texel, incomingTexel, component);
1255    extract(factor, incomingTexel, GGLFormat::ALPHA);
1256
1257    // no need to keep more than 8-bits for decal
1258    int Ni = incoming.size();
1259    int shift = incoming.l;
1260    if (Ni > 8) {
1261        shift += Ni-8;
1262        Ni = 8;
1263    }
1264    integer_t incomingNorm(incoming.reg, Ni, incoming.flags);
1265    if (shift) {
1266        MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift));
1267        incomingNorm.reg = dest.reg;
1268        incomingNorm.flags |= CORRUPTIBLE;
1269    }
1270    ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1));
1271    build_blendOneMinusFF(dest, factor, incomingNorm, texel);
1272}
1273
1274void GGLAssembler::blend(
1275        component_t& dest,
1276        const component_t& incoming,
1277        const pixel_t& incomingTexel, int component, int tmu)
1278{
1279    // RGBA:
1280    // Cv = (1 - Ct)*Cf + Ct*Cc = Cf + (Cc - Cf)*Ct
1281    // Av = At*Af
1282
1283    if (component == GGLFormat::ALPHA) {
1284        modulate(dest, incoming, incomingTexel, component);
1285        return;
1286    }
1287
1288    Scratch locals(registerFile());
1289    integer_t color(locals.obtain(), 8, CORRUPTIBLE);
1290    integer_t factor(locals.obtain(), 32, CORRUPTIBLE);
1291    LDRB(AL, color.reg, mBuilderContext.Rctx,
1292            immed12_pre(GGL_OFFSETOF(state.texture[tmu].env_color[component])));
1293    extract(factor, incomingTexel, component);
1294
1295    // no need to keep more than 8-bits for blend
1296    int Ni = incoming.size();
1297    int shift = incoming.l;
1298    if (Ni > 8) {
1299        shift += Ni-8;
1300        Ni = 8;
1301    }
1302    integer_t incomingNorm(incoming.reg, Ni, incoming.flags);
1303    if (shift) {
1304        MOV(AL, 0, dest.reg, reg_imm(incomingNorm.reg, LSR, shift));
1305        incomingNorm.reg = dest.reg;
1306        incomingNorm.flags |= CORRUPTIBLE;
1307    }
1308    ADD(AL, 0, factor.reg, factor.reg, reg_imm(factor.reg, LSR, factor.s-1));
1309    build_blendOneMinusFF(dest, factor, incomingNorm, color);
1310}
1311
1312void GGLAssembler::add(
1313        component_t& dest,
1314        const component_t& incoming,
1315        const pixel_t& incomingTexel, int component)
1316{
1317    // RGBA:
1318    // Cv = Cf + Ct;
1319    Scratch locals(registerFile());
1320
1321    component_t incomingTemp(incoming);
1322
1323    // use "dest" as a temporary for extracting the texel, unless "dest"
1324    // overlaps "incoming".
1325    integer_t texel(dest.reg, 32, CORRUPTIBLE);
1326    if (dest.reg == incomingTemp.reg)
1327        texel.reg = locals.obtain();
1328    extract(texel, incomingTexel, component);
1329
1330    if (texel.s < incomingTemp.size()) {
1331        expand(texel, texel, incomingTemp.size());
1332    } else if (texel.s > incomingTemp.size()) {
1333        if (incomingTemp.flags & CORRUPTIBLE) {
1334            expand(incomingTemp, incomingTemp, texel.s);
1335        } else {
1336            incomingTemp.reg = locals.obtain();
1337            expand(incomingTemp, incoming, texel.s);
1338        }
1339    }
1340
1341    if (incomingTemp.l) {
1342        ADD(AL, 0, dest.reg, texel.reg,
1343                reg_imm(incomingTemp.reg, LSR, incomingTemp.l));
1344    } else {
1345        ADD(AL, 0, dest.reg, texel.reg, incomingTemp.reg);
1346    }
1347    dest.l = 0;
1348    dest.h = texel.size();
1349    component_sat(dest);
1350}
1351
1352// ----------------------------------------------------------------------------
1353
1354}; // namespace android
1355
1356