1/*	$NetBSD: strtod.c,v 1.45.2.1 2005/04/19 13:35:54 tron Exp $	*/
2
3/****************************************************************
4 *
5 * The author of this software is David M. Gay.
6 *
7 * Copyright (c) 1991 by AT&T.
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose without fee is hereby granted, provided that this entire notice
11 * is included in all copies of any software which is or includes a copy
12 * or modification of this software and in all copies of the supporting
13 * documentation for such software.
14 *
15 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
16 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
17 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
18 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
19 *
20 ***************************************************************/
21
22/* Please send bug reports to
23	David M. Gay
24	AT&T Bell Laboratories, Room 2C-463
25	600 Mountain Avenue
26	Murray Hill, NJ 07974-2070
27	U.S.A.
28	dmg@research.att.com or research!dmg
29 */
30
31/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
32 *
33 * This strtod returns a nearest machine number to the input decimal
34 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
35 * broken by the IEEE round-even rule.  Otherwise ties are broken by
36 * biased rounding (add half and chop).
37 *
38 * Inspired loosely by William D. Clinger's paper "How to Read Floating
39 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
40 *
41 * Modifications:
42 *
43 *	1. We only require IEEE, IBM, or VAX double-precision
44 *		arithmetic (not IEEE double-extended).
45 *	2. We get by with floating-point arithmetic in a case that
46 *		Clinger missed -- when we're computing d * 10^n
47 *		for a small integer d and the integer n is not too
48 *		much larger than 22 (the maximum integer k for which
49 *		we can represent 10^k exactly), we may be able to
50 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
51 *	3. Rather than a bit-at-a-time adjustment of the binary
52 *		result in the hard case, we use floating-point
53 *		arithmetic to determine the adjustment to within
54 *		one bit; only in really hard cases do we need to
55 *		compute a second residual.
56 *	4. Because of 3., we don't need a large table of powers of 10
57 *		for ten-to-e (just some small tables, e.g. of 10^k
58 *		for 0 <= k <= 22).
59 */
60
61/*
62 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
63 *	significant byte has the lowest address.
64 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
65 *	significant byte has the lowest address.
66 * #define Long int on machines with 32-bit ints and 64-bit longs.
67 * #define Sudden_Underflow for IEEE-format machines without gradual
68 *	underflow (i.e., that flush to zero on underflow).
69 * #define IBM for IBM mainframe-style floating-point arithmetic.
70 * #define VAX for VAX-style floating-point arithmetic.
71 * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
72 * #define No_leftright to omit left-right logic in fast floating-point
73 *	computation of dtoa.
74 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
75 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
76 *	that use extended-precision instructions to compute rounded
77 *	products and quotients) with IBM.
78 * #define ROUND_BIASED for IEEE-format with biased rounding.
79 * #define Inaccurate_Divide for IEEE-format with correctly rounded
80 *	products but inaccurate quotients, e.g., for Intel i860.
81 * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
82 *	integer arithmetic.  Whether this speeds things up or slows things
83 *	down depends on the machine and the number being converted.
84 * #define KR_headers for old-style C function headers.
85 * #define Bad_float_h if your system lacks a float.h or if it does not
86 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
87 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
88 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
89 *	if memory is available and otherwise does something you deem
90 *	appropriate.  If MALLOC is undefined, malloc will be invoked
91 *	directly -- and assumed always to succeed.
92 */
93
94#ifdef ANDROID_CHANGES
95#include <pthread.h>
96#define mutex_lock(x) pthread_mutex_lock(x)
97#define mutex_unlock(x) pthread_mutex_unlock(x)
98#endif
99
100#include <sys/cdefs.h>
101#if defined(LIBC_SCCS) && !defined(lint)
102__RCSID("$NetBSD: strtod.c,v 1.45.2.1 2005/04/19 13:35:54 tron Exp $");
103#endif /* LIBC_SCCS and not lint */
104
105#define Unsigned_Shifts
106#if defined(__m68k__) || defined(__sparc__) || defined(__i386__) || \
107    defined(__mips__) || defined(__ns32k__) || defined(__alpha__) || \
108    defined(__powerpc__) || defined(__sh__) || defined(__x86_64__) || \
109    defined(__hppa__) || \
110    (defined(__arm__) && defined(__VFP_FP__))
111#include <endian.h>
112#if BYTE_ORDER == BIG_ENDIAN
113#define IEEE_BIG_ENDIAN
114#else
115#define IEEE_LITTLE_ENDIAN
116#endif
117#endif
118
119#if defined(__arm__) && !defined(__VFP_FP__)
120/*
121 * Although the CPU is little endian the FP has different
122 * byte and word endianness. The byte order is still little endian
123 * but the word order is big endian.
124 */
125#define IEEE_BIG_ENDIAN
126#endif
127
128#ifdef __vax__
129#define VAX
130#endif
131
132#if defined(__hppa__) || defined(__mips__) || defined(__sh__)
133#define	NAN_WORD0	0x7ff40000
134#else
135#define	NAN_WORD0	0x7ff80000
136#endif
137#define	NAN_WORD1	0
138
139#define Long	int32_t
140#define ULong	u_int32_t
141
142#ifdef DEBUG
143#include "stdio.h"
144#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
145#endif
146
147#ifdef __cplusplus
148#include "malloc.h"
149#include "memory.h"
150#else
151#ifndef KR_headers
152#include "stdlib.h"
153#include "string.h"
154#ifndef ANDROID_CHANGES
155#include "locale.h"
156#endif /* ANDROID_CHANGES */
157#else
158#include "malloc.h"
159#include "memory.h"
160#endif
161#endif
162#ifndef ANDROID_CHANGES
163#include "extern.h"
164#include "reentrant.h"
165#endif /* ANDROID_CHANGES */
166
167#ifdef MALLOC
168#ifdef KR_headers
169extern char *MALLOC();
170#else
171extern void *MALLOC(size_t);
172#endif
173#else
174#define MALLOC malloc
175#endif
176
177#include "ctype.h"
178#include "errno.h"
179#include "float.h"
180
181#ifndef __MATH_H__
182#include "math.h"
183#endif
184
185#ifdef __cplusplus
186extern "C" {
187#endif
188
189#ifndef CONST
190#ifdef KR_headers
191#define CONST /* blank */
192#else
193#define CONST const
194#endif
195#endif
196
197#ifdef Unsigned_Shifts
198#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
199#else
200#define Sign_Extend(a,b) /*no-op*/
201#endif
202
203#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
204    defined(IBM) != 1
205Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
206IBM should be defined.
207#endif
208
209typedef union {
210	double d;
211	ULong ul[2];
212} _double;
213#define value(x) ((x).d)
214#ifdef IEEE_LITTLE_ENDIAN
215#define word0(x) ((x).ul[1])
216#define word1(x) ((x).ul[0])
217#else
218#define word0(x) ((x).ul[0])
219#define word1(x) ((x).ul[1])
220#endif
221
222/* The following definition of Storeinc is appropriate for MIPS processors.
223 * An alternative that might be better on some machines is
224 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
225 */
226#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
227#define Storeinc(a,b,c) \
228    (((u_short *)(void *)a)[1] = \
229	(u_short)b, ((u_short *)(void *)a)[0] = (u_short)c, a++)
230#else
231#define Storeinc(a,b,c) \
232    (((u_short *)(void *)a)[0] = \
233	(u_short)b, ((u_short *)(void *)a)[1] = (u_short)c, a++)
234#endif
235
236/* #define P DBL_MANT_DIG */
237/* Ten_pmax = floor(P*log(2)/log(5)) */
238/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
239/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
240/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
241
242#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
243#define Exp_shift  20
244#define Exp_shift1 20
245#define Exp_msk1    0x100000
246#define Exp_msk11   0x100000
247#define Exp_mask  0x7ff00000
248#define P 53
249#define Bias 1023
250#define IEEE_Arith
251#define Emin (-1022)
252#define Exp_1  0x3ff00000
253#define Exp_11 0x3ff00000
254#define Ebits 11
255#define Frac_mask  0xfffff
256#define Frac_mask1 0xfffff
257#define Ten_pmax 22
258#define Bletch 0x10
259#define Bndry_mask  0xfffff
260#define Bndry_mask1 0xfffff
261#define LSB 1
262#define Sign_bit 0x80000000
263#define Log2P 1
264#define Tiny0 0
265#define Tiny1 1
266#define Quick_max 14
267#define Int_max 14
268#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
269#else
270#undef  Sudden_Underflow
271#define Sudden_Underflow
272#ifdef IBM
273#define Exp_shift  24
274#define Exp_shift1 24
275#define Exp_msk1   0x1000000
276#define Exp_msk11  0x1000000
277#define Exp_mask  0x7f000000
278#define P 14
279#define Bias 65
280#define Exp_1  0x41000000
281#define Exp_11 0x41000000
282#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
283#define Frac_mask  0xffffff
284#define Frac_mask1 0xffffff
285#define Bletch 4
286#define Ten_pmax 22
287#define Bndry_mask  0xefffff
288#define Bndry_mask1 0xffffff
289#define LSB 1
290#define Sign_bit 0x80000000
291#define Log2P 4
292#define Tiny0 0x100000
293#define Tiny1 0
294#define Quick_max 14
295#define Int_max 15
296#else /* VAX */
297#define Exp_shift  23
298#define Exp_shift1 7
299#define Exp_msk1    0x80
300#define Exp_msk11   0x800000
301#define Exp_mask  0x7f80
302#define P 56
303#define Bias 129
304#define Exp_1  0x40800000
305#define Exp_11 0x4080
306#define Ebits 8
307#define Frac_mask  0x7fffff
308#define Frac_mask1 0xffff007f
309#define Ten_pmax 24
310#define Bletch 2
311#define Bndry_mask  0xffff007f
312#define Bndry_mask1 0xffff007f
313#define LSB 0x10000
314#define Sign_bit 0x8000
315#define Log2P 1
316#define Tiny0 0x80
317#define Tiny1 0
318#define Quick_max 15
319#define Int_max 15
320#endif
321#endif
322
323#ifndef IEEE_Arith
324#define ROUND_BIASED
325#endif
326
327#ifdef RND_PRODQUOT
328#define rounded_product(a,b) a = rnd_prod(a, b)
329#define rounded_quotient(a,b) a = rnd_quot(a, b)
330#ifdef KR_headers
331extern double rnd_prod(), rnd_quot();
332#else
333extern double rnd_prod(double, double), rnd_quot(double, double);
334#endif
335#else
336#define rounded_product(a,b) a *= b
337#define rounded_quotient(a,b) a /= b
338#endif
339
340#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
341#define Big1 0xffffffff
342
343#ifndef Just_16
344/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
345 * This makes some inner loops simpler and sometimes saves work
346 * during multiplications, but it often seems to make things slightly
347 * slower.  Hence the default is now to store 32 bits per Long.
348 */
349#ifndef Pack_32
350#define Pack_32
351#endif
352#endif
353
354#define Kmax 15
355
356#ifdef __cplusplus
357extern "C" double strtod(const char *s00, char **se);
358extern "C" char *__dtoa(double d, int mode, int ndigits,
359			int *decpt, int *sign, char **rve);
360#endif
361
362 struct
363Bigint {
364	struct Bigint *next;
365	int k, maxwds, sign, wds;
366	ULong x[1];
367};
368
369 typedef struct Bigint Bigint;
370
371 static Bigint *freelist[Kmax+1];
372
373#ifdef ANDROID_CHANGES
374 static pthread_mutex_t freelist_mutex = PTHREAD_MUTEX_INITIALIZER;
375#else
376#ifdef _REENTRANT
377 static mutex_t freelist_mutex = MUTEX_INITIALIZER;
378#endif
379#endif
380
381/* Special value used to indicate an invalid Bigint value,
382 * e.g. when a memory allocation fails. The idea is that we
383 * want to avoid introducing NULL checks everytime a bigint
384 * computation is performed. Also the NULL value can also be
385 * already used to indicate "value not initialized yet" and
386 * returning NULL might alter the execution code path in
387 * case of OOM.
388 */
389#define  BIGINT_INVALID   ((Bigint *)&bigint_invalid_value)
390
391static const Bigint bigint_invalid_value;
392
393
394/* Return BIGINT_INVALID on allocation failure.
395 *
396 * Most of the code here depends on the fact that this function
397 * never returns NULL.
398 */
399 static Bigint *
400Balloc
401#ifdef KR_headers
402	(k) int k;
403#else
404	(int k)
405#endif
406{
407	int x;
408	Bigint *rv;
409
410	mutex_lock(&freelist_mutex);
411
412	if ((rv = freelist[k]) != NULL) {
413		freelist[k] = rv->next;
414	}
415	else {
416		x = 1 << k;
417		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
418		if (rv == NULL) {
419		        rv = BIGINT_INVALID;
420			goto EXIT;
421		}
422		rv->k = k;
423		rv->maxwds = x;
424	}
425	rv->sign = rv->wds = 0;
426EXIT:
427	mutex_unlock(&freelist_mutex);
428
429	return rv;
430}
431
432 static void
433Bfree
434#ifdef KR_headers
435	(v) Bigint *v;
436#else
437	(Bigint *v)
438#endif
439{
440	if (v && v != BIGINT_INVALID) {
441		mutex_lock(&freelist_mutex);
442
443		v->next = freelist[v->k];
444		freelist[v->k] = v;
445
446		mutex_unlock(&freelist_mutex);
447	}
448}
449
450#define Bcopy_valid(x,y) memcpy(&(x)->sign, &(y)->sign, \
451    (y)->wds*sizeof(Long) + 2*sizeof(int))
452
453#define Bcopy(x,y)  Bcopy_ptr(&(x),(y))
454
455 static void
456Bcopy_ptr(Bigint **px, Bigint *y)
457{
458	if (*px == BIGINT_INVALID)
459		return; /* no space to store copy */
460	if (y == BIGINT_INVALID) {
461		Bfree(*px); /* invalid input */
462		*px = BIGINT_INVALID;
463	} else {
464		Bcopy_valid(*px,y);
465	}
466}
467
468 static Bigint *
469multadd
470#ifdef KR_headers
471	(b, m, a) Bigint *b; int m, a;
472#else
473	(Bigint *b, int m, int a)	/* multiply by m and add a */
474#endif
475{
476	int i, wds;
477	ULong *x, y;
478#ifdef Pack_32
479	ULong xi, z;
480#endif
481	Bigint *b1;
482
483	if (b == BIGINT_INVALID)
484		return b;
485
486	wds = b->wds;
487	x = b->x;
488	i = 0;
489	do {
490#ifdef Pack_32
491		xi = *x;
492		y = (xi & 0xffff) * m + a;
493		z = (xi >> 16) * m + (y >> 16);
494		a = (int)(z >> 16);
495		*x++ = (z << 16) + (y & 0xffff);
496#else
497		y = *x * m + a;
498		a = (int)(y >> 16);
499		*x++ = y & 0xffff;
500#endif
501	}
502	while(++i < wds);
503	if (a) {
504		if (wds >= b->maxwds) {
505			b1 = Balloc(b->k+1);
506			if (b1 == BIGINT_INVALID) {
507				Bfree(b);
508				return b1;
509			}
510			Bcopy_valid(b1, b);
511			Bfree(b);
512			b = b1;
513			}
514		b->x[wds++] = a;
515		b->wds = wds;
516	}
517	return b;
518}
519
520 static Bigint *
521s2b
522#ifdef KR_headers
523	(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9;
524#else
525	(CONST char *s, int nd0, int nd, ULong y9)
526#endif
527{
528	Bigint *b;
529	int i, k;
530	Long x, y;
531
532	x = (nd + 8) / 9;
533	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
534#ifdef Pack_32
535	b = Balloc(k);
536	if (b == BIGINT_INVALID)
537		return b;
538	b->x[0] = y9;
539	b->wds = 1;
540#else
541	b = Balloc(k+1);
542	if (b == BIGINT_INVALID)
543		return b;
544
545	b->x[0] = y9 & 0xffff;
546	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
547#endif
548
549	i = 9;
550	if (9 < nd0) {
551		s += 9;
552		do b = multadd(b, 10, *s++ - '0');
553			while(++i < nd0);
554		s++;
555	}
556	else
557		s += 10;
558	for(; i < nd; i++)
559		b = multadd(b, 10, *s++ - '0');
560	return b;
561}
562
563 static int
564hi0bits
565#ifdef KR_headers
566	(x) ULong x;
567#else
568	(ULong x)
569#endif
570{
571	int k = 0;
572
573	if (!(x & 0xffff0000)) {
574		k = 16;
575		x <<= 16;
576	}
577	if (!(x & 0xff000000)) {
578		k += 8;
579		x <<= 8;
580	}
581	if (!(x & 0xf0000000)) {
582		k += 4;
583		x <<= 4;
584	}
585	if (!(x & 0xc0000000)) {
586		k += 2;
587		x <<= 2;
588	}
589	if (!(x & 0x80000000)) {
590		k++;
591		if (!(x & 0x40000000))
592			return 32;
593	}
594	return k;
595}
596
597 static int
598lo0bits
599#ifdef KR_headers
600	(y) ULong *y;
601#else
602	(ULong *y)
603#endif
604{
605	int k;
606	ULong x = *y;
607
608	if (x & 7) {
609		if (x & 1)
610			return 0;
611		if (x & 2) {
612			*y = x >> 1;
613			return 1;
614			}
615		*y = x >> 2;
616		return 2;
617	}
618	k = 0;
619	if (!(x & 0xffff)) {
620		k = 16;
621		x >>= 16;
622	}
623	if (!(x & 0xff)) {
624		k += 8;
625		x >>= 8;
626	}
627	if (!(x & 0xf)) {
628		k += 4;
629		x >>= 4;
630	}
631	if (!(x & 0x3)) {
632		k += 2;
633		x >>= 2;
634	}
635	if (!(x & 1)) {
636		k++;
637		x >>= 1;
638		if (!x & 1)
639			return 32;
640	}
641	*y = x;
642	return k;
643}
644
645 static Bigint *
646i2b
647#ifdef KR_headers
648	(i) int i;
649#else
650	(int i)
651#endif
652{
653	Bigint *b;
654
655	b = Balloc(1);
656	if (b != BIGINT_INVALID) {
657		b->x[0] = i;
658		b->wds = 1;
659		}
660	return b;
661}
662
663 static Bigint *
664mult
665#ifdef KR_headers
666	(a, b) Bigint *a, *b;
667#else
668	(Bigint *a, Bigint *b)
669#endif
670{
671	Bigint *c;
672	int k, wa, wb, wc;
673	ULong carry, y, z;
674	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
675#ifdef Pack_32
676	ULong z2;
677#endif
678
679	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
680		return BIGINT_INVALID;
681
682	if (a->wds < b->wds) {
683		c = a;
684		a = b;
685		b = c;
686	}
687	k = a->k;
688	wa = a->wds;
689	wb = b->wds;
690	wc = wa + wb;
691	if (wc > a->maxwds)
692		k++;
693	c = Balloc(k);
694	if (c == BIGINT_INVALID)
695		return c;
696	for(x = c->x, xa = x + wc; x < xa; x++)
697		*x = 0;
698	xa = a->x;
699	xae = xa + wa;
700	xb = b->x;
701	xbe = xb + wb;
702	xc0 = c->x;
703#ifdef Pack_32
704	for(; xb < xbe; xb++, xc0++) {
705		if ((y = *xb & 0xffff) != 0) {
706			x = xa;
707			xc = xc0;
708			carry = 0;
709			do {
710				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
711				carry = z >> 16;
712				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
713				carry = z2 >> 16;
714				Storeinc(xc, z2, z);
715			}
716			while(x < xae);
717			*xc = carry;
718		}
719		if ((y = *xb >> 16) != 0) {
720			x = xa;
721			xc = xc0;
722			carry = 0;
723			z2 = *xc;
724			do {
725				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
726				carry = z >> 16;
727				Storeinc(xc, z, z2);
728				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
729				carry = z2 >> 16;
730			}
731			while(x < xae);
732			*xc = z2;
733		}
734	}
735#else
736	for(; xb < xbe; xc0++) {
737		if (y = *xb++) {
738			x = xa;
739			xc = xc0;
740			carry = 0;
741			do {
742				z = *x++ * y + *xc + carry;
743				carry = z >> 16;
744				*xc++ = z & 0xffff;
745			}
746			while(x < xae);
747			*xc = carry;
748		}
749	}
750#endif
751	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
752	c->wds = wc;
753	return c;
754}
755
756 static Bigint *p5s;
757 static pthread_mutex_t p5s_mutex = PTHREAD_MUTEX_INITIALIZER;
758
759 static Bigint *
760pow5mult
761#ifdef KR_headers
762	(b, k) Bigint *b; int k;
763#else
764	(Bigint *b, int k)
765#endif
766{
767	Bigint *b1, *p5, *p51;
768	int i;
769	static const int p05[3] = { 5, 25, 125 };
770
771	if (b == BIGINT_INVALID)
772		return b;
773
774	if ((i = k & 3) != 0)
775		b = multadd(b, p05[i-1], 0);
776
777	if (!(k = (unsigned int) k >> 2))
778		return b;
779	mutex_lock(&p5s_mutex);
780	if (!(p5 = p5s)) {
781		/* first time */
782		p5 = i2b(625);
783		if (p5 == BIGINT_INVALID) {
784			Bfree(b);
785			mutex_unlock(&p5s_mutex);
786			return p5;
787		}
788		p5s = p5;
789		p5->next = 0;
790	}
791	for(;;) {
792		if (k & 1) {
793			b1 = mult(b, p5);
794			Bfree(b);
795			b = b1;
796		}
797		if (!(k = (unsigned int) k >> 1))
798			break;
799		if (!(p51 = p5->next)) {
800			p51 = mult(p5,p5);
801			if (p51 == BIGINT_INVALID) {
802				Bfree(b);
803				mutex_unlock(&p5s_mutex);
804				return p51;
805			}
806			p5->next = p51;
807			p51->next = 0;
808		}
809		p5 = p51;
810	}
811	mutex_unlock(&p5s_mutex);
812	return b;
813}
814
815 static Bigint *
816lshift
817#ifdef KR_headers
818	(b, k) Bigint *b; int k;
819#else
820	(Bigint *b, int k)
821#endif
822{
823	int i, k1, n, n1;
824	Bigint *b1;
825	ULong *x, *x1, *xe, z;
826
827	if (b == BIGINT_INVALID)
828		return b;
829
830#ifdef Pack_32
831	n = (unsigned int)k >> 5;
832#else
833	n = (unsigned int)k >> 4;
834#endif
835	k1 = b->k;
836	n1 = n + b->wds + 1;
837	for(i = b->maxwds; n1 > i; i <<= 1)
838		k1++;
839	b1 = Balloc(k1);
840	if (b1 == BIGINT_INVALID) {
841		Bfree(b);
842		return b1;
843	}
844	x1 = b1->x;
845	for(i = 0; i < n; i++)
846		*x1++ = 0;
847	x = b->x;
848	xe = x + b->wds;
849#ifdef Pack_32
850	if (k &= 0x1f) {
851		k1 = 32 - k;
852		z = 0;
853		do {
854			*x1++ = *x << k | z;
855			z = *x++ >> k1;
856		}
857		while(x < xe);
858		if ((*x1 = z) != 0)
859			++n1;
860	}
861#else
862	if (k &= 0xf) {
863		k1 = 16 - k;
864		z = 0;
865		do {
866			*x1++ = *x << k  & 0xffff | z;
867			z = *x++ >> k1;
868		}
869		while(x < xe);
870		if (*x1 = z)
871			++n1;
872	}
873#endif
874	else do
875		*x1++ = *x++;
876		while(x < xe);
877	b1->wds = n1 - 1;
878	Bfree(b);
879	return b1;
880}
881
882 static int
883cmp
884#ifdef KR_headers
885	(a, b) Bigint *a, *b;
886#else
887	(Bigint *a, Bigint *b)
888#endif
889{
890	ULong *xa, *xa0, *xb, *xb0;
891	int i, j;
892
893	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
894#ifdef DEBUG
895		Bug("cmp called with a or b invalid");
896#else
897		return 0; /* equal - the best we can do right now */
898#endif
899
900	i = a->wds;
901	j = b->wds;
902#ifdef DEBUG
903	if (i > 1 && !a->x[i-1])
904		Bug("cmp called with a->x[a->wds-1] == 0");
905	if (j > 1 && !b->x[j-1])
906		Bug("cmp called with b->x[b->wds-1] == 0");
907#endif
908	if (i -= j)
909		return i;
910	xa0 = a->x;
911	xa = xa0 + j;
912	xb0 = b->x;
913	xb = xb0 + j;
914	for(;;) {
915		if (*--xa != *--xb)
916			return *xa < *xb ? -1 : 1;
917		if (xa <= xa0)
918			break;
919	}
920	return 0;
921}
922
923 static Bigint *
924diff
925#ifdef KR_headers
926	(a, b) Bigint *a, *b;
927#else
928	(Bigint *a, Bigint *b)
929#endif
930{
931	Bigint *c;
932	int i, wa, wb;
933	Long borrow, y;	/* We need signed shifts here. */
934	ULong *xa, *xae, *xb, *xbe, *xc;
935#ifdef Pack_32
936	Long z;
937#endif
938
939	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
940		return BIGINT_INVALID;
941
942	i = cmp(a,b);
943	if (!i) {
944		c = Balloc(0);
945		if (c != BIGINT_INVALID) {
946			c->wds = 1;
947			c->x[0] = 0;
948			}
949		return c;
950	}
951	if (i < 0) {
952		c = a;
953		a = b;
954		b = c;
955		i = 1;
956	}
957	else
958		i = 0;
959	c = Balloc(a->k);
960	if (c == BIGINT_INVALID)
961		return c;
962	c->sign = i;
963	wa = a->wds;
964	xa = a->x;
965	xae = xa + wa;
966	wb = b->wds;
967	xb = b->x;
968	xbe = xb + wb;
969	xc = c->x;
970	borrow = 0;
971#ifdef Pack_32
972	do {
973		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
974		borrow = (ULong)y >> 16;
975		Sign_Extend(borrow, y);
976		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
977		borrow = (ULong)z >> 16;
978		Sign_Extend(borrow, z);
979		Storeinc(xc, z, y);
980	}
981	while(xb < xbe);
982	while(xa < xae) {
983		y = (*xa & 0xffff) + borrow;
984		borrow = (ULong)y >> 16;
985		Sign_Extend(borrow, y);
986		z = (*xa++ >> 16) + borrow;
987		borrow = (ULong)z >> 16;
988		Sign_Extend(borrow, z);
989		Storeinc(xc, z, y);
990	}
991#else
992	do {
993		y = *xa++ - *xb++ + borrow;
994		borrow = y >> 16;
995		Sign_Extend(borrow, y);
996		*xc++ = y & 0xffff;
997	}
998	while(xb < xbe);
999	while(xa < xae) {
1000		y = *xa++ + borrow;
1001		borrow = y >> 16;
1002		Sign_Extend(borrow, y);
1003		*xc++ = y & 0xffff;
1004	}
1005#endif
1006	while(!*--xc)
1007		wa--;
1008	c->wds = wa;
1009	return c;
1010}
1011
1012 static double
1013ulp
1014#ifdef KR_headers
1015	(_x) double _x;
1016#else
1017	(double _x)
1018#endif
1019{
1020	_double x;
1021	Long L;
1022	_double a;
1023
1024	value(x) = _x;
1025	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1026#ifndef Sudden_Underflow
1027	if (L > 0) {
1028#endif
1029#ifdef IBM
1030		L |= Exp_msk1 >> 4;
1031#endif
1032		word0(a) = L;
1033		word1(a) = 0;
1034#ifndef Sudden_Underflow
1035	}
1036	else {
1037		L = (ULong)-L >> Exp_shift;
1038		if (L < Exp_shift) {
1039			word0(a) = 0x80000 >> L;
1040			word1(a) = 0;
1041		}
1042		else {
1043			word0(a) = 0;
1044			L -= Exp_shift;
1045			word1(a) = L >= 31 ? 1 : 1 << (31 - L);
1046		}
1047	}
1048#endif
1049	return value(a);
1050}
1051
1052 static double
1053b2d
1054#ifdef KR_headers
1055	(a, e) Bigint *a; int *e;
1056#else
1057	(Bigint *a, int *e)
1058#endif
1059{
1060	ULong *xa, *xa0, w, y, z;
1061	int k;
1062	_double d;
1063#ifdef VAX
1064	ULong d0, d1;
1065#else
1066#define d0 word0(d)
1067#define d1 word1(d)
1068#endif
1069
1070	if (a == BIGINT_INVALID)
1071		return NAN;
1072
1073	xa0 = a->x;
1074	xa = xa0 + a->wds;
1075	y = *--xa;
1076#ifdef DEBUG
1077	if (!y) Bug("zero y in b2d");
1078#endif
1079	k = hi0bits(y);
1080	*e = 32 - k;
1081#ifdef Pack_32
1082	if (k < Ebits) {
1083		d0 = Exp_1 | y >> (Ebits - k);
1084		w = xa > xa0 ? *--xa : 0;
1085		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1086		goto ret_d;
1087	}
1088	z = xa > xa0 ? *--xa : 0;
1089	if (k -= Ebits) {
1090		d0 = Exp_1 | y << k | z >> (32 - k);
1091		y = xa > xa0 ? *--xa : 0;
1092		d1 = z << k | y >> (32 - k);
1093	}
1094	else {
1095		d0 = Exp_1 | y;
1096		d1 = z;
1097	}
1098#else
1099	if (k < Ebits + 16) {
1100		z = xa > xa0 ? *--xa : 0;
1101		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1102		w = xa > xa0 ? *--xa : 0;
1103		y = xa > xa0 ? *--xa : 0;
1104		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1105		goto ret_d;
1106	}
1107	z = xa > xa0 ? *--xa : 0;
1108	w = xa > xa0 ? *--xa : 0;
1109	k -= Ebits + 16;
1110	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1111	y = xa > xa0 ? *--xa : 0;
1112	d1 = w << k + 16 | y << k;
1113#endif
1114 ret_d:
1115#ifdef VAX
1116	word0(d) = d0 >> 16 | d0 << 16;
1117	word1(d) = d1 >> 16 | d1 << 16;
1118#else
1119#undef d0
1120#undef d1
1121#endif
1122	return value(d);
1123}
1124
1125 static Bigint *
1126d2b
1127#ifdef KR_headers
1128	(_d, e, bits) double d; int *e, *bits;
1129#else
1130	(double _d, int *e, int *bits)
1131#endif
1132{
1133	Bigint *b;
1134	int de, i, k;
1135	ULong *x, y, z;
1136	_double d;
1137#ifdef VAX
1138	ULong d0, d1;
1139#endif
1140
1141	value(d) = _d;
1142#ifdef VAX
1143	d0 = word0(d) >> 16 | word0(d) << 16;
1144	d1 = word1(d) >> 16 | word1(d) << 16;
1145#else
1146#define d0 word0(d)
1147#define d1 word1(d)
1148#endif
1149
1150#ifdef Pack_32
1151	b = Balloc(1);
1152#else
1153	b = Balloc(2);
1154#endif
1155	if (b == BIGINT_INVALID)
1156		return b;
1157	x = b->x;
1158
1159	z = d0 & Frac_mask;
1160	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
1161#ifdef Sudden_Underflow
1162	de = (int)(d0 >> Exp_shift);
1163#ifndef IBM
1164	z |= Exp_msk11;
1165#endif
1166#else
1167	if ((de = (int)(d0 >> Exp_shift)) != 0)
1168		z |= Exp_msk1;
1169#endif
1170#ifdef Pack_32
1171	if ((y = d1) != 0) {
1172		if ((k = lo0bits(&y)) != 0) {
1173			x[0] = y | z << (32 - k);
1174			z >>= k;
1175		}
1176		else
1177			x[0] = y;
1178		i = b->wds = (x[1] = z) ? 2 : 1;
1179	}
1180	else {
1181#ifdef DEBUG
1182		if (!z)
1183			Bug("Zero passed to d2b");
1184#endif
1185		k = lo0bits(&z);
1186		x[0] = z;
1187		i = b->wds = 1;
1188		k += 32;
1189	}
1190#else
1191	if (y = d1) {
1192		if (k = lo0bits(&y))
1193			if (k >= 16) {
1194				x[0] = y | z << 32 - k & 0xffff;
1195				x[1] = z >> k - 16 & 0xffff;
1196				x[2] = z >> k;
1197				i = 2;
1198			}
1199			else {
1200				x[0] = y & 0xffff;
1201				x[1] = y >> 16 | z << 16 - k & 0xffff;
1202				x[2] = z >> k & 0xffff;
1203				x[3] = z >> k+16;
1204				i = 3;
1205			}
1206		else {
1207			x[0] = y & 0xffff;
1208			x[1] = y >> 16;
1209			x[2] = z & 0xffff;
1210			x[3] = z >> 16;
1211			i = 3;
1212		}
1213	}
1214	else {
1215#ifdef DEBUG
1216		if (!z)
1217			Bug("Zero passed to d2b");
1218#endif
1219		k = lo0bits(&z);
1220		if (k >= 16) {
1221			x[0] = z;
1222			i = 0;
1223		}
1224		else {
1225			x[0] = z & 0xffff;
1226			x[1] = z >> 16;
1227			i = 1;
1228		}
1229		k += 32;
1230	}
1231	while(!x[i])
1232		--i;
1233	b->wds = i + 1;
1234#endif
1235#ifndef Sudden_Underflow
1236	if (de) {
1237#endif
1238#ifdef IBM
1239		*e = (de - Bias - (P-1) << 2) + k;
1240		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1241#else
1242		*e = de - Bias - (P-1) + k;
1243		*bits = P - k;
1244#endif
1245#ifndef Sudden_Underflow
1246	}
1247	else {
1248		*e = de - Bias - (P-1) + 1 + k;
1249#ifdef Pack_32
1250		*bits = 32*i - hi0bits(x[i-1]);
1251#else
1252		*bits = (i+2)*16 - hi0bits(x[i]);
1253#endif
1254		}
1255#endif
1256	return b;
1257}
1258#undef d0
1259#undef d1
1260
1261 static double
1262ratio
1263#ifdef KR_headers
1264	(a, b) Bigint *a, *b;
1265#else
1266	(Bigint *a, Bigint *b)
1267#endif
1268{
1269	_double da, db;
1270	int k, ka, kb;
1271
1272	if (a == BIGINT_INVALID || b == BIGINT_INVALID)
1273		return NAN; /* for lack of better value ? */
1274
1275	value(da) = b2d(a, &ka);
1276	value(db) = b2d(b, &kb);
1277#ifdef Pack_32
1278	k = ka - kb + 32*(a->wds - b->wds);
1279#else
1280	k = ka - kb + 16*(a->wds - b->wds);
1281#endif
1282#ifdef IBM
1283	if (k > 0) {
1284		word0(da) += (k >> 2)*Exp_msk1;
1285		if (k &= 3)
1286			da *= 1 << k;
1287	}
1288	else {
1289		k = -k;
1290		word0(db) += (k >> 2)*Exp_msk1;
1291		if (k &= 3)
1292			db *= 1 << k;
1293	}
1294#else
1295	if (k > 0)
1296		word0(da) += k*Exp_msk1;
1297	else {
1298		k = -k;
1299		word0(db) += k*Exp_msk1;
1300	}
1301#endif
1302	return value(da) / value(db);
1303}
1304
1305static CONST double
1306tens[] = {
1307		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1308		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1309		1e20, 1e21, 1e22
1310#ifdef VAX
1311		, 1e23, 1e24
1312#endif
1313};
1314
1315#ifdef IEEE_Arith
1316static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1317static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1318#define n_bigtens 5
1319#else
1320#ifdef IBM
1321static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
1322static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1323#define n_bigtens 3
1324#else
1325static CONST double bigtens[] = { 1e16, 1e32 };
1326static CONST double tinytens[] = { 1e-16, 1e-32 };
1327#define n_bigtens 2
1328#endif
1329#endif
1330
1331 double
1332strtod
1333#ifdef KR_headers
1334	(s00, se) CONST char *s00; char **se;
1335#else
1336	(CONST char *s00, char **se)
1337#endif
1338{
1339	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1340		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1341	CONST char *s, *s0, *s1;
1342	double aadj, aadj1, adj;
1343	_double rv, rv0;
1344	Long L;
1345	ULong y, z;
1346	Bigint *bb1, *bd0;
1347	Bigint *bb = NULL, *bd = NULL, *bs = NULL, *delta = NULL;/* pacify gcc */
1348
1349#ifdef ANDROID_CHANGES
1350	CONST char decimal_point = '.';
1351#else /* ANDROID_CHANGES */
1352#ifndef KR_headers
1353	CONST char decimal_point = localeconv()->decimal_point[0];
1354#else
1355	CONST char decimal_point = '.';
1356#endif
1357
1358#endif /* ANDROID_CHANGES */
1359
1360	sign = nz0 = nz = 0;
1361	value(rv) = 0.;
1362
1363
1364	for(s = s00; isspace((unsigned char) *s); s++)
1365		;
1366
1367	if (*s == '-') {
1368		sign = 1;
1369		s++;
1370	} else if (*s == '+') {
1371		s++;
1372	}
1373
1374	if (*s == '\0') {
1375		s = s00;
1376		goto ret;
1377	}
1378
1379	/* "INF" or "INFINITY" */
1380	if (tolower((unsigned char)*s) == 'i' && strncasecmp(s, "inf", 3) == 0) {
1381		if (strncasecmp(s + 3, "inity", 5) == 0)
1382			s += 8;
1383		else
1384			s += 3;
1385
1386		value(rv) = HUGE_VAL;
1387		goto ret;
1388	}
1389
1390#ifdef IEEE_Arith
1391	/* "NAN" or "NAN(n-char-sequence-opt)" */
1392	if (tolower((unsigned char)*s) == 'n' && strncasecmp(s, "nan", 3) == 0) {
1393		/* Build a quiet NaN. */
1394		word0(rv) = NAN_WORD0;
1395		word1(rv) = NAN_WORD1;
1396		s+= 3;
1397
1398		/* Don't interpret (n-char-sequence-opt), for now. */
1399		if (*s == '(') {
1400			s0 = s;
1401			for (s++; *s != ')' && *s != '\0'; s++)
1402				;
1403			if (*s == ')')
1404				s++;	/* Skip over closing paren ... */
1405			else
1406				s = s0;	/* ... otherwise go back. */
1407		}
1408
1409		goto ret;
1410	}
1411#endif
1412
1413	if (*s == '0') {
1414		nz0 = 1;
1415		while(*++s == '0') ;
1416		if (!*s)
1417			goto ret;
1418	}
1419	s0 = s;
1420	y = z = 0;
1421	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1422		if (nd < 9)
1423			y = 10*y + c - '0';
1424		else if (nd < 16)
1425			z = 10*z + c - '0';
1426	nd0 = nd;
1427	if (c == decimal_point) {
1428		c = *++s;
1429		if (!nd) {
1430			for(; c == '0'; c = *++s)
1431				nz++;
1432			if (c > '0' && c <= '9') {
1433				s0 = s;
1434				nf += nz;
1435				nz = 0;
1436				goto have_dig;
1437				}
1438			goto dig_done;
1439		}
1440		for(; c >= '0' && c <= '9'; c = *++s) {
1441 have_dig:
1442			nz++;
1443			if (c -= '0') {
1444				nf += nz;
1445				for(i = 1; i < nz; i++)
1446					if (nd++ < 9)
1447						y *= 10;
1448					else if (nd <= DBL_DIG + 1)
1449						z *= 10;
1450				if (nd++ < 9)
1451					y = 10*y + c;
1452				else if (nd <= DBL_DIG + 1)
1453					z = 10*z + c;
1454				nz = 0;
1455			}
1456		}
1457	}
1458 dig_done:
1459	e = 0;
1460	if (c == 'e' || c == 'E') {
1461		if (!nd && !nz && !nz0) {
1462			s = s00;
1463			goto ret;
1464		}
1465		s00 = s;
1466		esign = 0;
1467		switch(c = *++s) {
1468			case '-':
1469				esign = 1;
1470				/* FALLTHROUGH */
1471			case '+':
1472				c = *++s;
1473		}
1474		if (c >= '0' && c <= '9') {
1475			while(c == '0')
1476				c = *++s;
1477			if (c > '0' && c <= '9') {
1478				L = c - '0';
1479				s1 = s;
1480				while((c = *++s) >= '0' && c <= '9')
1481					L = 10*L + c - '0';
1482				if (s - s1 > 8 || L > 19999)
1483					/* Avoid confusion from exponents
1484					 * so large that e might overflow.
1485					 */
1486					e = 19999; /* safe for 16 bit ints */
1487				else
1488					e = (int)L;
1489				if (esign)
1490					e = -e;
1491			}
1492			else
1493				e = 0;
1494		}
1495		else
1496			s = s00;
1497	}
1498	if (!nd) {
1499		if (!nz && !nz0)
1500			s = s00;
1501		goto ret;
1502	}
1503	e1 = e -= nf;
1504
1505	/* Now we have nd0 digits, starting at s0, followed by a
1506	 * decimal point, followed by nd-nd0 digits.  The number we're
1507	 * after is the integer represented by those digits times
1508	 * 10**e */
1509
1510	if (!nd0)
1511		nd0 = nd;
1512	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1513	value(rv) = y;
1514	if (k > 9)
1515		value(rv) = tens[k - 9] * value(rv) + z;
1516	bd0 = 0;
1517	if (nd <= DBL_DIG
1518#ifndef RND_PRODQUOT
1519		&& FLT_ROUNDS == 1
1520#endif
1521		) {
1522		if (!e)
1523			goto ret;
1524		if (e > 0) {
1525			if (e <= Ten_pmax) {
1526#ifdef VAX
1527				goto vax_ovfl_check;
1528#else
1529				/* value(rv) = */ rounded_product(value(rv),
1530				    tens[e]);
1531				goto ret;
1532#endif
1533			}
1534			i = DBL_DIG - nd;
1535			if (e <= Ten_pmax + i) {
1536				/* A fancier test would sometimes let us do
1537				 * this for larger i values.
1538				 */
1539				e -= i;
1540				value(rv) *= tens[i];
1541#ifdef VAX
1542				/* VAX exponent range is so narrow we must
1543				 * worry about overflow here...
1544				 */
1545 vax_ovfl_check:
1546				word0(rv) -= P*Exp_msk1;
1547				/* value(rv) = */ rounded_product(value(rv),
1548				    tens[e]);
1549				if ((word0(rv) & Exp_mask)
1550				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1551					goto ovfl;
1552				word0(rv) += P*Exp_msk1;
1553#else
1554				/* value(rv) = */ rounded_product(value(rv),
1555				    tens[e]);
1556#endif
1557				goto ret;
1558			}
1559		}
1560#ifndef Inaccurate_Divide
1561		else if (e >= -Ten_pmax) {
1562			/* value(rv) = */ rounded_quotient(value(rv),
1563			    tens[-e]);
1564			goto ret;
1565		}
1566#endif
1567	}
1568	e1 += nd - k;
1569
1570	/* Get starting approximation = rv * 10**e1 */
1571
1572	if (e1 > 0) {
1573		if ((i = e1 & 15) != 0)
1574			value(rv) *= tens[i];
1575		if (e1 &= ~15) {
1576			if (e1 > DBL_MAX_10_EXP) {
1577 ovfl:
1578				errno = ERANGE;
1579				value(rv) = HUGE_VAL;
1580				if (bd0)
1581					goto retfree;
1582				goto ret;
1583			}
1584			if ((e1 = (unsigned int)e1 >> 4) != 0) {
1585				for(j = 0; e1 > 1; j++,
1586				    e1 = (unsigned int)e1 >> 1)
1587					if (e1 & 1)
1588						value(rv) *= bigtens[j];
1589			/* The last multiplication could overflow. */
1590				word0(rv) -= P*Exp_msk1;
1591				value(rv) *= bigtens[j];
1592				if ((z = word0(rv) & Exp_mask)
1593				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1594					goto ovfl;
1595				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1596					/* set to largest number */
1597					/* (Can't trust DBL_MAX) */
1598					word0(rv) = Big0;
1599					word1(rv) = Big1;
1600					}
1601				else
1602					word0(rv) += P*Exp_msk1;
1603			}
1604		}
1605	}
1606	else if (e1 < 0) {
1607		e1 = -e1;
1608		if ((i = e1 & 15) != 0)
1609			value(rv) /= tens[i];
1610		if (e1 &= ~15) {
1611			e1 = (unsigned int)e1 >> 4;
1612			if (e1 >= 1 << n_bigtens)
1613				goto undfl;
1614			for(j = 0; e1 > 1; j++,
1615			    e1 = (unsigned int)e1 >> 1)
1616				if (e1 & 1)
1617					value(rv) *= tinytens[j];
1618			/* The last multiplication could underflow. */
1619			value(rv0) = value(rv);
1620			value(rv) *= tinytens[j];
1621			if (!value(rv)) {
1622				value(rv) = 2.*value(rv0);
1623				value(rv) *= tinytens[j];
1624				if (!value(rv)) {
1625 undfl:
1626					value(rv) = 0.;
1627					errno = ERANGE;
1628					if (bd0)
1629						goto retfree;
1630					goto ret;
1631				}
1632				word0(rv) = Tiny0;
1633				word1(rv) = Tiny1;
1634				/* The refinement below will clean
1635				 * this approximation up.
1636				 */
1637			}
1638		}
1639	}
1640
1641	/* Now the hard part -- adjusting rv to the correct value.*/
1642
1643	/* Put digits into bd: true value = bd * 10^e */
1644
1645	bd0 = s2b(s0, nd0, nd, y);
1646
1647	for(;;) {
1648		bd = Balloc(bd0->k);
1649		Bcopy(bd, bd0);
1650		bb = d2b(value(rv), &bbe, &bbbits);	/* rv = bb * 2^bbe */
1651		bs = i2b(1);
1652
1653		if (e >= 0) {
1654			bb2 = bb5 = 0;
1655			bd2 = bd5 = e;
1656		}
1657		else {
1658			bb2 = bb5 = -e;
1659			bd2 = bd5 = 0;
1660		}
1661		if (bbe >= 0)
1662			bb2 += bbe;
1663		else
1664			bd2 -= bbe;
1665		bs2 = bb2;
1666#ifdef Sudden_Underflow
1667#ifdef IBM
1668		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1669#else
1670		j = P + 1 - bbbits;
1671#endif
1672#else
1673		i = bbe + bbbits - 1;	/* logb(rv) */
1674		if (i < Emin)	/* denormal */
1675			j = bbe + (P-Emin);
1676		else
1677			j = P + 1 - bbbits;
1678#endif
1679		bb2 += j;
1680		bd2 += j;
1681		i = bb2 < bd2 ? bb2 : bd2;
1682		if (i > bs2)
1683			i = bs2;
1684		if (i > 0) {
1685			bb2 -= i;
1686			bd2 -= i;
1687			bs2 -= i;
1688		}
1689		if (bb5 > 0) {
1690			bs = pow5mult(bs, bb5);
1691			bb1 = mult(bs, bb);
1692			Bfree(bb);
1693			bb = bb1;
1694		}
1695		if (bb2 > 0)
1696			bb = lshift(bb, bb2);
1697		if (bd5 > 0)
1698			bd = pow5mult(bd, bd5);
1699		if (bd2 > 0)
1700			bd = lshift(bd, bd2);
1701		if (bs2 > 0)
1702			bs = lshift(bs, bs2);
1703		delta = diff(bb, bd);
1704		dsign = delta->sign;
1705		delta->sign = 0;
1706		i = cmp(delta, bs);
1707		if (i < 0) {
1708			/* Error is less than half an ulp -- check for
1709			 * special case of mantissa a power of two.
1710			 */
1711			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1712				break;
1713			delta = lshift(delta,Log2P);
1714			if (cmp(delta, bs) > 0)
1715				goto drop_down;
1716			break;
1717		}
1718		if (i == 0) {
1719			/* exactly half-way between */
1720			if (dsign) {
1721				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1722				 &&  word1(rv) == 0xffffffff) {
1723					/*boundary case -- increment exponent*/
1724					word0(rv) = (word0(rv) & Exp_mask)
1725						+ Exp_msk1
1726#ifdef IBM
1727						| Exp_msk1 >> 4
1728#endif
1729						;
1730					word1(rv) = 0;
1731					break;
1732				}
1733			}
1734			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1735 drop_down:
1736				/* boundary case -- decrement exponent */
1737#ifdef Sudden_Underflow
1738				L = word0(rv) & Exp_mask;
1739#ifdef IBM
1740				if (L <  Exp_msk1)
1741#else
1742				if (L <= Exp_msk1)
1743#endif
1744					goto undfl;
1745				L -= Exp_msk1;
1746#else
1747				L = (word0(rv) & Exp_mask) - Exp_msk1;
1748#endif
1749				word0(rv) = L | Bndry_mask1;
1750				word1(rv) = 0xffffffff;
1751#ifdef IBM
1752				goto cont;
1753#else
1754				break;
1755#endif
1756			}
1757#ifndef ROUND_BIASED
1758			if (!(word1(rv) & LSB))
1759				break;
1760#endif
1761			if (dsign)
1762				value(rv) += ulp(value(rv));
1763#ifndef ROUND_BIASED
1764			else {
1765				value(rv) -= ulp(value(rv));
1766#ifndef Sudden_Underflow
1767				if (!value(rv))
1768					goto undfl;
1769#endif
1770			}
1771#endif
1772			break;
1773		}
1774		if ((aadj = ratio(delta, bs)) <= 2.) {
1775			if (dsign)
1776				aadj = aadj1 = 1.;
1777			else if (word1(rv) || word0(rv) & Bndry_mask) {
1778#ifndef Sudden_Underflow
1779				if (word1(rv) == Tiny1 && !word0(rv))
1780					goto undfl;
1781#endif
1782				aadj = 1.;
1783				aadj1 = -1.;
1784			}
1785			else {
1786				/* special case -- power of FLT_RADIX to be */
1787				/* rounded down... */
1788
1789				if (aadj < 2./FLT_RADIX)
1790					aadj = 1./FLT_RADIX;
1791				else
1792					aadj *= 0.5;
1793				aadj1 = -aadj;
1794				}
1795		}
1796		else {
1797			aadj *= 0.5;
1798			aadj1 = dsign ? aadj : -aadj;
1799#ifdef Check_FLT_ROUNDS
1800			switch(FLT_ROUNDS) {
1801				case 2: /* towards +infinity */
1802					aadj1 -= 0.5;
1803					break;
1804				case 0: /* towards 0 */
1805				case 3: /* towards -infinity */
1806					aadj1 += 0.5;
1807			}
1808#else
1809			if (FLT_ROUNDS == 0)
1810				aadj1 += 0.5;
1811#endif
1812		}
1813		y = word0(rv) & Exp_mask;
1814
1815		/* Check for overflow */
1816
1817		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1818			value(rv0) = value(rv);
1819			word0(rv) -= P*Exp_msk1;
1820			adj = aadj1 * ulp(value(rv));
1821			value(rv) += adj;
1822			if ((word0(rv) & Exp_mask) >=
1823					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1824				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1825					goto ovfl;
1826				word0(rv) = Big0;
1827				word1(rv) = Big1;
1828				goto cont;
1829			}
1830			else
1831				word0(rv) += P*Exp_msk1;
1832		}
1833		else {
1834#ifdef Sudden_Underflow
1835			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1836				value(rv0) = value(rv);
1837				word0(rv) += P*Exp_msk1;
1838				adj = aadj1 * ulp(value(rv));
1839				value(rv) += adj;
1840#ifdef IBM
1841				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1842#else
1843				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1844#endif
1845				{
1846					if (word0(rv0) == Tiny0
1847					 && word1(rv0) == Tiny1)
1848						goto undfl;
1849					word0(rv) = Tiny0;
1850					word1(rv) = Tiny1;
1851					goto cont;
1852				}
1853				else
1854					word0(rv) -= P*Exp_msk1;
1855				}
1856			else {
1857				adj = aadj1 * ulp(value(rv));
1858				value(rv) += adj;
1859			}
1860#else
1861			/* Compute adj so that the IEEE rounding rules will
1862			 * correctly round rv + adj in some half-way cases.
1863			 * If rv * ulp(rv) is denormalized (i.e.,
1864			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1865			 * trouble from bits lost to denormalization;
1866			 * example: 1.2e-307 .
1867			 */
1868			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1869				aadj1 = (double)(int)(aadj + 0.5);
1870				if (!dsign)
1871					aadj1 = -aadj1;
1872			}
1873			adj = aadj1 * ulp(value(rv));
1874			value(rv) += adj;
1875#endif
1876		}
1877		z = word0(rv) & Exp_mask;
1878		if (y == z) {
1879			/* Can we stop now? */
1880			L = aadj;
1881			aadj -= L;
1882			/* The tolerances below are conservative. */
1883			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1884				if (aadj < .4999999 || aadj > .5000001)
1885					break;
1886			}
1887			else if (aadj < .4999999/FLT_RADIX)
1888				break;
1889		}
1890 cont:
1891		Bfree(bb);
1892		Bfree(bd);
1893		Bfree(bs);
1894		Bfree(delta);
1895	}
1896 retfree:
1897	Bfree(bb);
1898	Bfree(bd);
1899	Bfree(bs);
1900	Bfree(bd0);
1901	Bfree(delta);
1902 ret:
1903	if (se)
1904		/* LINTED interface specification */
1905		*se = (char *)s;
1906	return sign ? -value(rv) : value(rv);
1907}
1908
1909 static int
1910quorem
1911#ifdef KR_headers
1912	(b, S) Bigint *b, *S;
1913#else
1914	(Bigint *b, Bigint *S)
1915#endif
1916{
1917	int n;
1918	Long borrow, y;
1919	ULong carry, q, ys;
1920	ULong *bx, *bxe, *sx, *sxe;
1921#ifdef Pack_32
1922	Long z;
1923	ULong si, zs;
1924#endif
1925
1926	if (b == BIGINT_INVALID || S == BIGINT_INVALID)
1927		return 0;
1928
1929	n = S->wds;
1930#ifdef DEBUG
1931	/*debug*/ if (b->wds > n)
1932	/*debug*/	Bug("oversize b in quorem");
1933#endif
1934	if (b->wds < n)
1935		return 0;
1936	sx = S->x;
1937	sxe = sx + --n;
1938	bx = b->x;
1939	bxe = bx + n;
1940	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1941#ifdef DEBUG
1942	/*debug*/ if (q > 9)
1943	/*debug*/	Bug("oversized quotient in quorem");
1944#endif
1945	if (q) {
1946		borrow = 0;
1947		carry = 0;
1948		do {
1949#ifdef Pack_32
1950			si = *sx++;
1951			ys = (si & 0xffff) * q + carry;
1952			zs = (si >> 16) * q + (ys >> 16);
1953			carry = zs >> 16;
1954			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1955			borrow = (ULong)y >> 16;
1956			Sign_Extend(borrow, y);
1957			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1958			borrow = (ULong)z >> 16;
1959			Sign_Extend(borrow, z);
1960			Storeinc(bx, z, y);
1961#else
1962			ys = *sx++ * q + carry;
1963			carry = ys >> 16;
1964			y = *bx - (ys & 0xffff) + borrow;
1965			borrow = y >> 16;
1966			Sign_Extend(borrow, y);
1967			*bx++ = y & 0xffff;
1968#endif
1969		}
1970		while(sx <= sxe);
1971		if (!*bxe) {
1972			bx = b->x;
1973			while(--bxe > bx && !*bxe)
1974				--n;
1975			b->wds = n;
1976		}
1977	}
1978	if (cmp(b, S) >= 0) {
1979		q++;
1980		borrow = 0;
1981		carry = 0;
1982		bx = b->x;
1983		sx = S->x;
1984		do {
1985#ifdef Pack_32
1986			si = *sx++;
1987			ys = (si & 0xffff) + carry;
1988			zs = (si >> 16) + (ys >> 16);
1989			carry = zs >> 16;
1990			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1991			borrow = (ULong)y >> 16;
1992			Sign_Extend(borrow, y);
1993			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1994			borrow = (ULong)z >> 16;
1995			Sign_Extend(borrow, z);
1996			Storeinc(bx, z, y);
1997#else
1998			ys = *sx++ + carry;
1999			carry = ys >> 16;
2000			y = *bx - (ys & 0xffff) + borrow;
2001			borrow = y >> 16;
2002			Sign_Extend(borrow, y);
2003			*bx++ = y & 0xffff;
2004#endif
2005		}
2006		while(sx <= sxe);
2007		bx = b->x;
2008		bxe = bx + n;
2009		if (!*bxe) {
2010			while(--bxe > bx && !*bxe)
2011				--n;
2012			b->wds = n;
2013		}
2014	}
2015	return q;
2016}
2017
2018/* freedtoa(s) must be used to free values s returned by dtoa
2019 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2020 * but for consistency with earlier versions of dtoa, it is optional
2021 * when MULTIPLE_THREADS is not defined.
2022 */
2023
2024void
2025#ifdef KR_headers
2026freedtoa(s) char *s;
2027#else
2028freedtoa(char *s)
2029#endif
2030{
2031	free(s);
2032}
2033
2034
2035
2036/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2037 *
2038 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2039 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
2040 *
2041 * Modifications:
2042 *	1. Rather than iterating, we use a simple numeric overestimate
2043 *	   to determine k = floor(log10(d)).  We scale relevant
2044 *	   quantities using O(log2(k)) rather than O(k) multiplications.
2045 *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2046 *	   try to generate digits strictly left to right.  Instead, we
2047 *	   compute with fewer bits and propagate the carry if necessary
2048 *	   when rounding the final digit up.  This is often faster.
2049 *	3. Under the assumption that input will be rounded nearest,
2050 *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2051 *	   That is, we allow equality in stopping tests when the
2052 *	   round-nearest rule will give the same floating-point value
2053 *	   as would satisfaction of the stopping test with strict
2054 *	   inequality.
2055 *	4. We remove common factors of powers of 2 from relevant
2056 *	   quantities.
2057 *	5. When converting floating-point integers less than 1e16,
2058 *	   we use floating-point arithmetic rather than resorting
2059 *	   to multiple-precision integers.
2060 *	6. When asked to produce fewer than 15 digits, we first try
2061 *	   to get by with floating-point arithmetic; we resort to
2062 *	   multiple-precision integer arithmetic only if we cannot
2063 *	   guarantee that the floating-point calculation has given
2064 *	   the correctly rounded result.  For k requested digits and
2065 *	   "uniformly" distributed input, the probability is
2066 *	   something like 10^(k-15) that we must resort to the Long
2067 *	   calculation.
2068 */
2069
2070__LIBC_HIDDEN__  char *
2071__dtoa
2072#ifdef KR_headers
2073	(_d, mode, ndigits, decpt, sign, rve)
2074	double _d; int mode, ndigits, *decpt, *sign; char **rve;
2075#else
2076	(double _d, int mode, int ndigits, int *decpt, int *sign, char **rve)
2077#endif
2078{
2079 /*	Arguments ndigits, decpt, sign are similar to those
2080	of ecvt and fcvt; trailing zeros are suppressed from
2081	the returned string.  If not null, *rve is set to point
2082	to the end of the return value.  If d is +-Infinity or NaN,
2083	then *decpt is set to 9999.
2084
2085	mode:
2086		0 ==> shortest string that yields d when read in
2087			and rounded to nearest.
2088		1 ==> like 0, but with Steele & White stopping rule;
2089			e.g. with IEEE P754 arithmetic , mode 0 gives
2090			1e23 whereas mode 1 gives 9.999999999999999e22.
2091		2 ==> max(1,ndigits) significant digits.  This gives a
2092			return value similar to that of ecvt, except
2093			that trailing zeros are suppressed.
2094		3 ==> through ndigits past the decimal point.  This
2095			gives a return value similar to that from fcvt,
2096			except that trailing zeros are suppressed, and
2097			ndigits can be negative.
2098		4-9 should give the same return values as 2-3, i.e.,
2099			4 <= mode <= 9 ==> same return as mode
2100			2 + (mode & 1).  These modes are mainly for
2101			debugging; often they run slower but sometimes
2102			faster than modes 2-3.
2103		4,5,8,9 ==> left-to-right digit generation.
2104		6-9 ==> don't try fast floating-point estimate
2105			(if applicable).
2106
2107		Values of mode other than 0-9 are treated as mode 0.
2108
2109		Sufficient space is allocated to the return value
2110		to hold the suppressed trailing zeros.
2111	*/
2112
2113	int bbits, b2, b5, be, dig, i, ieps, ilim0,
2114		j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
2115		try_quick;
2116	int ilim = 0, ilim1 = 0, spec_case = 0;	/* pacify gcc */
2117	Long L;
2118#ifndef Sudden_Underflow
2119	int denorm;
2120	ULong x;
2121#endif
2122	Bigint *b, *b1, *delta, *mhi, *S;
2123	Bigint *mlo = NULL; /* pacify gcc */
2124	double ds;
2125	char *s, *s0;
2126	Bigint *result = NULL;
2127	int result_k = 0;
2128	_double d, d2, eps;
2129
2130	value(d) = _d;
2131
2132	if (word0(d) & Sign_bit) {
2133		/* set sign for everything, including 0's and NaNs */
2134		*sign = 1;
2135		word0(d) &= ~Sign_bit;	/* clear sign bit */
2136	}
2137	else
2138		*sign = 0;
2139
2140#if defined(IEEE_Arith) + defined(VAX)
2141#ifdef IEEE_Arith
2142	if ((word0(d) & Exp_mask) == Exp_mask)
2143#else
2144	if (word0(d)  == 0x8000)
2145#endif
2146	{
2147		/* Infinity or NaN */
2148		*decpt = 9999;
2149		s =
2150#ifdef IEEE_Arith
2151			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
2152#endif
2153				"NaN";
2154		result = Balloc(strlen(s)+1);
2155		if (result == BIGINT_INVALID)
2156			return NULL;
2157		s0 = (char *)(void *)result;
2158		strcpy(s0, s);
2159		if (rve)
2160			*rve =
2161#ifdef IEEE_Arith
2162				s0[3] ? s0 + 8 :
2163#endif
2164				s0 + 3;
2165		return s0;
2166	}
2167#endif
2168#ifdef IBM
2169	value(d) += 0; /* normalize */
2170#endif
2171	if (!value(d)) {
2172		*decpt = 1;
2173		result = Balloc(2);
2174		if (result == BIGINT_INVALID)
2175			return NULL;
2176		s0 = (char *)(void *)result;
2177		strcpy(s0, "0");
2178		if (rve)
2179			*rve = s0 + 1;
2180		return s0;
2181	}
2182
2183	b = d2b(value(d), &be, &bbits);
2184#ifdef Sudden_Underflow
2185	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
2186#else
2187	if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
2188#endif
2189		value(d2) = value(d);
2190		word0(d2) &= Frac_mask1;
2191		word0(d2) |= Exp_11;
2192#ifdef IBM
2193		if (j = 11 - hi0bits(word0(d2) & Frac_mask))
2194			value(d2) /= 1 << j;
2195#endif
2196
2197		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
2198		 * log10(x)	 =  log(x) / log(10)
2199		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2200		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2201		 *
2202		 * This suggests computing an approximation k to log10(d) by
2203		 *
2204		 * k = (i - Bias)*0.301029995663981
2205		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2206		 *
2207		 * We want k to be too large rather than too small.
2208		 * The error in the first-order Taylor series approximation
2209		 * is in our favor, so we just round up the constant enough
2210		 * to compensate for any error in the multiplication of
2211		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2212		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2213		 * adding 1e-13 to the constant term more than suffices.
2214		 * Hence we adjust the constant term to 0.1760912590558.
2215		 * (We could get a more accurate k by invoking log10,
2216		 *  but this is probably not worthwhile.)
2217		 */
2218
2219		i -= Bias;
2220#ifdef IBM
2221		i <<= 2;
2222		i += j;
2223#endif
2224#ifndef Sudden_Underflow
2225		denorm = 0;
2226	}
2227	else {
2228		/* d is denormalized */
2229
2230		i = bbits + be + (Bias + (P-1) - 1);
2231		x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32)
2232			    : word1(d) << (32 - i);
2233		value(d2) = x;
2234		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
2235		i -= (Bias + (P-1) - 1) + 1;
2236		denorm = 1;
2237	}
2238#endif
2239	ds = (value(d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2240	    i*0.301029995663981;
2241	k = (int)ds;
2242	if (ds < 0. && ds != k)
2243		k--;	/* want k = floor(ds) */
2244	k_check = 1;
2245	if (k >= 0 && k <= Ten_pmax) {
2246		if (value(d) < tens[k])
2247			k--;
2248		k_check = 0;
2249	}
2250	j = bbits - i - 1;
2251	if (j >= 0) {
2252		b2 = 0;
2253		s2 = j;
2254	}
2255	else {
2256		b2 = -j;
2257		s2 = 0;
2258	}
2259	if (k >= 0) {
2260		b5 = 0;
2261		s5 = k;
2262		s2 += k;
2263	}
2264	else {
2265		b2 -= k;
2266		b5 = -k;
2267		s5 = 0;
2268	}
2269	if (mode < 0 || mode > 9)
2270		mode = 0;
2271	try_quick = 1;
2272	if (mode > 5) {
2273		mode -= 4;
2274		try_quick = 0;
2275	}
2276	leftright = 1;
2277	switch(mode) {
2278		case 0:
2279		case 1:
2280			ilim = ilim1 = -1;
2281			i = 18;
2282			ndigits = 0;
2283			break;
2284		case 2:
2285			leftright = 0;
2286			/* FALLTHROUGH */
2287		case 4:
2288			if (ndigits <= 0)
2289				ndigits = 1;
2290			ilim = ilim1 = i = ndigits;
2291			break;
2292		case 3:
2293			leftright = 0;
2294			/* FALLTHROUGH */
2295		case 5:
2296			i = ndigits + k + 1;
2297			ilim = i;
2298			ilim1 = i - 1;
2299			if (i <= 0)
2300				i = 1;
2301	}
2302	j = sizeof(ULong);
2303        for(result_k = 0; (int)(sizeof(Bigint) - sizeof(ULong)) + j <= i;
2304		j <<= 1) result_k++;
2305        // this is really a ugly hack, the code uses Balloc
2306        // instead of malloc, but casts the result into a char*
2307        // it seems the only reason to do that is due to the
2308        // complicated way the block size need to be computed
2309        // buuurk....
2310	result = Balloc(result_k);
2311	if (result == BIGINT_INVALID) {
2312		Bfree(b);
2313		return NULL;
2314	}
2315	s = s0 = (char *)(void *)result;
2316
2317	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2318
2319		/* Try to get by with floating-point arithmetic. */
2320
2321		i = 0;
2322		value(d2) = value(d);
2323		k0 = k;
2324		ilim0 = ilim;
2325		ieps = 2; /* conservative */
2326		if (k > 0) {
2327			ds = tens[k&0xf];
2328			j = (unsigned int)k >> 4;
2329			if (j & Bletch) {
2330				/* prevent overflows */
2331				j &= Bletch - 1;
2332				value(d) /= bigtens[n_bigtens-1];
2333				ieps++;
2334				}
2335			for(; j; j = (unsigned int)j >> 1, i++)
2336				if (j & 1) {
2337					ieps++;
2338					ds *= bigtens[i];
2339					}
2340			value(d) /= ds;
2341		}
2342		else if ((jj1 = -k) != 0) {
2343			value(d) *= tens[jj1 & 0xf];
2344			for(j = (unsigned int)jj1 >> 4; j;
2345			    j = (unsigned int)j >> 1, i++)
2346				if (j & 1) {
2347					ieps++;
2348					value(d) *= bigtens[i];
2349				}
2350		}
2351		if (k_check && value(d) < 1. && ilim > 0) {
2352			if (ilim1 <= 0)
2353				goto fast_failed;
2354			ilim = ilim1;
2355			k--;
2356			value(d) *= 10.;
2357			ieps++;
2358		}
2359		value(eps) = ieps*value(d) + 7.;
2360		word0(eps) -= (P-1)*Exp_msk1;
2361		if (ilim == 0) {
2362			S = mhi = 0;
2363			value(d) -= 5.;
2364			if (value(d) > value(eps))
2365				goto one_digit;
2366			if (value(d) < -value(eps))
2367				goto no_digits;
2368			goto fast_failed;
2369		}
2370#ifndef No_leftright
2371		if (leftright) {
2372			/* Use Steele & White method of only
2373			 * generating digits needed.
2374			 */
2375			value(eps) = 0.5/tens[ilim-1] - value(eps);
2376			for(i = 0;;) {
2377				L = value(d);
2378				value(d) -= L;
2379				*s++ = '0' + (int)L;
2380				if (value(d) < value(eps))
2381					goto ret1;
2382				if (1. - value(d) < value(eps))
2383					goto bump_up;
2384				if (++i >= ilim)
2385					break;
2386				value(eps) *= 10.;
2387				value(d) *= 10.;
2388				}
2389		}
2390		else {
2391#endif
2392			/* Generate ilim digits, then fix them up. */
2393			value(eps) *= tens[ilim-1];
2394			for(i = 1;; i++, value(d) *= 10.) {
2395				L = value(d);
2396				value(d) -= L;
2397				*s++ = '0' + (int)L;
2398				if (i == ilim) {
2399					if (value(d) > 0.5 + value(eps))
2400						goto bump_up;
2401					else if (value(d) < 0.5 - value(eps)) {
2402						while(*--s == '0');
2403						s++;
2404						goto ret1;
2405						}
2406					break;
2407				}
2408			}
2409#ifndef No_leftright
2410		}
2411#endif
2412 fast_failed:
2413		s = s0;
2414		value(d) = value(d2);
2415		k = k0;
2416		ilim = ilim0;
2417	}
2418
2419	/* Do we have a "small" integer? */
2420
2421	if (be >= 0 && k <= Int_max) {
2422		/* Yes. */
2423		ds = tens[k];
2424		if (ndigits < 0 && ilim <= 0) {
2425			S = mhi = 0;
2426			if (ilim < 0 || value(d) <= 5*ds)
2427				goto no_digits;
2428			goto one_digit;
2429		}
2430		for(i = 1;; i++) {
2431			L = value(d) / ds;
2432			value(d) -= L*ds;
2433#ifdef Check_FLT_ROUNDS
2434			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2435			if (value(d) < 0) {
2436				L--;
2437				value(d) += ds;
2438			}
2439#endif
2440			*s++ = '0' + (int)L;
2441			if (i == ilim) {
2442				value(d) += value(d);
2443				if (value(d) > ds || (value(d) == ds && L & 1)) {
2444 bump_up:
2445					while(*--s == '9')
2446						if (s == s0) {
2447							k++;
2448							*s = '0';
2449							break;
2450						}
2451					++*s++;
2452				}
2453				break;
2454			}
2455			if (!(value(d) *= 10.))
2456				break;
2457			}
2458		goto ret1;
2459	}
2460
2461	m2 = b2;
2462	m5 = b5;
2463	mhi = mlo = 0;
2464	if (leftright) {
2465		if (mode < 2) {
2466			i =
2467#ifndef Sudden_Underflow
2468				denorm ? be + (Bias + (P-1) - 1 + 1) :
2469#endif
2470#ifdef IBM
2471				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2472#else
2473				1 + P - bbits;
2474#endif
2475		}
2476		else {
2477			j = ilim - 1;
2478			if (m5 >= j)
2479				m5 -= j;
2480			else {
2481				s5 += j -= m5;
2482				b5 += j;
2483				m5 = 0;
2484			}
2485			if ((i = ilim) < 0) {
2486				m2 -= i;
2487				i = 0;
2488			}
2489		}
2490		b2 += i;
2491		s2 += i;
2492		mhi = i2b(1);
2493	}
2494	if (m2 > 0 && s2 > 0) {
2495		i = m2 < s2 ? m2 : s2;
2496		b2 -= i;
2497		m2 -= i;
2498		s2 -= i;
2499	}
2500	if (b5 > 0) {
2501		if (leftright) {
2502			if (m5 > 0) {
2503				mhi = pow5mult(mhi, m5);
2504				b1 = mult(mhi, b);
2505				Bfree(b);
2506				b = b1;
2507			}
2508			if ((j = b5 - m5) != 0)
2509				b = pow5mult(b, j);
2510			}
2511		else
2512			b = pow5mult(b, b5);
2513	}
2514	S = i2b(1);
2515	if (s5 > 0)
2516		S = pow5mult(S, s5);
2517
2518	/* Check for special case that d is a normalized power of 2. */
2519
2520	if (mode < 2) {
2521		if (!word1(d) && !(word0(d) & Bndry_mask)
2522#ifndef Sudden_Underflow
2523		 && word0(d) & Exp_mask
2524#endif
2525				) {
2526			/* The special case */
2527			b2 += Log2P;
2528			s2 += Log2P;
2529			spec_case = 1;
2530			}
2531		else
2532			spec_case = 0;
2533	}
2534
2535	/* Arrange for convenient computation of quotients:
2536	 * shift left if necessary so divisor has 4 leading 0 bits.
2537	 *
2538	 * Perhaps we should just compute leading 28 bits of S once
2539	 * and for all and pass them and a shift to quorem, so it
2540	 * can do shifts and ors to compute the numerator for q.
2541	 */
2542	if (S == BIGINT_INVALID) {
2543		i = 0;
2544	} else {
2545#ifdef Pack_32
2546		if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
2547			i = 32 - i;
2548#else
2549		if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2550			i = 16 - i;
2551#endif
2552	}
2553
2554	if (i > 4) {
2555		i -= 4;
2556		b2 += i;
2557		m2 += i;
2558		s2 += i;
2559	}
2560	else if (i < 4) {
2561		i += 28;
2562		b2 += i;
2563		m2 += i;
2564		s2 += i;
2565	}
2566	if (b2 > 0)
2567		b = lshift(b, b2);
2568	if (s2 > 0)
2569		S = lshift(S, s2);
2570	if (k_check) {
2571		if (cmp(b,S) < 0) {
2572			k--;
2573			b = multadd(b, 10, 0);	/* we botched the k estimate */
2574			if (leftright)
2575				mhi = multadd(mhi, 10, 0);
2576			ilim = ilim1;
2577			}
2578	}
2579	if (ilim <= 0 && mode > 2) {
2580		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2581			/* no digits, fcvt style */
2582 no_digits:
2583			k = -1 - ndigits;
2584			goto ret;
2585		}
2586 one_digit:
2587		*s++ = '1';
2588		k++;
2589		goto ret;
2590	}
2591	if (leftright) {
2592		if (m2 > 0)
2593			mhi = lshift(mhi, m2);
2594
2595		/* Compute mlo -- check for special case
2596		 * that d is a normalized power of 2.
2597		 */
2598
2599		mlo = mhi;
2600		if (spec_case) {
2601			mhi = Balloc(mhi->k);
2602			Bcopy(mhi, mlo);
2603			mhi = lshift(mhi, Log2P);
2604		}
2605
2606		for(i = 1;;i++) {
2607			dig = quorem(b,S) + '0';
2608			/* Do we yet have the shortest decimal string
2609			 * that will round to d?
2610			 */
2611			j = cmp(b, mlo);
2612			delta = diff(S, mhi);
2613			jj1 = delta->sign ? 1 : cmp(b, delta);
2614			Bfree(delta);
2615#ifndef ROUND_BIASED
2616			if (jj1 == 0 && !mode && !(word1(d) & 1)) {
2617				if (dig == '9')
2618					goto round_9_up;
2619				if (j > 0)
2620					dig++;
2621				*s++ = dig;
2622				goto ret;
2623			}
2624#endif
2625			if (j < 0 || (j == 0 && !mode
2626#ifndef ROUND_BIASED
2627							&& !(word1(d) & 1)
2628#endif
2629					)) {
2630				if (jj1 > 0) {
2631					b = lshift(b, 1);
2632					jj1 = cmp(b, S);
2633					if ((jj1 > 0 || (jj1 == 0 && dig & 1))
2634					&& dig++ == '9')
2635						goto round_9_up;
2636					}
2637				*s++ = dig;
2638				goto ret;
2639			}
2640			if (jj1 > 0) {
2641				if (dig == '9') { /* possible if i == 1 */
2642 round_9_up:
2643					*s++ = '9';
2644					goto roundoff;
2645					}
2646				*s++ = dig + 1;
2647				goto ret;
2648			}
2649			*s++ = dig;
2650			if (i == ilim)
2651				break;
2652			b = multadd(b, 10, 0);
2653			if (mlo == mhi)
2654				mlo = mhi = multadd(mhi, 10, 0);
2655			else {
2656				mlo = multadd(mlo, 10, 0);
2657				mhi = multadd(mhi, 10, 0);
2658			}
2659		}
2660	}
2661	else
2662		for(i = 1;; i++) {
2663			*s++ = dig = quorem(b,S) + '0';
2664			if (i >= ilim)
2665				break;
2666			b = multadd(b, 10, 0);
2667		}
2668
2669	/* Round off last digit */
2670
2671	b = lshift(b, 1);
2672	j = cmp(b, S);
2673	if (j > 0 || (j == 0 && dig & 1)) {
2674 roundoff:
2675		while(*--s == '9')
2676			if (s == s0) {
2677				k++;
2678				*s++ = '1';
2679				goto ret;
2680				}
2681		++*s++;
2682	}
2683	else {
2684		while(*--s == '0');
2685		s++;
2686	}
2687 ret:
2688	Bfree(S);
2689	if (mhi) {
2690		if (mlo && mlo != mhi)
2691			Bfree(mlo);
2692		Bfree(mhi);
2693	}
2694 ret1:
2695	Bfree(b);
2696	if (s == s0) {				/* don't return empty string */
2697		*s++ = '0';
2698		k = 0;
2699	}
2700	*s = 0;
2701	*decpt = k + 1;
2702	if (rve)
2703		*rve = s;
2704	return s0;
2705}
2706#ifdef __cplusplus
2707}
2708#endif
2709