ASTContext.cpp revision 32442bbc98bafa512fa42d46fedf60ed7d79f574
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Bitcode/Serialize.h"
22#include "llvm/Bitcode/Deserialize.h"
23
24using namespace clang;
25
26enum FloatingRank {
27  FloatRank, DoubleRank, LongDoubleRank
28};
29
30ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
31                       IdentifierTable &idents, SelectorTable &sels,
32                       unsigned size_reserve) :
33  CFConstantStringTypeDecl(0), SourceMgr(SM), LangOpts(LOpts), Target(t),
34  Idents(idents), Selectors(sels)
35{
36  if (size_reserve > 0) Types.reserve(size_reserve);
37  InitBuiltinTypes();
38  BuiltinInfo.InitializeBuiltins(idents, Target);
39  TUDecl = TranslationUnitDecl::Create(*this);
40}
41
42ASTContext::~ASTContext() {
43  // Deallocate all the types.
44  while (!Types.empty()) {
45    Types.back()->Destroy(*this);
46    Types.pop_back();
47  }
48
49  TUDecl->Destroy(*this);
50}
51
52void ASTContext::PrintStats() const {
53  fprintf(stderr, "*** AST Context Stats:\n");
54  fprintf(stderr, "  %d types total.\n", (int)Types.size());
55  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
56  unsigned NumVector = 0, NumComplex = 0;
57  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
58
59  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
60  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
61  unsigned NumObjCQualifiedIds = 0;
62  unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
63
64  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
65    Type *T = Types[i];
66    if (isa<BuiltinType>(T))
67      ++NumBuiltin;
68    else if (isa<PointerType>(T))
69      ++NumPointer;
70    else if (isa<ReferenceType>(T))
71      ++NumReference;
72    else if (isa<ComplexType>(T))
73      ++NumComplex;
74    else if (isa<ArrayType>(T))
75      ++NumArray;
76    else if (isa<VectorType>(T))
77      ++NumVector;
78    else if (isa<FunctionTypeNoProto>(T))
79      ++NumFunctionNP;
80    else if (isa<FunctionTypeProto>(T))
81      ++NumFunctionP;
82    else if (isa<TypedefType>(T))
83      ++NumTypeName;
84    else if (TagType *TT = dyn_cast<TagType>(T)) {
85      ++NumTagged;
86      switch (TT->getDecl()->getTagKind()) {
87      default: assert(0 && "Unknown tagged type!");
88      case TagDecl::TK_struct: ++NumTagStruct; break;
89      case TagDecl::TK_union:  ++NumTagUnion; break;
90      case TagDecl::TK_class:  ++NumTagClass; break;
91      case TagDecl::TK_enum:   ++NumTagEnum; break;
92      }
93    } else if (isa<ObjCInterfaceType>(T))
94      ++NumObjCInterfaces;
95    else if (isa<ObjCQualifiedInterfaceType>(T))
96      ++NumObjCQualifiedInterfaces;
97    else if (isa<ObjCQualifiedIdType>(T))
98      ++NumObjCQualifiedIds;
99    else if (isa<TypeOfType>(T))
100      ++NumTypeOfTypes;
101    else if (isa<TypeOfExpr>(T))
102      ++NumTypeOfExprs;
103    else {
104      QualType(T, 0).dump();
105      assert(0 && "Unknown type!");
106    }
107  }
108
109  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
110  fprintf(stderr, "    %d pointer types\n", NumPointer);
111  fprintf(stderr, "    %d reference types\n", NumReference);
112  fprintf(stderr, "    %d complex types\n", NumComplex);
113  fprintf(stderr, "    %d array types\n", NumArray);
114  fprintf(stderr, "    %d vector types\n", NumVector);
115  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
116  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
117  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
118  fprintf(stderr, "    %d tagged types\n", NumTagged);
119  fprintf(stderr, "      %d struct types\n", NumTagStruct);
120  fprintf(stderr, "      %d union types\n", NumTagUnion);
121  fprintf(stderr, "      %d class types\n", NumTagClass);
122  fprintf(stderr, "      %d enum types\n", NumTagEnum);
123  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
124  fprintf(stderr, "    %d protocol qualified interface types\n",
125          NumObjCQualifiedInterfaces);
126  fprintf(stderr, "    %d protocol qualified id types\n",
127          NumObjCQualifiedIds);
128  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
129  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprs);
130
131  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
132    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
133    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
134    NumFunctionP*sizeof(FunctionTypeProto)+
135    NumFunctionNP*sizeof(FunctionTypeNoProto)+
136    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
137    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
138}
139
140
141void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
142  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
143}
144
145void ASTContext::InitBuiltinTypes() {
146  assert(VoidTy.isNull() && "Context reinitialized?");
147
148  // C99 6.2.5p19.
149  InitBuiltinType(VoidTy,              BuiltinType::Void);
150
151  // C99 6.2.5p2.
152  InitBuiltinType(BoolTy,              BuiltinType::Bool);
153  // C99 6.2.5p3.
154  if (Target.isCharSigned())
155    InitBuiltinType(CharTy,            BuiltinType::Char_S);
156  else
157    InitBuiltinType(CharTy,            BuiltinType::Char_U);
158  // C99 6.2.5p4.
159  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
160  InitBuiltinType(ShortTy,             BuiltinType::Short);
161  InitBuiltinType(IntTy,               BuiltinType::Int);
162  InitBuiltinType(LongTy,              BuiltinType::Long);
163  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
164
165  // C99 6.2.5p6.
166  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
167  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
168  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
169  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
170  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
171
172  // C99 6.2.5p10.
173  InitBuiltinType(FloatTy,             BuiltinType::Float);
174  InitBuiltinType(DoubleTy,            BuiltinType::Double);
175  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
176
177  // C++ 3.9.1p5
178  InitBuiltinType(WCharTy,             BuiltinType::WChar);
179
180  // C99 6.2.5p11.
181  FloatComplexTy      = getComplexType(FloatTy);
182  DoubleComplexTy     = getComplexType(DoubleTy);
183  LongDoubleComplexTy = getComplexType(LongDoubleTy);
184
185  BuiltinVaListType = QualType();
186  ObjCIdType = QualType();
187  IdStructType = 0;
188  ObjCClassType = QualType();
189  ClassStructType = 0;
190
191  ObjCConstantStringType = QualType();
192
193  // void * type
194  VoidPtrTy = getPointerType(VoidTy);
195}
196
197//===----------------------------------------------------------------------===//
198//                         Type Sizing and Analysis
199//===----------------------------------------------------------------------===//
200
201/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
202/// scalar floating point type.
203const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
204  const BuiltinType *BT = T->getAsBuiltinType();
205  assert(BT && "Not a floating point type!");
206  switch (BT->getKind()) {
207  default: assert(0 && "Not a floating point type!");
208  case BuiltinType::Float:      return Target.getFloatFormat();
209  case BuiltinType::Double:     return Target.getDoubleFormat();
210  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
211  }
212}
213
214
215/// getTypeSize - Return the size of the specified type, in bits.  This method
216/// does not work on incomplete types.
217std::pair<uint64_t, unsigned>
218ASTContext::getTypeInfo(QualType T) {
219  T = getCanonicalType(T);
220  uint64_t Width;
221  unsigned Align;
222  switch (T->getTypeClass()) {
223  case Type::TypeName: assert(0 && "Not a canonical type!");
224  case Type::FunctionNoProto:
225  case Type::FunctionProto:
226  default:
227    assert(0 && "Incomplete types have no size!");
228  case Type::VariableArray:
229    assert(0 && "VLAs not implemented yet!");
230  case Type::ConstantArray: {
231    ConstantArrayType *CAT = cast<ConstantArrayType>(T);
232
233    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
234    Width = EltInfo.first*CAT->getSize().getZExtValue();
235    Align = EltInfo.second;
236    break;
237  }
238  case Type::ExtVector:
239  case Type::Vector: {
240    std::pair<uint64_t, unsigned> EltInfo =
241      getTypeInfo(cast<VectorType>(T)->getElementType());
242    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
243    // FIXME: This isn't right for unusual vectors
244    Align = Width;
245    break;
246  }
247
248  case Type::Builtin:
249    switch (cast<BuiltinType>(T)->getKind()) {
250    default: assert(0 && "Unknown builtin type!");
251    case BuiltinType::Void:
252      assert(0 && "Incomplete types have no size!");
253    case BuiltinType::Bool:
254      Width = Target.getBoolWidth();
255      Align = Target.getBoolAlign();
256      break;
257    case BuiltinType::Char_S:
258    case BuiltinType::Char_U:
259    case BuiltinType::UChar:
260    case BuiltinType::SChar:
261      Width = Target.getCharWidth();
262      Align = Target.getCharAlign();
263      break;
264    case BuiltinType::WChar:
265      Width = Target.getWCharWidth();
266      Align = Target.getWCharAlign();
267      break;
268    case BuiltinType::UShort:
269    case BuiltinType::Short:
270      Width = Target.getShortWidth();
271      Align = Target.getShortAlign();
272      break;
273    case BuiltinType::UInt:
274    case BuiltinType::Int:
275      Width = Target.getIntWidth();
276      Align = Target.getIntAlign();
277      break;
278    case BuiltinType::ULong:
279    case BuiltinType::Long:
280      Width = Target.getLongWidth();
281      Align = Target.getLongAlign();
282      break;
283    case BuiltinType::ULongLong:
284    case BuiltinType::LongLong:
285      Width = Target.getLongLongWidth();
286      Align = Target.getLongLongAlign();
287      break;
288    case BuiltinType::Float:
289      Width = Target.getFloatWidth();
290      Align = Target.getFloatAlign();
291      break;
292    case BuiltinType::Double:
293      Width = Target.getDoubleWidth();
294      Align = Target.getDoubleAlign();
295      break;
296    case BuiltinType::LongDouble:
297      Width = Target.getLongDoubleWidth();
298      Align = Target.getLongDoubleAlign();
299      break;
300    }
301    break;
302  case Type::ASQual:
303    // FIXME: Pointers into different addr spaces could have different sizes and
304    // alignment requirements: getPointerInfo should take an AddrSpace.
305    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
306  case Type::ObjCQualifiedId:
307    Width = Target.getPointerWidth(0);
308    Align = Target.getPointerAlign(0);
309    break;
310  case Type::Pointer: {
311    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
312    Width = Target.getPointerWidth(AS);
313    Align = Target.getPointerAlign(AS);
314    break;
315  }
316  case Type::Reference:
317    // "When applied to a reference or a reference type, the result is the size
318    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
319    // FIXME: This is wrong for struct layout: a reference in a struct has
320    // pointer size.
321    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
322
323  case Type::Complex: {
324    // Complex types have the same alignment as their elements, but twice the
325    // size.
326    std::pair<uint64_t, unsigned> EltInfo =
327      getTypeInfo(cast<ComplexType>(T)->getElementType());
328    Width = EltInfo.first*2;
329    Align = EltInfo.second;
330    break;
331  }
332  case Type::ObjCInterface: {
333    ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
334    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
335    Width = Layout.getSize();
336    Align = Layout.getAlignment();
337    break;
338  }
339  case Type::Tagged: {
340    if (cast<TagType>(T)->getDecl()->isInvalidDecl()) {
341      Width = 1;
342      Align = 1;
343      break;
344    }
345
346    if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
347      return getTypeInfo(ET->getDecl()->getIntegerType());
348
349    RecordType *RT = cast<RecordType>(T);
350    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
351    Width = Layout.getSize();
352    Align = Layout.getAlignment();
353    break;
354  }
355  }
356
357  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
358  return std::make_pair(Width, Align);
359}
360
361/// LayoutField - Field layout.
362void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
363                                  bool IsUnion, bool StructIsPacked,
364                                  ASTContext &Context) {
365  bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
366  uint64_t FieldOffset = IsUnion ? 0 : Size;
367  uint64_t FieldSize;
368  unsigned FieldAlign;
369
370  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
371    // TODO: Need to check this algorithm on other targets!
372    //       (tested on Linux-X86)
373    FieldSize =
374      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
375
376    std::pair<uint64_t, unsigned> FieldInfo =
377      Context.getTypeInfo(FD->getType());
378    uint64_t TypeSize = FieldInfo.first;
379
380    FieldAlign = FieldInfo.second;
381    if (FieldIsPacked)
382      FieldAlign = 1;
383    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
384      FieldAlign = std::max(FieldAlign, AA->getAlignment());
385
386    // Check if we need to add padding to give the field the correct
387    // alignment.
388    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
389      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
390
391    // Padding members don't affect overall alignment
392    if (!FD->getIdentifier())
393      FieldAlign = 1;
394  } else {
395    if (FD->getType()->isIncompleteArrayType()) {
396      // This is a flexible array member; we can't directly
397      // query getTypeInfo about these, so we figure it out here.
398      // Flexible array members don't have any size, but they
399      // have to be aligned appropriately for their element type.
400      FieldSize = 0;
401      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
402      FieldAlign = Context.getTypeAlign(ATy->getElementType());
403    } else {
404      std::pair<uint64_t, unsigned> FieldInfo =
405        Context.getTypeInfo(FD->getType());
406      FieldSize = FieldInfo.first;
407      FieldAlign = FieldInfo.second;
408    }
409
410    if (FieldIsPacked)
411      FieldAlign = 8;
412    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
413      FieldAlign = std::max(FieldAlign, AA->getAlignment());
414
415    // Round up the current record size to the field's alignment boundary.
416    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
417  }
418
419  // Place this field at the current location.
420  FieldOffsets[FieldNo] = FieldOffset;
421
422  // Reserve space for this field.
423  if (IsUnion) {
424    Size = std::max(Size, FieldSize);
425  } else {
426    Size = FieldOffset + FieldSize;
427  }
428
429  // Remember max struct/class alignment.
430  Alignment = std::max(Alignment, FieldAlign);
431}
432
433
434/// getASTObjcInterfaceLayout - Get or compute information about the layout of the
435/// specified Objective C, which indicates its size and ivar
436/// position information.
437const ASTRecordLayout &
438ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
439  // Look up this layout, if already laid out, return what we have.
440  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
441  if (Entry) return *Entry;
442
443  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
444  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
445  ASTRecordLayout *NewEntry = NULL;
446  unsigned FieldCount = D->ivar_size();
447  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
448    FieldCount++;
449    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
450    unsigned Alignment = SL.getAlignment();
451    uint64_t Size = SL.getSize();
452    NewEntry = new ASTRecordLayout(Size, Alignment);
453    NewEntry->InitializeLayout(FieldCount);
454    NewEntry->SetFieldOffset(0, 0); // Super class is at the beginning of the layout.
455  } else {
456    NewEntry = new ASTRecordLayout();
457    NewEntry->InitializeLayout(FieldCount);
458  }
459  Entry = NewEntry;
460
461  bool IsPacked = D->getAttr<PackedAttr>();
462
463  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
464    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
465                                    AA->getAlignment()));
466
467  // Layout each ivar sequentially.
468  unsigned i = 0;
469  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
470       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
471    const ObjCIvarDecl* Ivar = (*IVI);
472    NewEntry->LayoutField(Ivar, i++, false, IsPacked, *this);
473  }
474
475  // Finally, round the size of the total struct up to the alignment of the
476  // struct itself.
477  NewEntry->FinalizeLayout();
478  return *NewEntry;
479}
480
481/// getASTRecordLayout - Get or compute information about the layout of the
482/// specified record (struct/union/class), which indicates its size and field
483/// position information.
484const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
485  assert(D->isDefinition() && "Cannot get layout of forward declarations!");
486
487  // Look up this layout, if already laid out, return what we have.
488  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
489  if (Entry) return *Entry;
490
491  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
492  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
493  ASTRecordLayout *NewEntry = new ASTRecordLayout();
494  Entry = NewEntry;
495
496  NewEntry->InitializeLayout(D->getNumMembers());
497  bool StructIsPacked = D->getAttr<PackedAttr>();
498  bool IsUnion = D->isUnion();
499
500  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
501    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
502                                    AA->getAlignment()));
503
504  // Layout each field, for now, just sequentially, respecting alignment.  In
505  // the future, this will need to be tweakable by targets.
506  for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
507    const FieldDecl *FD = D->getMember(i);
508    NewEntry->LayoutField(FD, i, IsUnion, StructIsPacked, *this);
509  }
510
511  // Finally, round the size of the total struct up to the alignment of the
512  // struct itself.
513  NewEntry->FinalizeLayout();
514  return *NewEntry;
515}
516
517//===----------------------------------------------------------------------===//
518//                   Type creation/memoization methods
519//===----------------------------------------------------------------------===//
520
521QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
522  QualType CanT = getCanonicalType(T);
523  if (CanT.getAddressSpace() == AddressSpace)
524    return T;
525
526  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
527  // with CVR qualifiers from here on out.
528  assert(CanT.getAddressSpace() == 0 &&
529         "Type is already address space qualified");
530
531  // Check if we've already instantiated an address space qual'd type of this
532  // type.
533  llvm::FoldingSetNodeID ID;
534  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
535  void *InsertPos = 0;
536  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
537    return QualType(ASQy, 0);
538
539  // If the base type isn't canonical, this won't be a canonical type either,
540  // so fill in the canonical type field.
541  QualType Canonical;
542  if (!T->isCanonical()) {
543    Canonical = getASQualType(CanT, AddressSpace);
544
545    // Get the new insert position for the node we care about.
546    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
547    assert(NewIP == 0 && "Shouldn't be in the map!");
548  }
549  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
550  ASQualTypes.InsertNode(New, InsertPos);
551  Types.push_back(New);
552  return QualType(New, T.getCVRQualifiers());
553}
554
555
556/// getComplexType - Return the uniqued reference to the type for a complex
557/// number with the specified element type.
558QualType ASTContext::getComplexType(QualType T) {
559  // Unique pointers, to guarantee there is only one pointer of a particular
560  // structure.
561  llvm::FoldingSetNodeID ID;
562  ComplexType::Profile(ID, T);
563
564  void *InsertPos = 0;
565  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
566    return QualType(CT, 0);
567
568  // If the pointee type isn't canonical, this won't be a canonical type either,
569  // so fill in the canonical type field.
570  QualType Canonical;
571  if (!T->isCanonical()) {
572    Canonical = getComplexType(getCanonicalType(T));
573
574    // Get the new insert position for the node we care about.
575    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
576    assert(NewIP == 0 && "Shouldn't be in the map!");
577  }
578  ComplexType *New = new ComplexType(T, Canonical);
579  Types.push_back(New);
580  ComplexTypes.InsertNode(New, InsertPos);
581  return QualType(New, 0);
582}
583
584
585/// getPointerType - Return the uniqued reference to the type for a pointer to
586/// the specified type.
587QualType ASTContext::getPointerType(QualType T) {
588  // Unique pointers, to guarantee there is only one pointer of a particular
589  // structure.
590  llvm::FoldingSetNodeID ID;
591  PointerType::Profile(ID, T);
592
593  void *InsertPos = 0;
594  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
595    return QualType(PT, 0);
596
597  // If the pointee type isn't canonical, this won't be a canonical type either,
598  // so fill in the canonical type field.
599  QualType Canonical;
600  if (!T->isCanonical()) {
601    Canonical = getPointerType(getCanonicalType(T));
602
603    // Get the new insert position for the node we care about.
604    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
605    assert(NewIP == 0 && "Shouldn't be in the map!");
606  }
607  PointerType *New = new PointerType(T, Canonical);
608  Types.push_back(New);
609  PointerTypes.InsertNode(New, InsertPos);
610  return QualType(New, 0);
611}
612
613/// getReferenceType - Return the uniqued reference to the type for a reference
614/// to the specified type.
615QualType ASTContext::getReferenceType(QualType T) {
616  // Unique pointers, to guarantee there is only one pointer of a particular
617  // structure.
618  llvm::FoldingSetNodeID ID;
619  ReferenceType::Profile(ID, T);
620
621  void *InsertPos = 0;
622  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
623    return QualType(RT, 0);
624
625  // If the referencee type isn't canonical, this won't be a canonical type
626  // either, so fill in the canonical type field.
627  QualType Canonical;
628  if (!T->isCanonical()) {
629    Canonical = getReferenceType(getCanonicalType(T));
630
631    // Get the new insert position for the node we care about.
632    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
633    assert(NewIP == 0 && "Shouldn't be in the map!");
634  }
635
636  ReferenceType *New = new ReferenceType(T, Canonical);
637  Types.push_back(New);
638  ReferenceTypes.InsertNode(New, InsertPos);
639  return QualType(New, 0);
640}
641
642/// getConstantArrayType - Return the unique reference to the type for an
643/// array of the specified element type.
644QualType ASTContext::getConstantArrayType(QualType EltTy,
645                                          const llvm::APInt &ArySize,
646                                          ArrayType::ArraySizeModifier ASM,
647                                          unsigned EltTypeQuals) {
648  llvm::FoldingSetNodeID ID;
649  ConstantArrayType::Profile(ID, EltTy, ArySize);
650
651  void *InsertPos = 0;
652  if (ConstantArrayType *ATP =
653      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
654    return QualType(ATP, 0);
655
656  // If the element type isn't canonical, this won't be a canonical type either,
657  // so fill in the canonical type field.
658  QualType Canonical;
659  if (!EltTy->isCanonical()) {
660    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
661                                     ASM, EltTypeQuals);
662    // Get the new insert position for the node we care about.
663    ConstantArrayType *NewIP =
664      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
665
666    assert(NewIP == 0 && "Shouldn't be in the map!");
667  }
668
669  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
670                                                 ASM, EltTypeQuals);
671  ConstantArrayTypes.InsertNode(New, InsertPos);
672  Types.push_back(New);
673  return QualType(New, 0);
674}
675
676/// getVariableArrayType - Returns a non-unique reference to the type for a
677/// variable array of the specified element type.
678QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
679                                          ArrayType::ArraySizeModifier ASM,
680                                          unsigned EltTypeQuals) {
681  // Since we don't unique expressions, it isn't possible to unique VLA's
682  // that have an expression provided for their size.
683
684  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
685                                                 ASM, EltTypeQuals);
686
687  VariableArrayTypes.push_back(New);
688  Types.push_back(New);
689  return QualType(New, 0);
690}
691
692QualType ASTContext::getIncompleteArrayType(QualType EltTy,
693                                            ArrayType::ArraySizeModifier ASM,
694                                            unsigned EltTypeQuals) {
695  llvm::FoldingSetNodeID ID;
696  IncompleteArrayType::Profile(ID, EltTy);
697
698  void *InsertPos = 0;
699  if (IncompleteArrayType *ATP =
700       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
701    return QualType(ATP, 0);
702
703  // If the element type isn't canonical, this won't be a canonical type
704  // either, so fill in the canonical type field.
705  QualType Canonical;
706
707  if (!EltTy->isCanonical()) {
708    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
709                                       ASM, EltTypeQuals);
710
711    // Get the new insert position for the node we care about.
712    IncompleteArrayType *NewIP =
713      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
714
715    assert(NewIP == 0 && "Shouldn't be in the map!");
716  }
717
718  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
719                                                     ASM, EltTypeQuals);
720
721  IncompleteArrayTypes.InsertNode(New, InsertPos);
722  Types.push_back(New);
723  return QualType(New, 0);
724}
725
726/// getVectorType - Return the unique reference to a vector type of
727/// the specified element type and size. VectorType must be a built-in type.
728QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
729  BuiltinType *baseType;
730
731  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
732  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
733
734  // Check if we've already instantiated a vector of this type.
735  llvm::FoldingSetNodeID ID;
736  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
737  void *InsertPos = 0;
738  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
739    return QualType(VTP, 0);
740
741  // If the element type isn't canonical, this won't be a canonical type either,
742  // so fill in the canonical type field.
743  QualType Canonical;
744  if (!vecType->isCanonical()) {
745    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
746
747    // Get the new insert position for the node we care about.
748    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
749    assert(NewIP == 0 && "Shouldn't be in the map!");
750  }
751  VectorType *New = new VectorType(vecType, NumElts, Canonical);
752  VectorTypes.InsertNode(New, InsertPos);
753  Types.push_back(New);
754  return QualType(New, 0);
755}
756
757/// getExtVectorType - Return the unique reference to an extended vector type of
758/// the specified element type and size. VectorType must be a built-in type.
759QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
760  BuiltinType *baseType;
761
762  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
763  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
764
765  // Check if we've already instantiated a vector of this type.
766  llvm::FoldingSetNodeID ID;
767  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
768  void *InsertPos = 0;
769  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
770    return QualType(VTP, 0);
771
772  // If the element type isn't canonical, this won't be a canonical type either,
773  // so fill in the canonical type field.
774  QualType Canonical;
775  if (!vecType->isCanonical()) {
776    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
777
778    // Get the new insert position for the node we care about.
779    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
780    assert(NewIP == 0 && "Shouldn't be in the map!");
781  }
782  ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical);
783  VectorTypes.InsertNode(New, InsertPos);
784  Types.push_back(New);
785  return QualType(New, 0);
786}
787
788/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
789///
790QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
791  // Unique functions, to guarantee there is only one function of a particular
792  // structure.
793  llvm::FoldingSetNodeID ID;
794  FunctionTypeNoProto::Profile(ID, ResultTy);
795
796  void *InsertPos = 0;
797  if (FunctionTypeNoProto *FT =
798        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
799    return QualType(FT, 0);
800
801  QualType Canonical;
802  if (!ResultTy->isCanonical()) {
803    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
804
805    // Get the new insert position for the node we care about.
806    FunctionTypeNoProto *NewIP =
807      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
808    assert(NewIP == 0 && "Shouldn't be in the map!");
809  }
810
811  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
812  Types.push_back(New);
813  FunctionTypeNoProtos.InsertNode(New, InsertPos);
814  return QualType(New, 0);
815}
816
817/// getFunctionType - Return a normal function type with a typed argument
818/// list.  isVariadic indicates whether the argument list includes '...'.
819QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
820                                     unsigned NumArgs, bool isVariadic) {
821  // Unique functions, to guarantee there is only one function of a particular
822  // structure.
823  llvm::FoldingSetNodeID ID;
824  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
825
826  void *InsertPos = 0;
827  if (FunctionTypeProto *FTP =
828        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
829    return QualType(FTP, 0);
830
831  // Determine whether the type being created is already canonical or not.
832  bool isCanonical = ResultTy->isCanonical();
833  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
834    if (!ArgArray[i]->isCanonical())
835      isCanonical = false;
836
837  // If this type isn't canonical, get the canonical version of it.
838  QualType Canonical;
839  if (!isCanonical) {
840    llvm::SmallVector<QualType, 16> CanonicalArgs;
841    CanonicalArgs.reserve(NumArgs);
842    for (unsigned i = 0; i != NumArgs; ++i)
843      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
844
845    Canonical = getFunctionType(getCanonicalType(ResultTy),
846                                &CanonicalArgs[0], NumArgs,
847                                isVariadic);
848
849    // Get the new insert position for the node we care about.
850    FunctionTypeProto *NewIP =
851      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
852    assert(NewIP == 0 && "Shouldn't be in the map!");
853  }
854
855  // FunctionTypeProto objects are not allocated with new because they have a
856  // variable size array (for parameter types) at the end of them.
857  FunctionTypeProto *FTP =
858    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
859                               NumArgs*sizeof(QualType));
860  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
861                              Canonical);
862  Types.push_back(FTP);
863  FunctionTypeProtos.InsertNode(FTP, InsertPos);
864  return QualType(FTP, 0);
865}
866
867/// getTypeDeclType - Return the unique reference to the type for the
868/// specified type declaration.
869QualType ASTContext::getTypeDeclType(TypeDecl *Decl) {
870  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
871
872  if (TypedefDecl *Typedef = dyn_cast_or_null<TypedefDecl>(Decl))
873    return getTypedefType(Typedef);
874  else if (ObjCInterfaceDecl *ObjCInterface
875             = dyn_cast_or_null<ObjCInterfaceDecl>(Decl))
876    return getObjCInterfaceType(ObjCInterface);
877
878  if (CXXRecordDecl *CXXRecord = dyn_cast_or_null<CXXRecordDecl>(Decl))
879    Decl->TypeForDecl = new CXXRecordType(CXXRecord);
880  else if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Decl))
881    Decl->TypeForDecl = new RecordType(Record);
882  else if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Decl))
883    Decl->TypeForDecl = new EnumType(Enum);
884  else
885    assert(false && "TypeDecl without a type?");
886
887  Types.push_back(Decl->TypeForDecl);
888  return QualType(Decl->TypeForDecl, 0);
889}
890
891/// getTypedefType - Return the unique reference to the type for the
892/// specified typename decl.
893QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
894  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
895
896  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
897  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
898  Types.push_back(Decl->TypeForDecl);
899  return QualType(Decl->TypeForDecl, 0);
900}
901
902/// getObjCInterfaceType - Return the unique reference to the type for the
903/// specified ObjC interface decl.
904QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
905  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
906
907  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
908  Types.push_back(Decl->TypeForDecl);
909  return QualType(Decl->TypeForDecl, 0);
910}
911
912/// CmpProtocolNames - Comparison predicate for sorting protocols
913/// alphabetically.
914static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
915                            const ObjCProtocolDecl *RHS) {
916  return strcmp(LHS->getName(), RHS->getName()) < 0;
917}
918
919static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
920                                   unsigned &NumProtocols) {
921  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
922
923  // Sort protocols, keyed by name.
924  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
925
926  // Remove duplicates.
927  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
928  NumProtocols = ProtocolsEnd-Protocols;
929}
930
931
932/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
933/// the given interface decl and the conforming protocol list.
934QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
935                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
936  // Sort the protocol list alphabetically to canonicalize it.
937  SortAndUniqueProtocols(Protocols, NumProtocols);
938
939  llvm::FoldingSetNodeID ID;
940  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
941
942  void *InsertPos = 0;
943  if (ObjCQualifiedInterfaceType *QT =
944      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
945    return QualType(QT, 0);
946
947  // No Match;
948  ObjCQualifiedInterfaceType *QType =
949    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
950  Types.push_back(QType);
951  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
952  return QualType(QType, 0);
953}
954
955/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
956/// and the conforming protocol list.
957QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
958                                            unsigned NumProtocols) {
959  // Sort the protocol list alphabetically to canonicalize it.
960  SortAndUniqueProtocols(Protocols, NumProtocols);
961
962  llvm::FoldingSetNodeID ID;
963  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
964
965  void *InsertPos = 0;
966  if (ObjCQualifiedIdType *QT =
967        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
968    return QualType(QT, 0);
969
970  // No Match;
971  ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols);
972  Types.push_back(QType);
973  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
974  return QualType(QType, 0);
975}
976
977/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
978/// TypeOfExpr AST's (since expression's are never shared). For example,
979/// multiple declarations that refer to "typeof(x)" all contain different
980/// DeclRefExpr's. This doesn't effect the type checker, since it operates
981/// on canonical type's (which are always unique).
982QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
983  QualType Canonical = getCanonicalType(tofExpr->getType());
984  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
985  Types.push_back(toe);
986  return QualType(toe, 0);
987}
988
989/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
990/// TypeOfType AST's. The only motivation to unique these nodes would be
991/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
992/// an issue. This doesn't effect the type checker, since it operates
993/// on canonical type's (which are always unique).
994QualType ASTContext::getTypeOfType(QualType tofType) {
995  QualType Canonical = getCanonicalType(tofType);
996  TypeOfType *tot = new TypeOfType(tofType, Canonical);
997  Types.push_back(tot);
998  return QualType(tot, 0);
999}
1000
1001/// getTagDeclType - Return the unique reference to the type for the
1002/// specified TagDecl (struct/union/class/enum) decl.
1003QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1004  assert (Decl);
1005  return getTypeDeclType(Decl);
1006}
1007
1008/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1009/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1010/// needs to agree with the definition in <stddef.h>.
1011QualType ASTContext::getSizeType() const {
1012  // On Darwin, size_t is defined as a "long unsigned int".
1013  // FIXME: should derive from "Target".
1014  return UnsignedLongTy;
1015}
1016
1017/// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the
1018/// width of characters in wide strings, The value is target dependent and
1019/// needs to agree with the definition in <stddef.h>.
1020QualType ASTContext::getWCharType() const {
1021  if (LangOpts.CPlusPlus)
1022    return WCharTy;
1023
1024  // On Darwin, wchar_t is defined as a "int".
1025  // FIXME: should derive from "Target".
1026  return IntTy;
1027}
1028
1029/// getSignedWCharType - Return the type of "signed wchar_t".
1030/// Used when in C++, as a GCC extension.
1031QualType ASTContext::getSignedWCharType() const {
1032  // FIXME: derive from "Target" ?
1033  return WCharTy;
1034}
1035
1036/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1037/// Used when in C++, as a GCC extension.
1038QualType ASTContext::getUnsignedWCharType() const {
1039  // FIXME: derive from "Target" ?
1040  return UnsignedIntTy;
1041}
1042
1043/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1044/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1045QualType ASTContext::getPointerDiffType() const {
1046  // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
1047  // FIXME: should derive from "Target".
1048  return IntTy;
1049}
1050
1051//===----------------------------------------------------------------------===//
1052//                              Type Operators
1053//===----------------------------------------------------------------------===//
1054
1055/// getCanonicalType - Return the canonical (structural) type corresponding to
1056/// the specified potentially non-canonical type.  The non-canonical version
1057/// of a type may have many "decorated" versions of types.  Decorators can
1058/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1059/// to be free of any of these, allowing two canonical types to be compared
1060/// for exact equality with a simple pointer comparison.
1061QualType ASTContext::getCanonicalType(QualType T) {
1062  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1063
1064  // If the result has type qualifiers, make sure to canonicalize them as well.
1065  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1066  if (TypeQuals == 0) return CanType;
1067
1068  // If the type qualifiers are on an array type, get the canonical type of the
1069  // array with the qualifiers applied to the element type.
1070  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1071  if (!AT)
1072    return CanType.getQualifiedType(TypeQuals);
1073
1074  // Get the canonical version of the element with the extra qualifiers on it.
1075  // This can recursively sink qualifiers through multiple levels of arrays.
1076  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1077  NewEltTy = getCanonicalType(NewEltTy);
1078
1079  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1080    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1081                                CAT->getIndexTypeQualifier());
1082  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1083    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1084                                  IAT->getIndexTypeQualifier());
1085
1086  // FIXME: What is the ownership of size expressions in VLAs?
1087  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1088  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1089                              VAT->getSizeModifier(),
1090                              VAT->getIndexTypeQualifier());
1091}
1092
1093
1094const ArrayType *ASTContext::getAsArrayType(QualType T) {
1095  // Handle the non-qualified case efficiently.
1096  if (T.getCVRQualifiers() == 0) {
1097    // Handle the common positive case fast.
1098    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1099      return AT;
1100  }
1101
1102  // Handle the common negative case fast, ignoring CVR qualifiers.
1103  QualType CType = T->getCanonicalTypeInternal();
1104
1105  // Make sure to look through type qualifiers (like ASQuals) for the negative
1106  // test.
1107  if (!isa<ArrayType>(CType) &&
1108      !isa<ArrayType>(CType.getUnqualifiedType()))
1109    return 0;
1110
1111  // Apply any CVR qualifiers from the array type to the element type.  This
1112  // implements C99 6.7.3p8: "If the specification of an array type includes
1113  // any type qualifiers, the element type is so qualified, not the array type."
1114
1115  // If we get here, we either have type qualifiers on the type, or we have
1116  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1117  // we must propagate them down into the elemeng type.
1118  unsigned CVRQuals = T.getCVRQualifiers();
1119  unsigned AddrSpace = 0;
1120  Type *Ty = T.getTypePtr();
1121
1122  // Rip through ASQualType's and typedefs to get to a concrete type.
1123  while (1) {
1124    if (const ASQualType *ASQT = dyn_cast<ASQualType>(Ty)) {
1125      AddrSpace = ASQT->getAddressSpace();
1126      Ty = ASQT->getBaseType();
1127    } else {
1128      T = Ty->getDesugaredType();
1129      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1130        break;
1131      CVRQuals |= T.getCVRQualifiers();
1132      Ty = T.getTypePtr();
1133    }
1134  }
1135
1136  // If we have a simple case, just return now.
1137  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1138  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1139    return ATy;
1140
1141  // Otherwise, we have an array and we have qualifiers on it.  Push the
1142  // qualifiers into the array element type and return a new array type.
1143  // Get the canonical version of the element with the extra qualifiers on it.
1144  // This can recursively sink qualifiers through multiple levels of arrays.
1145  QualType NewEltTy = ATy->getElementType();
1146  if (AddrSpace)
1147    NewEltTy = getASQualType(NewEltTy, AddrSpace);
1148  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1149
1150  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1151    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1152                                                CAT->getSizeModifier(),
1153                                                CAT->getIndexTypeQualifier()));
1154  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1155    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1156                                                  IAT->getSizeModifier(),
1157                                                 IAT->getIndexTypeQualifier()));
1158
1159  // FIXME: What is the ownership of size expressions in VLAs?
1160  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1161  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1162                                              VAT->getSizeModifier(),
1163                                              VAT->getIndexTypeQualifier()));
1164}
1165
1166
1167/// getArrayDecayedType - Return the properly qualified result of decaying the
1168/// specified array type to a pointer.  This operation is non-trivial when
1169/// handling typedefs etc.  The canonical type of "T" must be an array type,
1170/// this returns a pointer to a properly qualified element of the array.
1171///
1172/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1173QualType ASTContext::getArrayDecayedType(QualType Ty) {
1174  // Get the element type with 'getAsArrayType' so that we don't lose any
1175  // typedefs in the element type of the array.  This also handles propagation
1176  // of type qualifiers from the array type into the element type if present
1177  // (C99 6.7.3p8).
1178  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1179  assert(PrettyArrayType && "Not an array type!");
1180
1181  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1182
1183  // int x[restrict 4] ->  int *restrict
1184  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1185}
1186
1187/// getFloatingRank - Return a relative rank for floating point types.
1188/// This routine will assert if passed a built-in type that isn't a float.
1189static FloatingRank getFloatingRank(QualType T) {
1190  if (const ComplexType *CT = T->getAsComplexType())
1191    return getFloatingRank(CT->getElementType());
1192
1193  switch (T->getAsBuiltinType()->getKind()) {
1194  default: assert(0 && "getFloatingRank(): not a floating type");
1195  case BuiltinType::Float:      return FloatRank;
1196  case BuiltinType::Double:     return DoubleRank;
1197  case BuiltinType::LongDouble: return LongDoubleRank;
1198  }
1199}
1200
1201/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1202/// point or a complex type (based on typeDomain/typeSize).
1203/// 'typeDomain' is a real floating point or complex type.
1204/// 'typeSize' is a real floating point or complex type.
1205QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1206                                                       QualType Domain) const {
1207  FloatingRank EltRank = getFloatingRank(Size);
1208  if (Domain->isComplexType()) {
1209    switch (EltRank) {
1210    default: assert(0 && "getFloatingRank(): illegal value for rank");
1211    case FloatRank:      return FloatComplexTy;
1212    case DoubleRank:     return DoubleComplexTy;
1213    case LongDoubleRank: return LongDoubleComplexTy;
1214    }
1215  }
1216
1217  assert(Domain->isRealFloatingType() && "Unknown domain!");
1218  switch (EltRank) {
1219  default: assert(0 && "getFloatingRank(): illegal value for rank");
1220  case FloatRank:      return FloatTy;
1221  case DoubleRank:     return DoubleTy;
1222  case LongDoubleRank: return LongDoubleTy;
1223  }
1224}
1225
1226/// getFloatingTypeOrder - Compare the rank of the two specified floating
1227/// point types, ignoring the domain of the type (i.e. 'double' ==
1228/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1229/// LHS < RHS, return -1.
1230int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1231  FloatingRank LHSR = getFloatingRank(LHS);
1232  FloatingRank RHSR = getFloatingRank(RHS);
1233
1234  if (LHSR == RHSR)
1235    return 0;
1236  if (LHSR > RHSR)
1237    return 1;
1238  return -1;
1239}
1240
1241/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1242/// routine will assert if passed a built-in type that isn't an integer or enum,
1243/// or if it is not canonicalized.
1244static unsigned getIntegerRank(Type *T) {
1245  assert(T->isCanonical() && "T should be canonicalized");
1246  if (isa<EnumType>(T))
1247    return 4;
1248
1249  switch (cast<BuiltinType>(T)->getKind()) {
1250  default: assert(0 && "getIntegerRank(): not a built-in integer");
1251  case BuiltinType::Bool:
1252    return 1;
1253  case BuiltinType::Char_S:
1254  case BuiltinType::Char_U:
1255  case BuiltinType::SChar:
1256  case BuiltinType::UChar:
1257    return 2;
1258  case BuiltinType::Short:
1259  case BuiltinType::UShort:
1260    return 3;
1261  case BuiltinType::Int:
1262  case BuiltinType::UInt:
1263    return 4;
1264  case BuiltinType::Long:
1265  case BuiltinType::ULong:
1266    return 5;
1267  case BuiltinType::LongLong:
1268  case BuiltinType::ULongLong:
1269    return 6;
1270  }
1271}
1272
1273/// getIntegerTypeOrder - Returns the highest ranked integer type:
1274/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1275/// LHS < RHS, return -1.
1276int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1277  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1278  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1279  if (LHSC == RHSC) return 0;
1280
1281  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1282  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1283
1284  unsigned LHSRank = getIntegerRank(LHSC);
1285  unsigned RHSRank = getIntegerRank(RHSC);
1286
1287  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1288    if (LHSRank == RHSRank) return 0;
1289    return LHSRank > RHSRank ? 1 : -1;
1290  }
1291
1292  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1293  if (LHSUnsigned) {
1294    // If the unsigned [LHS] type is larger, return it.
1295    if (LHSRank >= RHSRank)
1296      return 1;
1297
1298    // If the signed type can represent all values of the unsigned type, it
1299    // wins.  Because we are dealing with 2's complement and types that are
1300    // powers of two larger than each other, this is always safe.
1301    return -1;
1302  }
1303
1304  // If the unsigned [RHS] type is larger, return it.
1305  if (RHSRank >= LHSRank)
1306    return -1;
1307
1308  // If the signed type can represent all values of the unsigned type, it
1309  // wins.  Because we are dealing with 2's complement and types that are
1310  // powers of two larger than each other, this is always safe.
1311  return 1;
1312}
1313
1314// getCFConstantStringType - Return the type used for constant CFStrings.
1315QualType ASTContext::getCFConstantStringType() {
1316  if (!CFConstantStringTypeDecl) {
1317    CFConstantStringTypeDecl =
1318      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1319                         &Idents.get("NSConstantString"), 0);
1320    QualType FieldTypes[4];
1321
1322    // const int *isa;
1323    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1324    // int flags;
1325    FieldTypes[1] = IntTy;
1326    // const char *str;
1327    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1328    // long length;
1329    FieldTypes[3] = LongTy;
1330    // Create fields
1331    FieldDecl *FieldDecls[4];
1332
1333    for (unsigned i = 0; i < 4; ++i)
1334      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1335                                        FieldTypes[i]);
1336
1337    CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
1338  }
1339
1340  return getTagDeclType(CFConstantStringTypeDecl);
1341}
1342
1343// This returns true if a type has been typedefed to BOOL:
1344// typedef <type> BOOL;
1345static bool isTypeTypedefedAsBOOL(QualType T) {
1346  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1347    return !strcmp(TT->getDecl()->getName(), "BOOL");
1348
1349  return false;
1350}
1351
1352/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1353/// purpose.
1354int ASTContext::getObjCEncodingTypeSize(QualType type) {
1355  uint64_t sz = getTypeSize(type);
1356
1357  // Make all integer and enum types at least as large as an int
1358  if (sz > 0 && type->isIntegralType())
1359    sz = std::max(sz, getTypeSize(IntTy));
1360  // Treat arrays as pointers, since that's how they're passed in.
1361  else if (type->isArrayType())
1362    sz = getTypeSize(VoidPtrTy);
1363  return sz / getTypeSize(CharTy);
1364}
1365
1366/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1367/// declaration.
1368void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
1369                                              std::string& S)
1370{
1371  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1372  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1373  // Encode result type.
1374  getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
1375  // Compute size of all parameters.
1376  // Start with computing size of a pointer in number of bytes.
1377  // FIXME: There might(should) be a better way of doing this computation!
1378  SourceLocation Loc;
1379  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1380  // The first two arguments (self and _cmd) are pointers; account for
1381  // their size.
1382  int ParmOffset = 2 * PtrSize;
1383  int NumOfParams = Decl->getNumParams();
1384  for (int i = 0; i < NumOfParams; i++) {
1385    QualType PType = Decl->getParamDecl(i)->getType();
1386    int sz = getObjCEncodingTypeSize (PType);
1387    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1388    ParmOffset += sz;
1389  }
1390  S += llvm::utostr(ParmOffset);
1391  S += "@0:";
1392  S += llvm::utostr(PtrSize);
1393
1394  // Argument types.
1395  ParmOffset = 2 * PtrSize;
1396  for (int i = 0; i < NumOfParams; i++) {
1397    QualType PType = Decl->getParamDecl(i)->getType();
1398    // Process argument qualifiers for user supplied arguments; such as,
1399    // 'in', 'inout', etc.
1400    getObjCEncodingForTypeQualifier(
1401      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
1402    getObjCEncodingForType(PType, S, EncodingRecordTypes);
1403    S += llvm::utostr(ParmOffset);
1404    ParmOffset += getObjCEncodingTypeSize(PType);
1405  }
1406}
1407
1408void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1409       llvm::SmallVector<const RecordType *, 8> &ERType) const {
1410  // FIXME: This currently doesn't encode:
1411  // @ An object (whether statically typed or typed id)
1412  // # A class object (Class)
1413  // : A method selector (SEL)
1414  // {name=type...} A structure
1415  // (name=type...) A union
1416  // bnum A bit field of num bits
1417
1418  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1419    char encoding;
1420    switch (BT->getKind()) {
1421    default: assert(0 && "Unhandled builtin type kind");
1422    case BuiltinType::Void:       encoding = 'v'; break;
1423    case BuiltinType::Bool:       encoding = 'B'; break;
1424    case BuiltinType::Char_U:
1425    case BuiltinType::UChar:      encoding = 'C'; break;
1426    case BuiltinType::UShort:     encoding = 'S'; break;
1427    case BuiltinType::UInt:       encoding = 'I'; break;
1428    case BuiltinType::ULong:      encoding = 'L'; break;
1429    case BuiltinType::ULongLong:  encoding = 'Q'; break;
1430    case BuiltinType::Char_S:
1431    case BuiltinType::SChar:      encoding = 'c'; break;
1432    case BuiltinType::Short:      encoding = 's'; break;
1433    case BuiltinType::Int:        encoding = 'i'; break;
1434    case BuiltinType::Long:       encoding = 'l'; break;
1435    case BuiltinType::LongLong:   encoding = 'q'; break;
1436    case BuiltinType::Float:      encoding = 'f'; break;
1437    case BuiltinType::Double:     encoding = 'd'; break;
1438    case BuiltinType::LongDouble: encoding = 'd'; break;
1439    }
1440
1441    S += encoding;
1442  }
1443  else if (T->isObjCQualifiedIdType()) {
1444    // Treat id<P...> same as 'id' for encoding purposes.
1445    return getObjCEncodingForType(getObjCIdType(), S, ERType);
1446
1447  }
1448  else if (const PointerType *PT = T->getAsPointerType()) {
1449    QualType PointeeTy = PT->getPointeeType();
1450    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
1451      S += '@';
1452      return;
1453    } else if (isObjCClassType(PointeeTy)) {
1454      S += '#';
1455      return;
1456    } else if (isObjCSelType(PointeeTy)) {
1457      S += ':';
1458      return;
1459    }
1460
1461    if (PointeeTy->isCharType()) {
1462      // char pointer types should be encoded as '*' unless it is a
1463      // type that has been typedef'd to 'BOOL'.
1464      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
1465        S += '*';
1466        return;
1467      }
1468    }
1469
1470    S += '^';
1471    getObjCEncodingForType(PT->getPointeeType(), S, ERType);
1472  } else if (const ArrayType *AT =
1473               // Ignore type qualifiers etc.
1474               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
1475    S += '[';
1476
1477    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1478      S += llvm::utostr(CAT->getSize().getZExtValue());
1479    else
1480      assert(0 && "Unhandled array type!");
1481
1482    getObjCEncodingForType(AT->getElementType(), S, ERType);
1483    S += ']';
1484  } else if (T->getAsFunctionType()) {
1485    S += '?';
1486  } else if (const RecordType *RTy = T->getAsRecordType()) {
1487    RecordDecl *RDecl= RTy->getDecl();
1488    S += '{';
1489    S += RDecl->getName();
1490    bool found = false;
1491    for (unsigned i = 0, e = ERType.size(); i != e; ++i)
1492      if (ERType[i] == RTy) {
1493        found = true;
1494        break;
1495      }
1496    if (!found) {
1497      ERType.push_back(RTy);
1498      S += '=';
1499      for (int i = 0; i < RDecl->getNumMembers(); i++) {
1500        FieldDecl *field = RDecl->getMember(i);
1501        getObjCEncodingForType(field->getType(), S, ERType);
1502      }
1503      assert(ERType.back() == RTy && "Record Type stack mismatch.");
1504      ERType.pop_back();
1505    }
1506    S += '}';
1507  } else if (T->isEnumeralType()) {
1508    S += 'i';
1509  } else
1510    assert(0 && "@encode for type not implemented!");
1511}
1512
1513void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1514                                                 std::string& S) const {
1515  if (QT & Decl::OBJC_TQ_In)
1516    S += 'n';
1517  if (QT & Decl::OBJC_TQ_Inout)
1518    S += 'N';
1519  if (QT & Decl::OBJC_TQ_Out)
1520    S += 'o';
1521  if (QT & Decl::OBJC_TQ_Bycopy)
1522    S += 'O';
1523  if (QT & Decl::OBJC_TQ_Byref)
1524    S += 'R';
1525  if (QT & Decl::OBJC_TQ_Oneway)
1526    S += 'V';
1527}
1528
1529void ASTContext::setBuiltinVaListType(QualType T)
1530{
1531  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
1532
1533  BuiltinVaListType = T;
1534}
1535
1536void ASTContext::setObjCIdType(TypedefDecl *TD)
1537{
1538  assert(ObjCIdType.isNull() && "'id' type already set!");
1539
1540  ObjCIdType = getTypedefType(TD);
1541
1542  // typedef struct objc_object *id;
1543  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1544  assert(ptr && "'id' incorrectly typed");
1545  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1546  assert(rec && "'id' incorrectly typed");
1547  IdStructType = rec;
1548}
1549
1550void ASTContext::setObjCSelType(TypedefDecl *TD)
1551{
1552  assert(ObjCSelType.isNull() && "'SEL' type already set!");
1553
1554  ObjCSelType = getTypedefType(TD);
1555
1556  // typedef struct objc_selector *SEL;
1557  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1558  assert(ptr && "'SEL' incorrectly typed");
1559  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1560  assert(rec && "'SEL' incorrectly typed");
1561  SelStructType = rec;
1562}
1563
1564void ASTContext::setObjCProtoType(QualType QT)
1565{
1566  assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
1567  ObjCProtoType = QT;
1568}
1569
1570void ASTContext::setObjCClassType(TypedefDecl *TD)
1571{
1572  assert(ObjCClassType.isNull() && "'Class' type already set!");
1573
1574  ObjCClassType = getTypedefType(TD);
1575
1576  // typedef struct objc_class *Class;
1577  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1578  assert(ptr && "'Class' incorrectly typed");
1579  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1580  assert(rec && "'Class' incorrectly typed");
1581  ClassStructType = rec;
1582}
1583
1584void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
1585  assert(ObjCConstantStringType.isNull() &&
1586         "'NSConstantString' type already set!");
1587
1588  ObjCConstantStringType = getObjCInterfaceType(Decl);
1589}
1590
1591
1592//===----------------------------------------------------------------------===//
1593//                        Type Predicates.
1594//===----------------------------------------------------------------------===//
1595
1596/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
1597/// to an object type.  This includes "id" and "Class" (two 'special' pointers
1598/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
1599/// ID type).
1600bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
1601  if (Ty->isObjCQualifiedIdType())
1602    return true;
1603
1604  if (!Ty->isPointerType())
1605    return false;
1606
1607  // Check to see if this is 'id' or 'Class', both of which are typedefs for
1608  // pointer types.  This looks for the typedef specifically, not for the
1609  // underlying type.
1610  if (Ty == getObjCIdType() || Ty == getObjCClassType())
1611    return true;
1612
1613  // If this a pointer to an interface (e.g. NSString*), it is ok.
1614  return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType();
1615}
1616
1617//===----------------------------------------------------------------------===//
1618//                        Type Compatibility Testing
1619//===----------------------------------------------------------------------===//
1620
1621/// C99 6.2.7p1: If both are complete types, then the following additional
1622/// requirements apply.
1623/// FIXME (handle compatibility across source files).
1624static bool areCompatTagTypes(TagType *LHS, TagType *RHS,
1625                              const ASTContext &C) {
1626  // "Class" and "id" are compatible built-in structure types.
1627  if (C.isObjCIdType(QualType(LHS, 0)) && C.isObjCClassType(QualType(RHS, 0)) ||
1628      C.isObjCClassType(QualType(LHS, 0)) && C.isObjCIdType(QualType(RHS, 0)))
1629    return true;
1630
1631  // Within a translation unit a tag type is only compatible with itself.  Self
1632  // equality is already handled by the time we get here.
1633  assert(LHS != RHS && "Self equality not handled!");
1634  return false;
1635}
1636
1637bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
1638  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
1639  // identically qualified and both shall be pointers to compatible types.
1640  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
1641      lhs.getAddressSpace() != rhs.getAddressSpace())
1642    return false;
1643
1644  QualType ltype = lhs->getAsPointerType()->getPointeeType();
1645  QualType rtype = rhs->getAsPointerType()->getPointeeType();
1646
1647  return typesAreCompatible(ltype, rtype);
1648}
1649
1650bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
1651  const FunctionType *lbase = lhs->getAsFunctionType();
1652  const FunctionType *rbase = rhs->getAsFunctionType();
1653  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
1654  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
1655
1656  // first check the return types (common between C99 and K&R).
1657  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
1658    return false;
1659
1660  if (lproto && rproto) { // two C99 style function prototypes
1661    unsigned lproto_nargs = lproto->getNumArgs();
1662    unsigned rproto_nargs = rproto->getNumArgs();
1663
1664    if (lproto_nargs != rproto_nargs)
1665      return false;
1666
1667    // both prototypes have the same number of arguments.
1668    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
1669        (rproto->isVariadic() && !lproto->isVariadic()))
1670      return false;
1671
1672    // The use of ellipsis agree...now check the argument types.
1673    for (unsigned i = 0; i < lproto_nargs; i++)
1674      // C99 6.7.5.3p15: ...and each parameter declared with qualified type
1675      // is taken as having the unqualified version of it's declared type.
1676      if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
1677                              rproto->getArgType(i).getUnqualifiedType()))
1678        return false;
1679    return true;
1680  }
1681
1682  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
1683    return true;
1684
1685  // we have a mixture of K&R style with C99 prototypes
1686  const FunctionTypeProto *proto = lproto ? lproto : rproto;
1687  if (proto->isVariadic())
1688    return false;
1689
1690  // FIXME: Each parameter type T in the prototype must be compatible with the
1691  // type resulting from applying the usual argument conversions to T.
1692  return true;
1693}
1694
1695// C99 6.7.5.2p6
1696static bool areCompatArrayTypes(ArrayType *LHS, ArrayType *RHS, ASTContext &C) {
1697  // Constant arrays must be the same size to be compatible.
1698  if (const ConstantArrayType* LCAT = dyn_cast<ConstantArrayType>(LHS))
1699    if (const ConstantArrayType* RCAT = dyn_cast<ConstantArrayType>(RHS))
1700      if (RCAT->getSize() != LCAT->getSize())
1701        return false;
1702
1703  // Compatible arrays must have compatible element types
1704  return C.typesAreCompatible(LHS->getElementType(), RHS->getElementType());
1705}
1706
1707/// areCompatVectorTypes - Return true if the two specified vector types are
1708/// compatible.
1709static bool areCompatVectorTypes(const VectorType *LHS,
1710                                 const VectorType *RHS) {
1711  assert(LHS->isCanonical() && RHS->isCanonical());
1712  return LHS->getElementType() == RHS->getElementType() &&
1713  LHS->getNumElements() == RHS->getNumElements();
1714}
1715
1716/// areCompatObjCInterfaces - Return true if the two interface types are
1717/// compatible for assignment from RHS to LHS.  This handles validation of any
1718/// protocol qualifiers on the LHS or RHS.
1719///
1720static bool areCompatObjCInterfaces(const ObjCInterfaceType *LHS,
1721                                    const ObjCInterfaceType *RHS) {
1722  // Verify that the base decls are compatible: the RHS must be a subclass of
1723  // the LHS.
1724  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
1725    return false;
1726
1727  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
1728  // protocol qualified at all, then we are good.
1729  if (!isa<ObjCQualifiedInterfaceType>(LHS))
1730    return true;
1731
1732  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
1733  // isn't a superset.
1734  if (!isa<ObjCQualifiedInterfaceType>(RHS))
1735    return true;  // FIXME: should return false!
1736
1737  // Finally, we must have two protocol-qualified interfaces.
1738  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
1739  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
1740  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
1741  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
1742  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
1743  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
1744
1745  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
1746  // are both sorted alphabetically and have no duplicates, we can scan RHS and
1747  // LHS in a single parallel scan until we run out of elements in LHS.
1748  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
1749  ObjCProtocolDecl *LHSProto = *LHSPI;
1750
1751  while (RHSPI != RHSPE) {
1752    ObjCProtocolDecl *RHSProto = *RHSPI++;
1753    // If the RHS has a protocol that the LHS doesn't, ignore it.
1754    if (RHSProto != LHSProto)
1755      continue;
1756
1757    // Otherwise, the RHS does have this element.
1758    ++LHSPI;
1759    if (LHSPI == LHSPE)
1760      return true;  // All protocols in LHS exist in RHS.
1761
1762    LHSProto = *LHSPI;
1763  }
1764
1765  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
1766  return false;
1767}
1768
1769
1770/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
1771/// both shall have the identically qualified version of a compatible type.
1772/// C99 6.2.7p1: Two types have compatible types if their types are the
1773/// same. See 6.7.[2,3,5] for additional rules.
1774bool ASTContext::typesAreCompatible(QualType LHS_NC, QualType RHS_NC) {
1775  QualType LHS = getCanonicalType(LHS_NC);
1776  QualType RHS = getCanonicalType(RHS_NC);
1777
1778  // C++ [expr]: If an expression initially has the type "reference to T", the
1779  // type is adjusted to "T" prior to any further analysis, the expression
1780  // designates the object or function denoted by the reference, and the
1781  // expression is an lvalue.
1782  if (ReferenceType *RT = dyn_cast<ReferenceType>(LHS))
1783    LHS = RT->getPointeeType();
1784  if (ReferenceType *RT = dyn_cast<ReferenceType>(RHS))
1785    RHS = RT->getPointeeType();
1786
1787  // If two types are identical, they are compatible.
1788  if (LHS == RHS)
1789    return true;
1790
1791  // If qualifiers differ, the types are different.
1792  unsigned LHSAS = LHS.getAddressSpace(), RHSAS = RHS.getAddressSpace();
1793  if (LHS.getCVRQualifiers() != RHS.getCVRQualifiers() || LHSAS != RHSAS)
1794    return false;
1795
1796  // Strip off ASQual's if present.
1797  if (LHSAS) {
1798    LHS = LHS.getUnqualifiedType();
1799    RHS = RHS.getUnqualifiedType();
1800  }
1801
1802  Type::TypeClass LHSClass = LHS->getTypeClass();
1803  Type::TypeClass RHSClass = RHS->getTypeClass();
1804
1805  // We want to consider the two function types to be the same for these
1806  // comparisons, just force one to the other.
1807  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
1808  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
1809
1810  // Same as above for arrays
1811  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
1812    LHSClass = Type::ConstantArray;
1813  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
1814    RHSClass = Type::ConstantArray;
1815
1816  // Canonicalize ExtVector -> Vector.
1817  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
1818  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
1819
1820  // Consider qualified interfaces and interfaces the same.
1821  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
1822  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
1823
1824  // If the canonical type classes don't match.
1825  if (LHSClass != RHSClass) {
1826    // ID is compatible with all interface types.
1827    if (isa<ObjCInterfaceType>(LHS))
1828      return isObjCIdType(RHS);
1829    if (isa<ObjCInterfaceType>(RHS))
1830      return isObjCIdType(LHS);
1831
1832    // ID is compatible with all qualified id types.
1833    if (isa<ObjCQualifiedIdType>(LHS)) {
1834      if (const PointerType *PT = RHS->getAsPointerType())
1835        return isObjCIdType(PT->getPointeeType());
1836    }
1837    if (isa<ObjCQualifiedIdType>(RHS)) {
1838      if (const PointerType *PT = LHS->getAsPointerType())
1839        return isObjCIdType(PT->getPointeeType());
1840    }
1841    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
1842    // a signed integer type, or an unsigned integer type.
1843    if (LHS->isEnumeralType() && RHS->isIntegralType()) {
1844      EnumDecl* EDecl = cast<EnumType>(LHS)->getDecl();
1845      return EDecl->getIntegerType() == RHS;
1846    }
1847    if (RHS->isEnumeralType() && LHS->isIntegralType()) {
1848      EnumDecl* EDecl = cast<EnumType>(RHS)->getDecl();
1849      return EDecl->getIntegerType() == LHS;
1850    }
1851
1852    return false;
1853  }
1854
1855  // The canonical type classes match.
1856  switch (LHSClass) {
1857  case Type::ASQual:
1858  case Type::FunctionProto:
1859  case Type::VariableArray:
1860  case Type::IncompleteArray:
1861  case Type::Reference:
1862  case Type::ObjCQualifiedInterface:
1863    assert(0 && "Canonicalized away above");
1864  case Type::Pointer:
1865    return pointerTypesAreCompatible(LHS, RHS);
1866  case Type::ConstantArray:
1867    return areCompatArrayTypes(cast<ArrayType>(LHS), cast<ArrayType>(RHS),
1868                               *this);
1869  case Type::FunctionNoProto:
1870    return functionTypesAreCompatible(LHS, RHS);
1871  case Type::Tagged: // handle structures, unions
1872    return areCompatTagTypes(cast<TagType>(LHS), cast<TagType>(RHS), *this);
1873  case Type::Builtin:
1874    // Only exactly equal builtin types are compatible, which is tested above.
1875    return false;
1876  case Type::Vector:
1877    return areCompatVectorTypes(cast<VectorType>(LHS), cast<VectorType>(RHS));
1878  case Type::ObjCInterface:
1879    return areCompatObjCInterfaces(cast<ObjCInterfaceType>(LHS),
1880                                   cast<ObjCInterfaceType>(RHS));
1881  default:
1882    assert(0 && "unexpected type");
1883  }
1884  return true; // should never get here...
1885}
1886
1887//===----------------------------------------------------------------------===//
1888//                         Integer Predicates
1889//===----------------------------------------------------------------------===//
1890unsigned ASTContext::getIntWidth(QualType T) {
1891  if (T == BoolTy)
1892    return 1;
1893  // At the moment, only bool has padding bits
1894  return (unsigned)getTypeSize(T);
1895}
1896
1897QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
1898  assert(T->isSignedIntegerType() && "Unexpected type");
1899  if (const EnumType* ETy = T->getAsEnumType())
1900    T = ETy->getDecl()->getIntegerType();
1901  const BuiltinType* BTy = T->getAsBuiltinType();
1902  assert (BTy && "Unexpected signed integer type");
1903  switch (BTy->getKind()) {
1904  case BuiltinType::Char_S:
1905  case BuiltinType::SChar:
1906    return UnsignedCharTy;
1907  case BuiltinType::Short:
1908    return UnsignedShortTy;
1909  case BuiltinType::Int:
1910    return UnsignedIntTy;
1911  case BuiltinType::Long:
1912    return UnsignedLongTy;
1913  case BuiltinType::LongLong:
1914    return UnsignedLongLongTy;
1915  default:
1916    assert(0 && "Unexpected signed integer type");
1917    return QualType();
1918  }
1919}
1920
1921
1922//===----------------------------------------------------------------------===//
1923//                         Serialization Support
1924//===----------------------------------------------------------------------===//
1925
1926/// Emit - Serialize an ASTContext object to Bitcode.
1927void ASTContext::Emit(llvm::Serializer& S) const {
1928  S.Emit(LangOpts);
1929  S.EmitRef(SourceMgr);
1930  S.EmitRef(Target);
1931  S.EmitRef(Idents);
1932  S.EmitRef(Selectors);
1933
1934  // Emit the size of the type vector so that we can reserve that size
1935  // when we reconstitute the ASTContext object.
1936  S.EmitInt(Types.size());
1937
1938  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
1939                                          I!=E;++I)
1940    (*I)->Emit(S);
1941
1942  S.EmitOwnedPtr(TUDecl);
1943
1944  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
1945}
1946
1947ASTContext* ASTContext::Create(llvm::Deserializer& D) {
1948
1949  // Read the language options.
1950  LangOptions LOpts;
1951  LOpts.Read(D);
1952
1953  SourceManager &SM = D.ReadRef<SourceManager>();
1954  TargetInfo &t = D.ReadRef<TargetInfo>();
1955  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
1956  SelectorTable &sels = D.ReadRef<SelectorTable>();
1957
1958  unsigned size_reserve = D.ReadInt();
1959
1960  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels, size_reserve);
1961
1962  for (unsigned i = 0; i < size_reserve; ++i)
1963    Type::Create(*A,i,D);
1964
1965  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
1966
1967  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
1968
1969  return A;
1970}
1971