package com.xtremelabs.robolectric.shadows; import android.location.Location; import android.os.Bundle; import com.xtremelabs.robolectric.internal.Implementation; import com.xtremelabs.robolectric.internal.Implements; import static com.xtremelabs.robolectric.Robolectric.shadowOf_; /** * Shadow of {@code Location} that treats it primarily as a data-holder * todo: support Location's static utility methods */ @SuppressWarnings({"UnusedDeclaration"}) @Implements(Location.class) public class ShadowLocation { private long time; private String provider; private double latitude; private double longitude; private float accuracy; private float bearing; private double altitude; private float speed; private boolean hasAccuracy; private boolean hasAltitude; private boolean hasBearing; private boolean hasSpeed; // Cache the inputs and outputs of computeDistanceAndBearing // so calls to distanceTo() and bearingTo() can share work private double mLat1 = 0.0; private double mLon1 = 0.0; private double mLat2 = 0.0; private double mLon2 = 0.0; private float mDistance = 0.0f; private float mInitialBearing = 0.0f; // Scratchpad private final float[] mResults = new float[2]; private Bundle extras = new Bundle(); public void __constructor__(Location l) { set(l); } public void __constructor__(String provider) { this.provider = provider; time = System.currentTimeMillis(); } @Implementation public void set(Location l) { time = l.getTime(); provider = l.getProvider(); latitude = l.getLatitude(); longitude = l.getLongitude(); accuracy = l.getAccuracy(); bearing = l.getBearing(); altitude = l.getAltitude(); speed = l.getSpeed(); hasAccuracy = l.hasAccuracy(); hasAltitude = l.hasAltitude(); hasBearing = l.hasBearing(); hasSpeed = l.hasSpeed(); } @Implementation public String getProvider() { return provider; } @Implementation public void setProvider(String provider) { this.provider = provider; } @Implementation public long getTime() { return time; } @Implementation public void setTime(long time) { this.time = time; } @Implementation public float getAccuracy() { return accuracy; } @Implementation public void setAccuracy(float accuracy) { this.accuracy = accuracy; this.hasAccuracy = true; } @Implementation public void removeAccuracy() { this.accuracy = 0.0f; this.hasAccuracy = false; } @Implementation public boolean hasAccuracy() { return hasAccuracy; } @Implementation public double getAltitude() { return altitude; } @Implementation public void setAltitude(double altitude) { this.altitude = altitude; this.hasAltitude = true; } @Implementation public void removeAltitude() { this.altitude = 0.0d; this.hasAltitude = false; } @Implementation public boolean hasAltitude() { return hasAltitude; } @Implementation public float getBearing() { return bearing; } @Implementation public void setBearing(float bearing) { this.bearing = bearing; this.hasBearing = true; } @Implementation public void removeBearing() { this.bearing = 0.0f; this.hasBearing = false; } @Implementation public boolean hasBearing() { return hasBearing; } @Implementation public double getLatitude() { return latitude; } @Implementation public void setLatitude(double latitude) { this.latitude = latitude; } @Implementation public double getLongitude() { return longitude; } @Implementation public void setLongitude(double longitude) { this.longitude = longitude; } @Implementation public float getSpeed() { return speed; } @Implementation public void setSpeed(float speed) { this.speed = speed; this.hasSpeed = true; } @Implementation public void removeSpeed() { this.hasSpeed = false; this.speed = 0.0f; } @Implementation public boolean hasSpeed() { return hasSpeed; } @Override @Implementation public boolean equals(Object o) { if (o == null) return false; o = shadowOf_(o); if (o == null) return false; if (getClass() != o.getClass()) return false; if (this == o) return true; ShadowLocation that = (ShadowLocation) o; if (Double.compare(that.latitude, latitude) != 0) return false; if (Double.compare(that.longitude, longitude) != 0) return false; if (time != that.time) return false; if (provider != null ? !provider.equals(that.provider) : that.provider != null) return false; if (accuracy != that.accuracy) return false; return true; } @Override @Implementation public int hashCode() { int result; long temp; result = (int) (time ^ (time >>> 32)); result = 31 * result + (provider != null ? provider.hashCode() : 0); temp = latitude != +0.0d ? Double.doubleToLongBits(latitude) : 0L; result = 31 * result + (int) (temp ^ (temp >>> 32)); temp = longitude != +0.0d ? Double.doubleToLongBits(longitude) : 0L; result = 31 * result + (int) (temp ^ (temp >>> 32)); temp = accuracy != 0f ? Float.floatToIntBits(accuracy) : 0; result = 31 * result + (int) (temp ^ (temp >>> 32)); return result; } @Override @Implementation public String toString() { return "Location{" + "time=" + time + ", provider='" + provider + '\'' + ", latitude=" + latitude + ", longitude=" + longitude + ", accuracy=" + accuracy + '}'; } private static void computeDistanceAndBearing(double lat1, double lon1, double lat2, double lon2, float[] results) { // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf // using the "Inverse Formula" (section 4) int MAXITERS = 20; // Convert lat/long to radians lat1 *= Math.PI / 180.0; lat2 *= Math.PI / 180.0; lon1 *= Math.PI / 180.0; lon2 *= Math.PI / 180.0; double a = 6378137.0; // WGS84 major axis double b = 6356752.3142; // WGS84 semi-major axis double f = (a - b) / a; double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); double L = lon2 - lon1; double A = 0.0; double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); double cosU1 = Math.cos(U1); double cosU2 = Math.cos(U2); double sinU1 = Math.sin(U1); double sinU2 = Math.sin(U2); double cosU1cosU2 = cosU1 * cosU2; double sinU1sinU2 = sinU1 * sinU2; double sigma = 0.0; double deltaSigma = 0.0; double cosSqAlpha = 0.0; double cos2SM = 0.0; double cosSigma = 0.0; double sinSigma = 0.0; double cosLambda = 0.0; double sinLambda = 0.0; double lambda = L; // initial guess for (int iter = 0; iter < MAXITERS; iter++) { double lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); double t1 = cosU2 * sinLambda; double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; double sinSqSigma = t1 * t1 + t2 * t2; // (14) sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) sigma = Math.atan2(sinSigma, cosSigma); // (16) double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17) cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn A = 1 + (uSquared / 16384.0) * // (3) (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); double B = (uSquared / 1024.0) * // (4) (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) double cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * // (6) (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) double delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0e-12) { break; } } float distance = (float) (b * A * (sigma - deltaSigma)); results[0] = distance; if (results.length > 1) { float initialBearing = (float) Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda); initialBearing *= 180.0 / Math.PI; results[1] = initialBearing; if (results.length > 2) { float finalBearing = (float) Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda); finalBearing *= 180.0 / Math.PI; results[2] = finalBearing; } } } /** * Computes the approximate distance in meters between two * locations, and optionally the initial and final bearings of the * shortest path between them. Distance and bearing are defined using the * WGS84 ellipsoid. * *

The computed distance is stored in results[0]. If results has length * 2 or greater, the initial bearing is stored in results[1]. If results has * length 3 or greater, the final bearing is stored in results[2]. * * @param startLatitude the starting latitude * @param startLongitude the starting longitude * @param endLatitude the ending latitude * @param endLongitude the ending longitude * @param results an array of floats to hold the results * * @throws IllegalArgumentException if results is null or has length < 1 */ @Implementation public static void distanceBetween(double startLatitude, double startLongitude, double endLatitude, double endLongitude, float[] results) { if (results == null || results.length < 1) { throw new IllegalArgumentException("results is null or has length < 1"); } computeDistanceAndBearing(startLatitude, startLongitude, endLatitude, endLongitude, results); } /** * Returns the approximate distance in meters between this * location and the given location. Distance is defined using * the WGS84 ellipsoid. * * @param dest the destination location * @return the approximate distance in meters */ @Implementation public float distanceTo(Location dest) { // See if we already have the result synchronized (mResults) { if (latitude != mLat1 || longitude != mLon1 || dest.getLatitude() != mLat2 || dest.getLongitude() != mLon2) { computeDistanceAndBearing(latitude, longitude, dest.getLatitude(), dest.getLongitude(), mResults); mLat1 = latitude; mLon1 = longitude; mLat2 = dest.getLatitude(); mLon2 = dest.getLongitude(); mDistance = mResults[0]; mInitialBearing = mResults[1]; } return mDistance; } } /** * Returns the approximate initial bearing in degrees East of true * North when traveling along the shortest path between this * location and the given location. The shortest path is defined * using the WGS84 ellipsoid. Locations that are (nearly) * antipodal may produce meaningless results. * * @param dest the destination location * @return the initial bearing in degrees */ @Implementation public float bearingTo(Location dest) { synchronized (mResults) { // See if we already have the result if (latitude != mLat1 || longitude != mLon1 || dest.getLatitude() != mLat2 || dest.getLongitude() != mLon2) { computeDistanceAndBearing(latitude, longitude, dest.getLatitude(), dest.getLongitude(), mResults); mLat1 = latitude; mLon1 = longitude; mLat2 = dest.getLatitude(); mLon2 = dest.getLongitude(); mDistance = mResults[0]; mInitialBearing = mResults[1]; } return mInitialBearing; } } @Implementation public Bundle getExtras() { return extras; } @Implementation public void setExtras(Bundle extras) { this.extras = extras; } }