1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <pthread.h>
30
31#include <errno.h>
32#include <limits.h>
33#include <sys/atomics.h>
34#include <unistd.h>
35
36#include "bionic_atomic_inline.h"
37#include "bionic_futex.h"
38#include "bionic_pthread.h"
39#include "bionic_tls.h"
40#include "pthread_internal.h"
41#include "thread_private.h"
42
43extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
44extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
45
46extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
47extern void _exit_thread(int  retCode);
48
49int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
50{
51    return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
52}
53
54int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
55{
56    return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
57}
58
59#define  __likely(cond)    __builtin_expect(!!(cond), 1)
60#define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
61
62void*
63__get_stack_base(int  *p_stack_size)
64{
65    pthread_internal_t*  thread = __get_thread();
66
67    *p_stack_size = thread->attr.stack_size;
68    return thread->attr.stack_base;
69}
70
71
72/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
73 *         and thread cancelation
74 */
75
76void __pthread_cleanup_push( __pthread_cleanup_t*      c,
77                             __pthread_cleanup_func_t  routine,
78                             void*                     arg )
79{
80    pthread_internal_t*  thread = __get_thread();
81
82    c->__cleanup_routine  = routine;
83    c->__cleanup_arg      = arg;
84    c->__cleanup_prev     = thread->cleanup_stack;
85    thread->cleanup_stack = c;
86}
87
88void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
89{
90    pthread_internal_t*  thread = __get_thread();
91
92    thread->cleanup_stack = c->__cleanup_prev;
93    if (execute)
94        c->__cleanup_routine(c->__cleanup_arg);
95}
96
97void pthread_exit(void * retval)
98{
99    pthread_internal_t*  thread     = __get_thread();
100    void*                stack_base = thread->attr.stack_base;
101    int                  stack_size = thread->attr.stack_size;
102    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
103    sigset_t mask;
104
105    // call the cleanup handlers first
106    while (thread->cleanup_stack) {
107        __pthread_cleanup_t*  c = thread->cleanup_stack;
108        thread->cleanup_stack   = c->__cleanup_prev;
109        c->__cleanup_routine(c->__cleanup_arg);
110    }
111
112    // call the TLS destructors, it is important to do that before removing this
113    // thread from the global list. this will ensure that if someone else deletes
114    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
115    // space (see pthread_key_delete)
116    pthread_key_clean_all();
117
118    // if the thread is detached, destroy the pthread_internal_t
119    // otherwise, keep it in memory and signal any joiners.
120    pthread_mutex_lock(&gThreadListLock);
121    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
122        _pthread_internal_remove_locked(thread);
123    } else {
124       /* make sure that the thread struct doesn't have stale pointers to a stack that
125        * will be unmapped after the exit call below.
126        */
127        if (!user_stack) {
128            thread->attr.stack_base = NULL;
129            thread->attr.stack_size = 0;
130            thread->tls = NULL;
131        }
132
133       /* the join_count field is used to store the number of threads waiting for
134        * the termination of this thread with pthread_join(),
135        *
136        * if it is positive we need to signal the waiters, and we do not touch
137        * the count (it will be decremented by the waiters, the last one will
138        * also remove/free the thread structure
139        *
140        * if it is zero, we set the count value to -1 to indicate that the
141        * thread is in 'zombie' state: it has stopped executing, and its stack
142        * is gone (as well as its TLS area). when another thread calls pthread_join()
143        * on it, it will immediately free the thread and return.
144        */
145        thread->return_value = retval;
146        if (thread->join_count > 0) {
147            pthread_cond_broadcast(&thread->join_cond);
148        } else {
149            thread->join_count = -1;  /* zombie thread */
150        }
151    }
152    pthread_mutex_unlock(&gThreadListLock);
153
154    sigfillset(&mask);
155    sigdelset(&mask, SIGSEGV);
156    (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
157
158    // destroy the thread stack
159    if (user_stack)
160        _exit_thread((int)retval);
161    else
162        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
163}
164
165/* a mutex is implemented as a 32-bit integer holding the following fields
166 *
167 * bits:     name     description
168 * 31-16     tid      owner thread's tid (recursive and errorcheck only)
169 * 15-14     type     mutex type
170 * 13        shared   process-shared flag
171 * 12-2      counter  counter of recursive mutexes
172 * 1-0       state    lock state (0, 1 or 2)
173 */
174
175/* Convenience macro, creates a mask of 'bits' bits that starts from
176 * the 'shift'-th least significant bit in a 32-bit word.
177 *
178 * Examples: FIELD_MASK(0,4)  -> 0xf
179 *           FIELD_MASK(16,9) -> 0x1ff0000
180 */
181#define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
182
183/* This one is used to create a bit pattern from a given field value */
184#define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
185
186/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
187#define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
188
189/* Mutex state:
190 *
191 * 0 for unlocked
192 * 1 for locked, no waiters
193 * 2 for locked, maybe waiters
194 */
195#define  MUTEX_STATE_SHIFT      0
196#define  MUTEX_STATE_LEN        2
197
198#define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
199#define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
200#define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
201
202#define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
203#define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
204#define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
205
206#define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
207#define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
208
209#define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
210#define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
211#define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
212
213/* return true iff the mutex if locked with no waiters */
214#define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
215
216/* return true iff the mutex if locked with maybe waiters */
217#define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
218
219/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
220#define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
221
222/* Mutex counter:
223 *
224 * We need to check for overflow before incrementing, and we also need to
225 * detect when the counter is 0
226 */
227#define  MUTEX_COUNTER_SHIFT         2
228#define  MUTEX_COUNTER_LEN           11
229#define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
230
231#define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
232#define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
233
234/* Used to increment the counter directly after overflow has been checked */
235#define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
236
237/* Returns true iff the counter is 0 */
238#define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)
239
240/* Mutex shared bit flag
241 *
242 * This flag is set to indicate that the mutex is shared among processes.
243 * This changes the futex opcode we use for futex wait/wake operations
244 * (non-shared operations are much faster).
245 */
246#define  MUTEX_SHARED_SHIFT    13
247#define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
248
249/* Mutex type:
250 *
251 * We support normal, recursive and errorcheck mutexes.
252 *
253 * The constants defined here *cannot* be changed because they must match
254 * the C library ABI which defines the following initialization values in
255 * <pthread.h>:
256 *
257 *   __PTHREAD_MUTEX_INIT_VALUE
258 *   __PTHREAD_RECURSIVE_MUTEX_VALUE
259 *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
260 */
261#define  MUTEX_TYPE_SHIFT      14
262#define  MUTEX_TYPE_LEN        2
263#define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
264
265#define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
266#define  MUTEX_TYPE_RECURSIVE       1
267#define  MUTEX_TYPE_ERRORCHECK      2
268
269#define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
270
271#define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
272#define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
273#define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
274
275/* Mutex owner field:
276 *
277 * This is only used for recursive and errorcheck mutexes. It holds the
278 * tid of the owning thread. Note that this works because the Linux
279 * kernel _only_ uses 16-bit values for tids.
280 *
281 * More specifically, it will wrap to 10000 when it reaches over 32768 for
282 * application processes. You can check this by running the following inside
283 * an adb shell session:
284 *
285    OLDPID=$$;
286    while true; do
287    NEWPID=$(sh -c 'echo $$')
288    if [ "$NEWPID" -gt 32768 ]; then
289        echo "AARGH: new PID $NEWPID is too high!"
290        exit 1
291    fi
292    if [ "$NEWPID" -lt "$OLDPID" ]; then
293        echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
294    else
295        echo -n "$NEWPID!"
296    fi
297    OLDPID=$NEWPID
298    done
299
300 * Note that you can run the same example on a desktop Linux system,
301 * the wrapping will also happen at 32768, but will go back to 300 instead.
302 */
303#define  MUTEX_OWNER_SHIFT     16
304#define  MUTEX_OWNER_LEN       16
305
306#define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
307#define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
308
309/* Convenience macros.
310 *
311 * These are used to form or modify the bit pattern of a given mutex value
312 */
313
314
315
316/* a mutex attribute holds the following fields
317 *
318 * bits:     name       description
319 * 0-3       type       type of mutex
320 * 4         shared     process-shared flag
321 */
322#define  MUTEXATTR_TYPE_MASK   0x000f
323#define  MUTEXATTR_SHARED_MASK 0x0010
324
325
326int pthread_mutexattr_init(pthread_mutexattr_t *attr)
327{
328    if (attr) {
329        *attr = PTHREAD_MUTEX_DEFAULT;
330        return 0;
331    } else {
332        return EINVAL;
333    }
334}
335
336int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
337{
338    if (attr) {
339        *attr = -1;
340        return 0;
341    } else {
342        return EINVAL;
343    }
344}
345
346int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
347{
348    if (attr) {
349        int  atype = (*attr & MUTEXATTR_TYPE_MASK);
350
351         if (atype >= PTHREAD_MUTEX_NORMAL &&
352             atype <= PTHREAD_MUTEX_ERRORCHECK) {
353            *type = atype;
354            return 0;
355        }
356    }
357    return EINVAL;
358}
359
360int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
361{
362    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
363                type <= PTHREAD_MUTEX_ERRORCHECK ) {
364        *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
365        return 0;
366    }
367    return EINVAL;
368}
369
370/* process-shared mutexes are not supported at the moment */
371
372int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
373{
374    if (!attr)
375        return EINVAL;
376
377    switch (pshared) {
378    case PTHREAD_PROCESS_PRIVATE:
379        *attr &= ~MUTEXATTR_SHARED_MASK;
380        return 0;
381
382    case PTHREAD_PROCESS_SHARED:
383        /* our current implementation of pthread actually supports shared
384         * mutexes but won't cleanup if a process dies with the mutex held.
385         * Nevertheless, it's better than nothing. Shared mutexes are used
386         * by surfaceflinger and audioflinger.
387         */
388        *attr |= MUTEXATTR_SHARED_MASK;
389        return 0;
390    }
391    return EINVAL;
392}
393
394int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
395{
396    if (!attr || !pshared)
397        return EINVAL;
398
399    *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
400                                               : PTHREAD_PROCESS_PRIVATE;
401    return 0;
402}
403
404int pthread_mutex_init(pthread_mutex_t *mutex,
405                       const pthread_mutexattr_t *attr)
406{
407    int value = 0;
408
409    if (mutex == NULL)
410        return EINVAL;
411
412    if (__likely(attr == NULL)) {
413        mutex->value = MUTEX_TYPE_BITS_NORMAL;
414        return 0;
415    }
416
417    if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
418        value |= MUTEX_SHARED_MASK;
419
420    switch (*attr & MUTEXATTR_TYPE_MASK) {
421    case PTHREAD_MUTEX_NORMAL:
422        value |= MUTEX_TYPE_BITS_NORMAL;
423        break;
424    case PTHREAD_MUTEX_RECURSIVE:
425        value |= MUTEX_TYPE_BITS_RECURSIVE;
426        break;
427    case PTHREAD_MUTEX_ERRORCHECK:
428        value |= MUTEX_TYPE_BITS_ERRORCHECK;
429        break;
430    default:
431        return EINVAL;
432    }
433
434    mutex->value = value;
435    return 0;
436}
437
438
439/*
440 * Lock a non-recursive mutex.
441 *
442 * As noted above, there are three states:
443 *   0 (unlocked, no contention)
444 *   1 (locked, no contention)
445 *   2 (locked, contention)
446 *
447 * Non-recursive mutexes don't use the thread-id or counter fields, and the
448 * "type" value is zero, so the only bits that will be set are the ones in
449 * the lock state field.
450 */
451static __inline__ void
452_normal_lock(pthread_mutex_t*  mutex, int shared)
453{
454    /* convenience shortcuts */
455    const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
456    const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
457    /*
458     * The common case is an unlocked mutex, so we begin by trying to
459     * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
460     * __bionic_cmpxchg() returns 0 if it made the swap successfully.
461     * If the result is nonzero, this lock is already held by another thread.
462     */
463    if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
464        const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
465        /*
466         * We want to go to sleep until the mutex is available, which
467         * requires promoting it to state 2 (CONTENDED). We need to
468         * swap in the new state value and then wait until somebody wakes us up.
469         *
470         * __bionic_swap() returns the previous value.  We swap 2 in and
471         * see if we got zero back; if so, we have acquired the lock.  If
472         * not, another thread still holds the lock and we wait again.
473         *
474         * The second argument to the __futex_wait() call is compared
475         * against the current value.  If it doesn't match, __futex_wait()
476         * returns immediately (otherwise, it sleeps for a time specified
477         * by the third argument; 0 means sleep forever).  This ensures
478         * that the mutex is in state 2 when we go to sleep on it, which
479         * guarantees a wake-up call.
480         */
481        while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
482            __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
483    }
484    ANDROID_MEMBAR_FULL();
485}
486
487/*
488 * Release a non-recursive mutex.  The caller is responsible for determining
489 * that we are in fact the owner of this lock.
490 */
491static __inline__ void
492_normal_unlock(pthread_mutex_t*  mutex, int shared)
493{
494    ANDROID_MEMBAR_FULL();
495
496    /*
497     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
498     * to release the lock.  __bionic_atomic_dec() returns the previous value;
499     * if it wasn't 1 we have to do some additional work.
500     */
501    if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
502        /*
503         * Start by releasing the lock.  The decrement changed it from
504         * "contended lock" to "uncontended lock", which means we still
505         * hold it, and anybody who tries to sneak in will push it back
506         * to state 2.
507         *
508         * Once we set it to zero the lock is up for grabs.  We follow
509         * this with a __futex_wake() to ensure that one of the waiting
510         * threads has a chance to grab it.
511         *
512         * This doesn't cause a race with the swap/wait pair in
513         * _normal_lock(), because the __futex_wait() call there will
514         * return immediately if the mutex value isn't 2.
515         */
516        mutex->value = shared;
517
518        /*
519         * Wake up one waiting thread.  We don't know which thread will be
520         * woken or when it'll start executing -- futexes make no guarantees
521         * here.  There may not even be a thread waiting.
522         *
523         * The newly-woken thread will replace the 0 we just set above
524         * with 2, which means that when it eventually releases the mutex
525         * it will also call FUTEX_WAKE.  This results in one extra wake
526         * call whenever a lock is contended, but lets us avoid forgetting
527         * anyone without requiring us to track the number of sleepers.
528         *
529         * It's possible for another thread to sneak in and grab the lock
530         * between the zero assignment above and the wake call below.  If
531         * the new thread is "slow" and holds the lock for a while, we'll
532         * wake up a sleeper, which will swap in a 2 and then go back to
533         * sleep since the lock is still held.  If the new thread is "fast",
534         * running to completion before we call wake, the thread we
535         * eventually wake will find an unlocked mutex and will execute.
536         * Either way we have correct behavior and nobody is orphaned on
537         * the wait queue.
538         */
539        __futex_wake_ex(&mutex->value, shared, 1);
540    }
541}
542
543/* This common inlined function is used to increment the counter of an
544 * errorcheck or recursive mutex.
545 *
546 * For errorcheck mutexes, it will return EDEADLK
547 * If the counter overflows, it will return EAGAIN
548 * Otherwise, it atomically increments the counter and returns 0
549 * after providing an acquire barrier.
550 *
551 * mtype is the current mutex type
552 * mvalue is the current mutex value (already loaded)
553 * mutex pointers to the mutex.
554 */
555static __inline__ __attribute__((always_inline)) int
556_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
557{
558    if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
559        /* trying to re-lock a mutex we already acquired */
560        return EDEADLK;
561    }
562
563    /* Detect recursive lock overflow and return EAGAIN.
564     * This is safe because only the owner thread can modify the
565     * counter bits in the mutex value.
566     */
567    if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
568        return EAGAIN;
569    }
570
571    /* We own the mutex, but other threads are able to change
572     * the lower bits (e.g. promoting it to "contended"), so we
573     * need to use an atomic cmpxchg loop to update the counter.
574     */
575    for (;;) {
576        /* increment counter, overflow was already checked */
577        int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
578        if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
579            /* mutex is still locked, not need for a memory barrier */
580            return 0;
581        }
582        /* the value was changed, this happens when another thread changes
583         * the lower state bits from 1 to 2 to indicate contention. This
584         * cannot change the counter, so simply reload and try again.
585         */
586        mvalue = mutex->value;
587    }
588}
589
590__LIBC_HIDDEN__
591int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
592{
593    int mvalue, mtype, tid, shared;
594
595    if (__unlikely(mutex == NULL))
596        return EINVAL;
597
598    mvalue = mutex->value;
599    mtype = (mvalue & MUTEX_TYPE_MASK);
600    shared = (mvalue & MUTEX_SHARED_MASK);
601
602    /* Handle normal case first */
603    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
604        _normal_lock(mutex, shared);
605        return 0;
606    }
607
608    /* Do we already own this recursive or error-check mutex ? */
609    tid = __get_thread()->tid;
610    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
611        return _recursive_increment(mutex, mvalue, mtype);
612
613    /* Add in shared state to avoid extra 'or' operations below */
614    mtype |= shared;
615
616    /* First, if the mutex is unlocked, try to quickly acquire it.
617     * In the optimistic case where this works, set the state to 1 to
618     * indicate locked with no contention */
619    if (mvalue == mtype) {
620        int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
621        if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
622            ANDROID_MEMBAR_FULL();
623            return 0;
624        }
625        /* argh, the value changed, reload before entering the loop */
626        mvalue = mutex->value;
627    }
628
629    for (;;) {
630        int newval;
631
632        /* if the mutex is unlocked, its value should be 'mtype' and
633         * we try to acquire it by setting its owner and state atomically.
634         * NOTE: We put the state to 2 since we _know_ there is contention
635         * when we are in this loop. This ensures all waiters will be
636         * unlocked.
637         */
638        if (mvalue == mtype) {
639            newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
640            /* TODO: Change this to __bionic_cmpxchg_acquire when we
641             *        implement it to get rid of the explicit memory
642             *        barrier below.
643             */
644            if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
645                mvalue = mutex->value;
646                continue;
647            }
648            ANDROID_MEMBAR_FULL();
649            return 0;
650        }
651
652        /* the mutex is already locked by another thread, if its state is 1
653         * we will change it to 2 to indicate contention. */
654        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
655            newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
656            if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
657                mvalue = mutex->value;
658                continue;
659            }
660            mvalue = newval;
661        }
662
663        /* wait until the mutex is unlocked */
664        __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
665
666        mvalue = mutex->value;
667    }
668    /* NOTREACHED */
669}
670
671int pthread_mutex_lock(pthread_mutex_t *mutex)
672{
673    int err = pthread_mutex_lock_impl(mutex);
674#ifdef PTHREAD_DEBUG
675    if (PTHREAD_DEBUG_ENABLED) {
676        if (!err) {
677            pthread_debug_mutex_lock_check(mutex);
678        }
679    }
680#endif
681    return err;
682}
683
684__LIBC_HIDDEN__
685int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
686{
687    int mvalue, mtype, tid, shared;
688
689    if (__unlikely(mutex == NULL))
690        return EINVAL;
691
692    mvalue = mutex->value;
693    mtype  = (mvalue & MUTEX_TYPE_MASK);
694    shared = (mvalue & MUTEX_SHARED_MASK);
695
696    /* Handle common case first */
697    if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
698        _normal_unlock(mutex, shared);
699        return 0;
700    }
701
702    /* Do we already own this recursive or error-check mutex ? */
703    tid = __get_thread()->tid;
704    if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
705        return EPERM;
706
707    /* If the counter is > 0, we can simply decrement it atomically.
708     * Since other threads can mutate the lower state bits (and only the
709     * lower state bits), use a cmpxchg to do it.
710     */
711    if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
712        for (;;) {
713            int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
714            if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
715                /* success: we still own the mutex, so no memory barrier */
716                return 0;
717            }
718            /* the value changed, so reload and loop */
719            mvalue = mutex->value;
720        }
721    }
722
723    /* the counter is 0, so we're going to unlock the mutex by resetting
724     * its value to 'unlocked'. We need to perform a swap in order
725     * to read the current state, which will be 2 if there are waiters
726     * to awake.
727     *
728     * TODO: Change this to __bionic_swap_release when we implement it
729     *        to get rid of the explicit memory barrier below.
730     */
731    ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
732    mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
733
734    /* Wake one waiting thread, if any */
735    if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
736        __futex_wake_ex(&mutex->value, shared, 1);
737    }
738    return 0;
739}
740
741int pthread_mutex_unlock(pthread_mutex_t *mutex)
742{
743#ifdef PTHREAD_DEBUG
744    if (PTHREAD_DEBUG_ENABLED) {
745        pthread_debug_mutex_unlock_check(mutex);
746    }
747#endif
748    return pthread_mutex_unlock_impl(mutex);
749}
750
751__LIBC_HIDDEN__
752int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
753{
754    int mvalue, mtype, tid, shared;
755
756    if (__unlikely(mutex == NULL))
757        return EINVAL;
758
759    mvalue = mutex->value;
760    mtype  = (mvalue & MUTEX_TYPE_MASK);
761    shared = (mvalue & MUTEX_SHARED_MASK);
762
763    /* Handle common case first */
764    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
765    {
766        if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
767                             shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
768                             &mutex->value) == 0) {
769            ANDROID_MEMBAR_FULL();
770            return 0;
771        }
772
773        return EBUSY;
774    }
775
776    /* Do we already own this recursive or error-check mutex ? */
777    tid = __get_thread()->tid;
778    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
779        return _recursive_increment(mutex, mvalue, mtype);
780
781    /* Same as pthread_mutex_lock, except that we don't want to wait, and
782     * the only operation that can succeed is a single cmpxchg to acquire the
783     * lock if it is released / not owned by anyone. No need for a complex loop.
784     */
785    mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
786    mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
787
788    if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
789        ANDROID_MEMBAR_FULL();
790        return 0;
791    }
792
793    return EBUSY;
794}
795
796int pthread_mutex_trylock(pthread_mutex_t *mutex)
797{
798    int err = pthread_mutex_trylock_impl(mutex);
799#ifdef PTHREAD_DEBUG
800    if (PTHREAD_DEBUG_ENABLED) {
801        if (!err) {
802            pthread_debug_mutex_lock_check(mutex);
803        }
804    }
805#endif
806    return err;
807}
808
809/* initialize 'ts' with the difference between 'abstime' and the current time
810 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
811 */
812static int
813__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
814{
815    clock_gettime(clock, ts);
816    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
817    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
818    if (ts->tv_nsec < 0) {
819        ts->tv_sec--;
820        ts->tv_nsec += 1000000000;
821    }
822    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
823        return -1;
824
825    return 0;
826}
827
828/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
829 * milliseconds.
830 */
831static void
832__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
833{
834    clock_gettime(clock, abstime);
835    abstime->tv_sec  += msecs/1000;
836    abstime->tv_nsec += (msecs%1000)*1000000;
837    if (abstime->tv_nsec >= 1000000000) {
838        abstime->tv_sec++;
839        abstime->tv_nsec -= 1000000000;
840    }
841}
842
843__LIBC_HIDDEN__
844int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
845{
846    clockid_t        clock = CLOCK_MONOTONIC;
847    struct timespec  abstime;
848    struct timespec  ts;
849    int               mvalue, mtype, tid, shared;
850
851    /* compute absolute expiration time */
852    __timespec_to_relative_msec(&abstime, msecs, clock);
853
854    if (__unlikely(mutex == NULL))
855        return EINVAL;
856
857    mvalue = mutex->value;
858    mtype  = (mvalue & MUTEX_TYPE_MASK);
859    shared = (mvalue & MUTEX_SHARED_MASK);
860
861    /* Handle common case first */
862    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
863    {
864        const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
865        const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
866        const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
867
868        /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
869        if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
870            ANDROID_MEMBAR_FULL();
871            return 0;
872        }
873
874        /* loop while needed */
875        while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
876            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
877                return EBUSY;
878
879            __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
880        }
881        ANDROID_MEMBAR_FULL();
882        return 0;
883    }
884
885    /* Do we already own this recursive or error-check mutex ? */
886    tid = __get_thread()->tid;
887    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
888        return _recursive_increment(mutex, mvalue, mtype);
889
890    /* the following implements the same loop than pthread_mutex_lock_impl
891     * but adds checks to ensure that the operation never exceeds the
892     * absolute expiration time.
893     */
894    mtype |= shared;
895
896    /* first try a quick lock */
897    if (mvalue == mtype) {
898        mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
899        if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
900            ANDROID_MEMBAR_FULL();
901            return 0;
902        }
903        mvalue = mutex->value;
904    }
905
906    for (;;) {
907        struct timespec ts;
908
909        /* if the value is 'unlocked', try to acquire it directly */
910        /* NOTE: put state to 2 since we know there is contention */
911        if (mvalue == mtype) /* unlocked */ {
912            mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
913            if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
914                ANDROID_MEMBAR_FULL();
915                return 0;
916            }
917            /* the value changed before we could lock it. We need to check
918             * the time to avoid livelocks, reload the value, then loop again. */
919            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
920                return EBUSY;
921
922            mvalue = mutex->value;
923            continue;
924        }
925
926        /* The value is locked. If 'uncontended', try to switch its state
927         * to 'contented' to ensure we get woken up later. */
928        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
929            int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
930            if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
931                /* this failed because the value changed, reload it */
932                mvalue = mutex->value;
933            } else {
934                /* this succeeded, update mvalue */
935                mvalue = newval;
936            }
937        }
938
939        /* check time and update 'ts' */
940        if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
941            return EBUSY;
942
943        /* Only wait to be woken up if the state is '2', otherwise we'll
944         * simply loop right now. This can happen when the second cmpxchg
945         * in our loop failed because the mutex was unlocked by another
946         * thread.
947         */
948        if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
949            if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
950                return EBUSY;
951            }
952            mvalue = mutex->value;
953        }
954    }
955    /* NOTREACHED */
956}
957
958int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
959{
960    int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
961#ifdef PTHREAD_DEBUG
962    if (PTHREAD_DEBUG_ENABLED) {
963        if (!err) {
964            pthread_debug_mutex_lock_check(mutex);
965        }
966    }
967#endif
968    return err;
969}
970
971int pthread_mutex_destroy(pthread_mutex_t *mutex)
972{
973    int ret;
974
975    /* use trylock to ensure that the mutex value is
976     * valid and is not already locked. */
977    ret = pthread_mutex_trylock_impl(mutex);
978    if (ret != 0)
979        return ret;
980
981    mutex->value = 0xdead10cc;
982    return 0;
983}
984
985
986
987int pthread_condattr_init(pthread_condattr_t *attr)
988{
989    if (attr == NULL)
990        return EINVAL;
991
992    *attr = PTHREAD_PROCESS_PRIVATE;
993    return 0;
994}
995
996int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
997{
998    if (attr == NULL || pshared == NULL)
999        return EINVAL;
1000
1001    *pshared = *attr;
1002    return 0;
1003}
1004
1005int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1006{
1007    if (attr == NULL)
1008        return EINVAL;
1009
1010    if (pshared != PTHREAD_PROCESS_SHARED &&
1011        pshared != PTHREAD_PROCESS_PRIVATE)
1012        return EINVAL;
1013
1014    *attr = pshared;
1015    return 0;
1016}
1017
1018int pthread_condattr_destroy(pthread_condattr_t *attr)
1019{
1020    if (attr == NULL)
1021        return EINVAL;
1022
1023    *attr = 0xdeada11d;
1024    return 0;
1025}
1026
1027/* We use one bit in condition variable values as the 'shared' flag
1028 * The rest is a counter.
1029 */
1030#define COND_SHARED_MASK        0x0001
1031#define COND_COUNTER_INCREMENT  0x0002
1032#define COND_COUNTER_MASK       (~COND_SHARED_MASK)
1033
1034#define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
1035
1036/* XXX *technically* there is a race condition that could allow
1037 * XXX a signal to be missed.  If thread A is preempted in _wait()
1038 * XXX after unlocking the mutex and before waiting, and if other
1039 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1040 * XXX before thread A is scheduled again and calls futex_wait(),
1041 * XXX then the signal will be lost.
1042 */
1043
1044int pthread_cond_init(pthread_cond_t *cond,
1045                      const pthread_condattr_t *attr)
1046{
1047    if (cond == NULL)
1048        return EINVAL;
1049
1050    cond->value = 0;
1051
1052    if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1053        cond->value |= COND_SHARED_MASK;
1054
1055    return 0;
1056}
1057
1058int pthread_cond_destroy(pthread_cond_t *cond)
1059{
1060    if (cond == NULL)
1061        return EINVAL;
1062
1063    cond->value = 0xdeadc04d;
1064    return 0;
1065}
1066
1067/* This function is used by pthread_cond_broadcast and
1068 * pthread_cond_signal to atomically decrement the counter
1069 * then wake-up 'counter' threads.
1070 */
1071static int
1072__pthread_cond_pulse(pthread_cond_t *cond, int  counter)
1073{
1074    long flags;
1075
1076    if (__unlikely(cond == NULL))
1077        return EINVAL;
1078
1079    flags = (cond->value & ~COND_COUNTER_MASK);
1080    for (;;) {
1081        long oldval = cond->value;
1082        long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1083                      | flags;
1084        if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1085            break;
1086    }
1087
1088    /*
1089     * Ensure that all memory accesses previously made by this thread are
1090     * visible to the woken thread(s).  On the other side, the "wait"
1091     * code will issue any necessary barriers when locking the mutex.
1092     *
1093     * This may not strictly be necessary -- if the caller follows
1094     * recommended practice and holds the mutex before signaling the cond
1095     * var, the mutex ops will provide correct semantics.  If they don't
1096     * hold the mutex, they're subject to race conditions anyway.
1097     */
1098    ANDROID_MEMBAR_FULL();
1099
1100    __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1101    return 0;
1102}
1103
1104int pthread_cond_broadcast(pthread_cond_t *cond)
1105{
1106    return __pthread_cond_pulse(cond, INT_MAX);
1107}
1108
1109int pthread_cond_signal(pthread_cond_t *cond)
1110{
1111    return __pthread_cond_pulse(cond, 1);
1112}
1113
1114int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1115{
1116    return pthread_cond_timedwait(cond, mutex, NULL);
1117}
1118
1119int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1120                                      pthread_mutex_t * mutex,
1121                                      const struct timespec *reltime)
1122{
1123    int  status;
1124    int  oldvalue = cond->value;
1125
1126    pthread_mutex_unlock(mutex);
1127    status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1128    pthread_mutex_lock(mutex);
1129
1130    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1131    return 0;
1132}
1133
1134int __pthread_cond_timedwait(pthread_cond_t *cond,
1135                             pthread_mutex_t * mutex,
1136                             const struct timespec *abstime,
1137                             clockid_t clock)
1138{
1139    struct timespec ts;
1140    struct timespec * tsp;
1141
1142    if (abstime != NULL) {
1143        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1144            return ETIMEDOUT;
1145        tsp = &ts;
1146    } else {
1147        tsp = NULL;
1148    }
1149
1150    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1151}
1152
1153int pthread_cond_timedwait(pthread_cond_t *cond,
1154                           pthread_mutex_t * mutex,
1155                           const struct timespec *abstime)
1156{
1157    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1158}
1159
1160
1161/* this one exists only for backward binary compatibility */
1162int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1163                                     pthread_mutex_t * mutex,
1164                                     const struct timespec *abstime)
1165{
1166    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1167}
1168
1169int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1170                                     pthread_mutex_t * mutex,
1171                                     const struct timespec *abstime)
1172{
1173    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1174}
1175
1176int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1177                                      pthread_mutex_t * mutex,
1178                                      const struct timespec *reltime)
1179{
1180    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1181}
1182
1183int pthread_cond_timeout_np(pthread_cond_t *cond,
1184                            pthread_mutex_t * mutex,
1185                            unsigned msecs)
1186{
1187    struct timespec ts;
1188
1189    ts.tv_sec = msecs / 1000;
1190    ts.tv_nsec = (msecs % 1000) * 1000000;
1191
1192    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1193}
1194
1195
1196/* NOTE: this implementation doesn't support a init function that throws a C++ exception
1197 *       or calls fork()
1198 */
1199int pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
1200{
1201    volatile pthread_once_t* ocptr = once_control;
1202
1203    /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
1204     *
1205     *   bit 0 set  -> initialization is under way
1206     *   bit 1 set  -> initialization is complete
1207     */
1208#define ONCE_INITIALIZING           (1 << 0)
1209#define ONCE_COMPLETED              (1 << 1)
1210
1211    /* First check if the once is already initialized. This will be the common
1212    * case and we want to make this as fast as possible. Note that this still
1213    * requires a load_acquire operation here to ensure that all the
1214    * stores performed by the initialization function are observable on
1215    * this CPU after we exit.
1216    */
1217    if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
1218        ANDROID_MEMBAR_FULL();
1219        return 0;
1220    }
1221
1222    for (;;) {
1223        /* Try to atomically set the INITIALIZING flag.
1224         * This requires a cmpxchg loop, and we may need
1225         * to exit prematurely if we detect that
1226         * COMPLETED is now set.
1227         */
1228        int32_t  oldval, newval;
1229
1230        do {
1231            oldval = *ocptr;
1232            if ((oldval & ONCE_COMPLETED) != 0)
1233                break;
1234
1235            newval = oldval | ONCE_INITIALIZING;
1236        } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
1237
1238        if ((oldval & ONCE_COMPLETED) != 0) {
1239            /* We detected that COMPLETED was set while in our loop */
1240            ANDROID_MEMBAR_FULL();
1241            return 0;
1242        }
1243
1244        if ((oldval & ONCE_INITIALIZING) == 0) {
1245            /* We got there first, we can jump out of the loop to
1246             * handle the initialization */
1247            break;
1248        }
1249
1250        /* Another thread is running the initialization and hasn't completed
1251         * yet, so wait for it, then try again. */
1252        __futex_wait_ex(ocptr, 0, oldval, NULL);
1253    }
1254
1255    /* call the initialization function. */
1256    (*init_routine)();
1257
1258    /* Do a store_release indicating that initialization is complete */
1259    ANDROID_MEMBAR_FULL();
1260    *ocptr = ONCE_COMPLETED;
1261
1262    /* Wake up any waiters, if any */
1263    __futex_wake_ex(ocptr, 0, INT_MAX);
1264
1265    return 0;
1266}
1267
1268pid_t __pthread_gettid(pthread_t thid) {
1269  pthread_internal_t* thread = (pthread_internal_t*) thid;
1270  return thread->tid;
1271}
1272
1273int __pthread_settid(pthread_t thid, pid_t tid) {
1274  if (thid == 0) {
1275      return EINVAL;
1276  }
1277
1278  pthread_internal_t* thread = (pthread_internal_t*) thid;
1279  thread->tid = tid;
1280
1281  return 0;
1282}
1283