ASTContext.cpp revision 53efc251792bf2c9c5f295bd3507facc51a1fe7e
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Bitcode/Serialize.h"
21#include "llvm/Bitcode/Deserialize.h"
22
23using namespace clang;
24
25enum FloatingRank {
26  FloatRank, DoubleRank, LongDoubleRank
27};
28
29ASTContext::~ASTContext() {
30  // Deallocate all the types.
31  while (!Types.empty()) {
32    if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
33      // Destroy the object, but don't call delete.  These are malloc'd.
34      FT->~FunctionTypeProto();
35      free(FT);
36    } else {
37      delete Types.back();
38    }
39    Types.pop_back();
40  }
41}
42
43void ASTContext::PrintStats() const {
44  fprintf(stderr, "*** AST Context Stats:\n");
45  fprintf(stderr, "  %d types total.\n", (int)Types.size());
46  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
47  unsigned NumVector = 0, NumComplex = 0;
48  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
49
50  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
51  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
52  unsigned NumObjCQualifiedIds = 0;
53
54  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
55    Type *T = Types[i];
56    if (isa<BuiltinType>(T))
57      ++NumBuiltin;
58    else if (isa<PointerType>(T))
59      ++NumPointer;
60    else if (isa<ReferenceType>(T))
61      ++NumReference;
62    else if (isa<ComplexType>(T))
63      ++NumComplex;
64    else if (isa<ArrayType>(T))
65      ++NumArray;
66    else if (isa<VectorType>(T))
67      ++NumVector;
68    else if (isa<FunctionTypeNoProto>(T))
69      ++NumFunctionNP;
70    else if (isa<FunctionTypeProto>(T))
71      ++NumFunctionP;
72    else if (isa<TypedefType>(T))
73      ++NumTypeName;
74    else if (TagType *TT = dyn_cast<TagType>(T)) {
75      ++NumTagged;
76      switch (TT->getDecl()->getKind()) {
77      default: assert(0 && "Unknown tagged type!");
78      case Decl::Struct: ++NumTagStruct; break;
79      case Decl::Union:  ++NumTagUnion; break;
80      case Decl::Class:  ++NumTagClass; break;
81      case Decl::Enum:   ++NumTagEnum; break;
82      }
83    } else if (isa<ObjCInterfaceType>(T))
84      ++NumObjCInterfaces;
85    else if (isa<ObjCQualifiedInterfaceType>(T))
86      ++NumObjCQualifiedInterfaces;
87    else if (isa<ObjCQualifiedIdType>(T))
88      ++NumObjCQualifiedIds;
89    else {
90      QualType(T, 0).dump();
91      assert(0 && "Unknown type!");
92    }
93  }
94
95  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
96  fprintf(stderr, "    %d pointer types\n", NumPointer);
97  fprintf(stderr, "    %d reference types\n", NumReference);
98  fprintf(stderr, "    %d complex types\n", NumComplex);
99  fprintf(stderr, "    %d array types\n", NumArray);
100  fprintf(stderr, "    %d vector types\n", NumVector);
101  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
102  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
103  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
104  fprintf(stderr, "    %d tagged types\n", NumTagged);
105  fprintf(stderr, "      %d struct types\n", NumTagStruct);
106  fprintf(stderr, "      %d union types\n", NumTagUnion);
107  fprintf(stderr, "      %d class types\n", NumTagClass);
108  fprintf(stderr, "      %d enum types\n", NumTagEnum);
109  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
110  fprintf(stderr, "    %d protocol qualified interface types\n",
111          NumObjCQualifiedInterfaces);
112  fprintf(stderr, "    %d protocol qualified id types\n",
113          NumObjCQualifiedIds);
114  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
115    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
116    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
117    NumFunctionP*sizeof(FunctionTypeProto)+
118    NumFunctionNP*sizeof(FunctionTypeNoProto)+
119    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
120}
121
122
123void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
124  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
125}
126
127void ASTContext::InitBuiltinTypes() {
128  assert(VoidTy.isNull() && "Context reinitialized?");
129
130  // C99 6.2.5p19.
131  InitBuiltinType(VoidTy,              BuiltinType::Void);
132
133  // C99 6.2.5p2.
134  InitBuiltinType(BoolTy,              BuiltinType::Bool);
135  // C99 6.2.5p3.
136  if (Target.isCharSigned())
137    InitBuiltinType(CharTy,            BuiltinType::Char_S);
138  else
139    InitBuiltinType(CharTy,            BuiltinType::Char_U);
140  // C99 6.2.5p4.
141  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
142  InitBuiltinType(ShortTy,             BuiltinType::Short);
143  InitBuiltinType(IntTy,               BuiltinType::Int);
144  InitBuiltinType(LongTy,              BuiltinType::Long);
145  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
146
147  // C99 6.2.5p6.
148  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
149  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
150  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
151  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
152  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
153
154  // C99 6.2.5p10.
155  InitBuiltinType(FloatTy,             BuiltinType::Float);
156  InitBuiltinType(DoubleTy,            BuiltinType::Double);
157  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
158
159  // C99 6.2.5p11.
160  FloatComplexTy      = getComplexType(FloatTy);
161  DoubleComplexTy     = getComplexType(DoubleTy);
162  LongDoubleComplexTy = getComplexType(LongDoubleTy);
163
164  BuiltinVaListType = QualType();
165  ObjCIdType = QualType();
166  IdStructType = 0;
167  ObjCClassType = QualType();
168  ClassStructType = 0;
169
170  ObjCConstantStringType = QualType();
171
172  // void * type
173  VoidPtrTy = getPointerType(VoidTy);
174}
175
176//===----------------------------------------------------------------------===//
177//                         Type Sizing and Analysis
178//===----------------------------------------------------------------------===//
179
180/// getTypeSize - Return the size of the specified type, in bits.  This method
181/// does not work on incomplete types.
182std::pair<uint64_t, unsigned>
183ASTContext::getTypeInfo(QualType T) {
184  T = getCanonicalType(T);
185  uint64_t Width;
186  unsigned Align;
187  switch (T->getTypeClass()) {
188  case Type::TypeName: assert(0 && "Not a canonical type!");
189  case Type::FunctionNoProto:
190  case Type::FunctionProto:
191  default:
192    assert(0 && "Incomplete types have no size!");
193  case Type::VariableArray:
194    assert(0 && "VLAs not implemented yet!");
195  case Type::ConstantArray: {
196    ConstantArrayType *CAT = cast<ConstantArrayType>(T);
197
198    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
199    Width = EltInfo.first*CAT->getSize().getZExtValue();
200    Align = EltInfo.second;
201    break;
202  }
203  case Type::OCUVector:
204  case Type::Vector: {
205    std::pair<uint64_t, unsigned> EltInfo =
206      getTypeInfo(cast<VectorType>(T)->getElementType());
207    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
208    // FIXME: Vector alignment is not the alignment of its elements.
209    Align = EltInfo.second;
210    break;
211  }
212
213  case Type::Builtin:
214    // FIXME: need to use TargetInfo to derive the target specific sizes. This
215    // implementation will suffice for play with vector support.
216    switch (cast<BuiltinType>(T)->getKind()) {
217    default: assert(0 && "Unknown builtin type!");
218    case BuiltinType::Void:
219      assert(0 && "Incomplete types have no size!");
220    case BuiltinType::Bool:
221      Width = Target.getBoolWidth();
222      Align = Target.getBoolAlign();
223      break;
224    case BuiltinType::Char_S:
225    case BuiltinType::Char_U:
226    case BuiltinType::UChar:
227    case BuiltinType::SChar:
228      Width = Target.getCharWidth();
229      Align = Target.getCharAlign();
230      break;
231    case BuiltinType::UShort:
232    case BuiltinType::Short:
233      Width = Target.getShortWidth();
234      Align = Target.getShortAlign();
235      break;
236    case BuiltinType::UInt:
237    case BuiltinType::Int:
238      Width = Target.getIntWidth();
239      Align = Target.getIntAlign();
240      break;
241    case BuiltinType::ULong:
242    case BuiltinType::Long:
243      Width = Target.getLongWidth();
244      Align = Target.getLongAlign();
245      break;
246    case BuiltinType::ULongLong:
247    case BuiltinType::LongLong:
248      Width = Target.getLongLongWidth();
249      Align = Target.getLongLongAlign();
250      break;
251    case BuiltinType::Float:
252      Width = Target.getFloatWidth();
253      Align = Target.getFloatAlign();
254      break;
255    case BuiltinType::Double:
256        Width = Target.getDoubleWidth();
257        Align = Target.getDoubleAlign();
258      break;
259    case BuiltinType::LongDouble:
260      Width = Target.getLongDoubleWidth();
261      Align = Target.getLongDoubleAlign();
262      break;
263    }
264    break;
265  case Type::ASQual:
266    // FIXME: Pointers into different addr spaces could have different sizes and
267    // alignment requirements: getPointerInfo should take an AddrSpace.
268    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
269  case Type::ObjCQualifiedId:
270    Width  = Target.getPointerWidth(0);
271    Align = Target.getPointerAlign(0);
272    break;
273  case Type::Pointer: {
274    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
275    Width  = Target.getPointerWidth(AS);
276    Align = Target.getPointerAlign(AS);
277    break;
278  }
279  case Type::Reference:
280    // "When applied to a reference or a reference type, the result is the size
281    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
282    // FIXME: This is wrong for struct layout: a reference in a struct has
283    // pointer size.
284    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
285
286  case Type::Complex: {
287    // Complex types have the same alignment as their elements, but twice the
288    // size.
289    std::pair<uint64_t, unsigned> EltInfo =
290      getTypeInfo(cast<ComplexType>(T)->getElementType());
291    Width = EltInfo.first*2;
292    Align = EltInfo.second;
293    break;
294  }
295  case Type::Tagged: {
296    if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
297      return getTypeInfo(ET->getDecl()->getIntegerType());
298
299    RecordType *RT = cast<RecordType>(T);
300    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
301    Width = Layout.getSize();
302    Align = Layout.getAlignment();
303    break;
304  }
305  }
306
307  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
308  return std::make_pair(Width, Align);
309}
310
311/// getASTRecordLayout - Get or compute information about the layout of the
312/// specified record (struct/union/class), which indicates its size and field
313/// position information.
314const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
315  assert(D->isDefinition() && "Cannot get layout of forward declarations!");
316
317  // Look up this layout, if already laid out, return what we have.
318  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
319  if (Entry) return *Entry;
320
321  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
322  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
323  ASTRecordLayout *NewEntry = new ASTRecordLayout();
324  Entry = NewEntry;
325
326  uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
327  uint64_t RecordSize = 0;
328  unsigned RecordAlign = 8;  // Default alignment = 1 byte = 8 bits.
329
330  if (D->getKind() != Decl::Union) {
331    if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
332      RecordAlign = std::max(RecordAlign, AA->getAlignment());
333
334    bool StructIsPacked = D->getAttr<PackedAttr>();
335
336    // Layout each field, for now, just sequentially, respecting alignment.  In
337    // the future, this will need to be tweakable by targets.
338    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
339      const FieldDecl *FD = D->getMember(i);
340      bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
341      uint64_t FieldSize;
342      unsigned FieldAlign;
343
344      if (const Expr *BitWidthExpr = FD->getBitWidth()) {
345        llvm::APSInt I(32);
346        bool BitWidthIsICE =
347          BitWidthExpr->isIntegerConstantExpr(I, *this);
348        assert (BitWidthIsICE  && "Invalid BitField size expression");
349        FieldSize = I.getZExtValue();
350
351        std::pair<uint64_t, unsigned> TypeInfo = getTypeInfo(FD->getType());
352        uint64_t TypeSize = TypeInfo.first;
353
354        if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
355          FieldAlign = AA->getAlignment();
356        else if (FieldIsPacked)
357          FieldAlign = 8;
358        else {
359          // FIXME: This is X86 specific, use 32-bit alignment for long long.
360          if (FD->getType()->isIntegerType() && TypeInfo.second > 32)
361            FieldAlign = 32;
362          else
363            FieldAlign = TypeInfo.second;
364        }
365
366        // Check if we need to add padding to give the field the correct
367        // alignment.
368        if (RecordSize % FieldAlign + FieldSize > TypeSize)
369          RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
370
371      } else {
372        if (FD->getType()->isIncompleteType()) {
373          // This must be a flexible array member; we can't directly
374          // query getTypeInfo about these, so we figure it out here.
375          // Flexible array members don't have any size, but they
376          // have to be aligned appropriately for their element type.
377
378          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
379            FieldAlign = AA->getAlignment();
380          else if (FieldIsPacked)
381            FieldAlign = 8;
382          else {
383            const ArrayType* ATy = FD->getType()->getAsArrayType();
384            FieldAlign = getTypeAlign(ATy->getElementType());
385          }
386          FieldSize = 0;
387        } else {
388          std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
389          FieldSize = FieldInfo.first;
390
391          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
392            FieldAlign = AA->getAlignment();
393          else if (FieldIsPacked)
394            FieldAlign = 8;
395          else
396            FieldAlign = FieldInfo.second;
397        }
398
399        // Round up the current record size to the field's alignment boundary.
400        RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
401      }
402
403      // Place this field at the current location.
404      FieldOffsets[i] = RecordSize;
405
406      // Reserve space for this field.
407      RecordSize += FieldSize;
408
409      // Remember max struct/class alignment.
410      RecordAlign = std::max(RecordAlign, FieldAlign);
411    }
412
413    // Finally, round the size of the total struct up to the alignment of the
414    // struct itself.
415    RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
416  } else {
417    // Union layout just puts each member at the start of the record.
418    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
419      const FieldDecl *FD = D->getMember(i);
420      std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
421      uint64_t FieldSize = FieldInfo.first;
422      unsigned FieldAlign = FieldInfo.second;
423
424      // FIXME: This is X86 specific, use 32-bit alignment for long long.
425      if (FD->getType()->isIntegerType() && FieldAlign > 32)
426        FieldAlign = 32;
427
428      // Round up the current record size to the field's alignment boundary.
429      RecordSize = std::max(RecordSize, FieldSize);
430
431      // Place this field at the start of the record.
432      FieldOffsets[i] = 0;
433
434      // Remember max struct/class alignment.
435      RecordAlign = std::max(RecordAlign, FieldAlign);
436    }
437  }
438
439  NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
440  return *NewEntry;
441}
442
443//===----------------------------------------------------------------------===//
444//                   Type creation/memoization methods
445//===----------------------------------------------------------------------===//
446
447QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
448  QualType CanT = getCanonicalType(T);
449  if (CanT.getAddressSpace() == AddressSpace)
450    return T;
451
452  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
453  // with CVR qualifiers from here on out.
454  assert(CanT.getAddressSpace() == 0 &&
455         "Type is already address space qualified");
456
457  // Check if we've already instantiated an address space qual'd type of this
458  // type.
459  llvm::FoldingSetNodeID ID;
460  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
461  void *InsertPos = 0;
462  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
463    return QualType(ASQy, 0);
464
465  // If the base type isn't canonical, this won't be a canonical type either,
466  // so fill in the canonical type field.
467  QualType Canonical;
468  if (!T->isCanonical()) {
469    Canonical = getASQualType(CanT, AddressSpace);
470
471    // Get the new insert position for the node we care about.
472    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
473    assert(NewIP == 0 && "Shouldn't be in the map!");
474  }
475  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
476  ASQualTypes.InsertNode(New, InsertPos);
477  Types.push_back(New);
478  return QualType(New, T.getCVRQualifiers());
479}
480
481
482/// getComplexType - Return the uniqued reference to the type for a complex
483/// number with the specified element type.
484QualType ASTContext::getComplexType(QualType T) {
485  // Unique pointers, to guarantee there is only one pointer of a particular
486  // structure.
487  llvm::FoldingSetNodeID ID;
488  ComplexType::Profile(ID, T);
489
490  void *InsertPos = 0;
491  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
492    return QualType(CT, 0);
493
494  // If the pointee type isn't canonical, this won't be a canonical type either,
495  // so fill in the canonical type field.
496  QualType Canonical;
497  if (!T->isCanonical()) {
498    Canonical = getComplexType(getCanonicalType(T));
499
500    // Get the new insert position for the node we care about.
501    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
502    assert(NewIP == 0 && "Shouldn't be in the map!");
503  }
504  ComplexType *New = new ComplexType(T, Canonical);
505  Types.push_back(New);
506  ComplexTypes.InsertNode(New, InsertPos);
507  return QualType(New, 0);
508}
509
510
511/// getPointerType - Return the uniqued reference to the type for a pointer to
512/// the specified type.
513QualType ASTContext::getPointerType(QualType T) {
514  // Unique pointers, to guarantee there is only one pointer of a particular
515  // structure.
516  llvm::FoldingSetNodeID ID;
517  PointerType::Profile(ID, T);
518
519  void *InsertPos = 0;
520  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
521    return QualType(PT, 0);
522
523  // If the pointee type isn't canonical, this won't be a canonical type either,
524  // so fill in the canonical type field.
525  QualType Canonical;
526  if (!T->isCanonical()) {
527    Canonical = getPointerType(getCanonicalType(T));
528
529    // Get the new insert position for the node we care about.
530    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
531    assert(NewIP == 0 && "Shouldn't be in the map!");
532  }
533  PointerType *New = new PointerType(T, Canonical);
534  Types.push_back(New);
535  PointerTypes.InsertNode(New, InsertPos);
536  return QualType(New, 0);
537}
538
539/// getReferenceType - Return the uniqued reference to the type for a reference
540/// to the specified type.
541QualType ASTContext::getReferenceType(QualType T) {
542  // Unique pointers, to guarantee there is only one pointer of a particular
543  // structure.
544  llvm::FoldingSetNodeID ID;
545  ReferenceType::Profile(ID, T);
546
547  void *InsertPos = 0;
548  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
549    return QualType(RT, 0);
550
551  // If the referencee type isn't canonical, this won't be a canonical type
552  // either, so fill in the canonical type field.
553  QualType Canonical;
554  if (!T->isCanonical()) {
555    Canonical = getReferenceType(getCanonicalType(T));
556
557    // Get the new insert position for the node we care about.
558    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
559    assert(NewIP == 0 && "Shouldn't be in the map!");
560  }
561
562  ReferenceType *New = new ReferenceType(T, Canonical);
563  Types.push_back(New);
564  ReferenceTypes.InsertNode(New, InsertPos);
565  return QualType(New, 0);
566}
567
568/// getConstantArrayType - Return the unique reference to the type for an
569/// array of the specified element type.
570QualType ASTContext::getConstantArrayType(QualType EltTy,
571                                          const llvm::APInt &ArySize,
572                                          ArrayType::ArraySizeModifier ASM,
573                                          unsigned EltTypeQuals) {
574  llvm::FoldingSetNodeID ID;
575  ConstantArrayType::Profile(ID, EltTy, ArySize);
576
577  void *InsertPos = 0;
578  if (ConstantArrayType *ATP =
579      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
580    return QualType(ATP, 0);
581
582  // If the element type isn't canonical, this won't be a canonical type either,
583  // so fill in the canonical type field.
584  QualType Canonical;
585  if (!EltTy->isCanonical()) {
586    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
587                                     ASM, EltTypeQuals);
588    // Get the new insert position for the node we care about.
589    ConstantArrayType *NewIP =
590      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
591
592    assert(NewIP == 0 && "Shouldn't be in the map!");
593  }
594
595  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
596                                                 ASM, EltTypeQuals);
597  ConstantArrayTypes.InsertNode(New, InsertPos);
598  Types.push_back(New);
599  return QualType(New, 0);
600}
601
602/// getVariableArrayType - Returns a non-unique reference to the type for a
603/// variable array of the specified element type.
604QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
605                                          ArrayType::ArraySizeModifier ASM,
606                                          unsigned EltTypeQuals) {
607  // Since we don't unique expressions, it isn't possible to unique VLA's
608  // that have an expression provided for their size.
609
610  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
611                                                 ASM, EltTypeQuals);
612
613  VariableArrayTypes.push_back(New);
614  Types.push_back(New);
615  return QualType(New, 0);
616}
617
618QualType ASTContext::getIncompleteArrayType(QualType EltTy,
619                                            ArrayType::ArraySizeModifier ASM,
620                                            unsigned EltTypeQuals) {
621  llvm::FoldingSetNodeID ID;
622  IncompleteArrayType::Profile(ID, EltTy);
623
624  void *InsertPos = 0;
625  if (IncompleteArrayType *ATP =
626       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
627    return QualType(ATP, 0);
628
629  // If the element type isn't canonical, this won't be a canonical type
630  // either, so fill in the canonical type field.
631  QualType Canonical;
632
633  if (!EltTy->isCanonical()) {
634    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
635                                       ASM, EltTypeQuals);
636
637    // Get the new insert position for the node we care about.
638    IncompleteArrayType *NewIP =
639      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
640
641    assert(NewIP == 0 && "Shouldn't be in the map!");
642  }
643
644  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
645                                                     ASM, EltTypeQuals);
646
647  IncompleteArrayTypes.InsertNode(New, InsertPos);
648  Types.push_back(New);
649  return QualType(New, 0);
650}
651
652/// getVectorType - Return the unique reference to a vector type of
653/// the specified element type and size. VectorType must be a built-in type.
654QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
655  BuiltinType *baseType;
656
657  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
658  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
659
660  // Check if we've already instantiated a vector of this type.
661  llvm::FoldingSetNodeID ID;
662  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
663  void *InsertPos = 0;
664  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
665    return QualType(VTP, 0);
666
667  // If the element type isn't canonical, this won't be a canonical type either,
668  // so fill in the canonical type field.
669  QualType Canonical;
670  if (!vecType->isCanonical()) {
671    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
672
673    // Get the new insert position for the node we care about.
674    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
675    assert(NewIP == 0 && "Shouldn't be in the map!");
676  }
677  VectorType *New = new VectorType(vecType, NumElts, Canonical);
678  VectorTypes.InsertNode(New, InsertPos);
679  Types.push_back(New);
680  return QualType(New, 0);
681}
682
683/// getOCUVectorType - Return the unique reference to an OCU vector type of
684/// the specified element type and size. VectorType must be a built-in type.
685QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
686  BuiltinType *baseType;
687
688  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
689  assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
690
691  // Check if we've already instantiated a vector of this type.
692  llvm::FoldingSetNodeID ID;
693  VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
694  void *InsertPos = 0;
695  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
696    return QualType(VTP, 0);
697
698  // If the element type isn't canonical, this won't be a canonical type either,
699  // so fill in the canonical type field.
700  QualType Canonical;
701  if (!vecType->isCanonical()) {
702    Canonical = getOCUVectorType(getCanonicalType(vecType), NumElts);
703
704    // Get the new insert position for the node we care about.
705    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
706    assert(NewIP == 0 && "Shouldn't be in the map!");
707  }
708  OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
709  VectorTypes.InsertNode(New, InsertPos);
710  Types.push_back(New);
711  return QualType(New, 0);
712}
713
714/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
715///
716QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
717  // Unique functions, to guarantee there is only one function of a particular
718  // structure.
719  llvm::FoldingSetNodeID ID;
720  FunctionTypeNoProto::Profile(ID, ResultTy);
721
722  void *InsertPos = 0;
723  if (FunctionTypeNoProto *FT =
724        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
725    return QualType(FT, 0);
726
727  QualType Canonical;
728  if (!ResultTy->isCanonical()) {
729    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
730
731    // Get the new insert position for the node we care about.
732    FunctionTypeNoProto *NewIP =
733      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
734    assert(NewIP == 0 && "Shouldn't be in the map!");
735  }
736
737  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
738  Types.push_back(New);
739  FunctionTypeNoProtos.InsertNode(New, InsertPos);
740  return QualType(New, 0);
741}
742
743/// getFunctionType - Return a normal function type with a typed argument
744/// list.  isVariadic indicates whether the argument list includes '...'.
745QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
746                                     unsigned NumArgs, bool isVariadic) {
747  // Unique functions, to guarantee there is only one function of a particular
748  // structure.
749  llvm::FoldingSetNodeID ID;
750  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
751
752  void *InsertPos = 0;
753  if (FunctionTypeProto *FTP =
754        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
755    return QualType(FTP, 0);
756
757  // Determine whether the type being created is already canonical or not.
758  bool isCanonical = ResultTy->isCanonical();
759  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
760    if (!ArgArray[i]->isCanonical())
761      isCanonical = false;
762
763  // If this type isn't canonical, get the canonical version of it.
764  QualType Canonical;
765  if (!isCanonical) {
766    llvm::SmallVector<QualType, 16> CanonicalArgs;
767    CanonicalArgs.reserve(NumArgs);
768    for (unsigned i = 0; i != NumArgs; ++i)
769      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
770
771    Canonical = getFunctionType(getCanonicalType(ResultTy),
772                                &CanonicalArgs[0], NumArgs,
773                                isVariadic);
774
775    // Get the new insert position for the node we care about.
776    FunctionTypeProto *NewIP =
777      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
778    assert(NewIP == 0 && "Shouldn't be in the map!");
779  }
780
781  // FunctionTypeProto objects are not allocated with new because they have a
782  // variable size array (for parameter types) at the end of them.
783  FunctionTypeProto *FTP =
784    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
785                               NumArgs*sizeof(QualType));
786  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
787                              Canonical);
788  Types.push_back(FTP);
789  FunctionTypeProtos.InsertNode(FTP, InsertPos);
790  return QualType(FTP, 0);
791}
792
793/// getTypedefType - Return the unique reference to the type for the
794/// specified typename decl.
795QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
796  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
797
798  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
799  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
800  Types.push_back(Decl->TypeForDecl);
801  return QualType(Decl->TypeForDecl, 0);
802}
803
804/// getObjCInterfaceType - Return the unique reference to the type for the
805/// specified ObjC interface decl.
806QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
807  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
808
809  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
810  Types.push_back(Decl->TypeForDecl);
811  return QualType(Decl->TypeForDecl, 0);
812}
813
814/// getObjCQualifiedInterfaceType - Return a
815/// ObjCQualifiedInterfaceType type for the given interface decl and
816/// the conforming protocol list.
817QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
818                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
819  llvm::FoldingSetNodeID ID;
820  ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols);
821
822  void *InsertPos = 0;
823  if (ObjCQualifiedInterfaceType *QT =
824      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
825    return QualType(QT, 0);
826
827  // No Match;
828  ObjCQualifiedInterfaceType *QType =
829    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
830  Types.push_back(QType);
831  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
832  return QualType(QType, 0);
833}
834
835/// getObjCQualifiedIdType - Return a
836/// getObjCQualifiedIdType type for the 'id' decl and
837/// the conforming protocol list.
838QualType ASTContext::getObjCQualifiedIdType(QualType idType,
839                                            ObjCProtocolDecl **Protocols,
840                                            unsigned NumProtocols) {
841  llvm::FoldingSetNodeID ID;
842  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
843
844  void *InsertPos = 0;
845  if (ObjCQualifiedIdType *QT =
846      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
847    return QualType(QT, 0);
848
849  // No Match;
850  QualType Canonical;
851  if (!idType->isCanonical()) {
852    Canonical = getObjCQualifiedIdType(getCanonicalType(idType),
853                                       Protocols, NumProtocols);
854    ObjCQualifiedIdType *NewQT =
855      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
856    assert(NewQT == 0 && "Shouldn't be in the map!");
857  }
858
859  ObjCQualifiedIdType *QType =
860    new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
861  Types.push_back(QType);
862  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
863  return QualType(QType, 0);
864}
865
866/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
867/// TypeOfExpr AST's (since expression's are never shared). For example,
868/// multiple declarations that refer to "typeof(x)" all contain different
869/// DeclRefExpr's. This doesn't effect the type checker, since it operates
870/// on canonical type's (which are always unique).
871QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
872  QualType Canonical = getCanonicalType(tofExpr->getType());
873  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
874  Types.push_back(toe);
875  return QualType(toe, 0);
876}
877
878/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
879/// TypeOfType AST's. The only motivation to unique these nodes would be
880/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
881/// an issue. This doesn't effect the type checker, since it operates
882/// on canonical type's (which are always unique).
883QualType ASTContext::getTypeOfType(QualType tofType) {
884  QualType Canonical = getCanonicalType(tofType);
885  TypeOfType *tot = new TypeOfType(tofType, Canonical);
886  Types.push_back(tot);
887  return QualType(tot, 0);
888}
889
890/// getTagDeclType - Return the unique reference to the type for the
891/// specified TagDecl (struct/union/class/enum) decl.
892QualType ASTContext::getTagDeclType(TagDecl *Decl) {
893  assert (Decl);
894
895  // The decl stores the type cache.
896  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
897
898  TagType* T = new TagType(Decl, QualType());
899  Types.push_back(T);
900  Decl->TypeForDecl = T;
901
902  return QualType(T, 0);
903}
904
905/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
906/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
907/// needs to agree with the definition in <stddef.h>.
908QualType ASTContext::getSizeType() const {
909  // On Darwin, size_t is defined as a "long unsigned int".
910  // FIXME: should derive from "Target".
911  return UnsignedLongTy;
912}
913
914/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
915/// width of characters in wide strings, The value is target dependent and
916/// needs to agree with the definition in <stddef.h>.
917QualType ASTContext::getWcharType() const {
918  // On Darwin, wchar_t is defined as a "int".
919  // FIXME: should derive from "Target".
920  return IntTy;
921}
922
923/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
924/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
925QualType ASTContext::getPointerDiffType() const {
926  // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
927  // FIXME: should derive from "Target".
928  return IntTy;
929}
930
931//===----------------------------------------------------------------------===//
932//                              Type Operators
933//===----------------------------------------------------------------------===//
934
935/// getCanonicalType - Return the canonical (structural) type corresponding to
936/// the specified potentially non-canonical type.  The non-canonical version
937/// of a type may have many "decorated" versions of types.  Decorators can
938/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
939/// to be free of any of these, allowing two canonical types to be compared
940/// for exact equality with a simple pointer comparison.
941QualType ASTContext::getCanonicalType(QualType T) {
942  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
943  return QualType(CanType.getTypePtr(),
944                  T.getCVRQualifiers() | CanType.getCVRQualifiers());
945}
946
947
948/// getArrayDecayedType - Return the properly qualified result of decaying the
949/// specified array type to a pointer.  This operation is non-trivial when
950/// handling typedefs etc.  The canonical type of "T" must be an array type,
951/// this returns a pointer to a properly qualified element of the array.
952///
953/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
954QualType ASTContext::getArrayDecayedType(QualType Ty) {
955  // Handle the common case where typedefs are not involved directly.
956  QualType EltTy;
957  unsigned ArrayQuals = 0;
958  unsigned PointerQuals = 0;
959  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
960    // Since T "isa" an array type, it could not have had an address space
961    // qualifier, just CVR qualifiers.  The properly qualified element pointer
962    // gets the union of the CVR qualifiers from the element and the array, and
963    // keeps any address space qualifier on the element type if present.
964    EltTy = AT->getElementType();
965    ArrayQuals = Ty.getCVRQualifiers();
966    PointerQuals = AT->getIndexTypeQualifier();
967  } else {
968    // Otherwise, we have an ASQualType or a typedef, etc.  Make sure we don't
969    // lose qualifiers when dealing with typedefs. Example:
970    //   typedef int arr[10];
971    //   void test2() {
972    //     const arr b;
973    //     b[4] = 1;
974    //   }
975    //
976    // The decayed type of b is "const int*" even though the element type of the
977    // array is "int".
978    QualType CanTy = getCanonicalType(Ty);
979    const ArrayType *PrettyArrayType = Ty->getAsArrayType();
980    assert(PrettyArrayType && "Not an array type!");
981
982    // Get the element type with 'getAsArrayType' so that we don't lose any
983    // typedefs in the element type of the array.
984    EltTy = PrettyArrayType->getElementType();
985
986    // If the array was address-space qualifier, make sure to ASQual the element
987    // type.  We can just grab the address space from the canonical type.
988    if (unsigned AS = CanTy.getAddressSpace())
989      EltTy = getASQualType(EltTy, AS);
990
991    // To properly handle [multiple levels of] typedefs, typeof's etc, we take
992    // the CVR qualifiers directly from the canonical type, which is guaranteed
993    // to have the full set unioned together.
994    ArrayQuals = CanTy.getCVRQualifiers();
995    PointerQuals = PrettyArrayType->getIndexTypeQualifier();
996  }
997
998  // Apply any CVR qualifiers from the array type to the element type.  This
999  // implements C99 6.7.3p8: "If the specification of an array type includes
1000  // any type qualifiers, the element type is so qualified, not the array type."
1001  EltTy = EltTy.getQualifiedType(ArrayQuals | EltTy.getCVRQualifiers());
1002
1003  QualType PtrTy = getPointerType(EltTy);
1004
1005  // int x[restrict 4] ->  int *restrict
1006  PtrTy = PtrTy.getQualifiedType(PointerQuals);
1007
1008  return PtrTy;
1009}
1010
1011/// getFloatingRank - Return a relative rank for floating point types.
1012/// This routine will assert if passed a built-in type that isn't a float.
1013static FloatingRank getFloatingRank(QualType T) {
1014  if (const ComplexType *CT = T->getAsComplexType())
1015    return getFloatingRank(CT->getElementType());
1016
1017  switch (T->getAsBuiltinType()->getKind()) {
1018  default: assert(0 && "getFloatingRank(): not a floating type");
1019  case BuiltinType::Float:      return FloatRank;
1020  case BuiltinType::Double:     return DoubleRank;
1021  case BuiltinType::LongDouble: return LongDoubleRank;
1022  }
1023}
1024
1025/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1026/// point or a complex type (based on typeDomain/typeSize).
1027/// 'typeDomain' is a real floating point or complex type.
1028/// 'typeSize' is a real floating point or complex type.
1029QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1030                                                       QualType Domain) const {
1031  FloatingRank EltRank = getFloatingRank(Size);
1032  if (Domain->isComplexType()) {
1033    switch (EltRank) {
1034    default: assert(0 && "getFloatingRank(): illegal value for rank");
1035    case FloatRank:      return FloatComplexTy;
1036    case DoubleRank:     return DoubleComplexTy;
1037    case LongDoubleRank: return LongDoubleComplexTy;
1038    }
1039  }
1040
1041  assert(Domain->isRealFloatingType() && "Unknown domain!");
1042  switch (EltRank) {
1043  default: assert(0 && "getFloatingRank(): illegal value for rank");
1044  case FloatRank:      return FloatTy;
1045  case DoubleRank:     return DoubleTy;
1046  case LongDoubleRank: return LongDoubleTy;
1047  }
1048}
1049
1050/// getFloatingTypeOrder - Compare the rank of the two specified floating
1051/// point types, ignoring the domain of the type (i.e. 'double' ==
1052/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1053/// LHS < RHS, return -1.
1054int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1055  FloatingRank LHSR = getFloatingRank(LHS);
1056  FloatingRank RHSR = getFloatingRank(RHS);
1057
1058  if (LHSR == RHSR)
1059    return 0;
1060  if (LHSR > RHSR)
1061    return 1;
1062  return -1;
1063}
1064
1065/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1066/// routine will assert if passed a built-in type that isn't an integer or enum,
1067/// or if it is not canonicalized.
1068static unsigned getIntegerRank(Type *T) {
1069  assert(T->isCanonical() && "T should be canonicalized");
1070  if (isa<EnumType>(T))
1071    return 4;
1072
1073  switch (cast<BuiltinType>(T)->getKind()) {
1074  default: assert(0 && "getIntegerRank(): not a built-in integer");
1075  case BuiltinType::Bool:
1076    return 1;
1077  case BuiltinType::Char_S:
1078  case BuiltinType::Char_U:
1079  case BuiltinType::SChar:
1080  case BuiltinType::UChar:
1081    return 2;
1082  case BuiltinType::Short:
1083  case BuiltinType::UShort:
1084    return 3;
1085  case BuiltinType::Int:
1086  case BuiltinType::UInt:
1087    return 4;
1088  case BuiltinType::Long:
1089  case BuiltinType::ULong:
1090    return 5;
1091  case BuiltinType::LongLong:
1092  case BuiltinType::ULongLong:
1093    return 6;
1094  }
1095}
1096
1097/// getIntegerTypeOrder - Returns the highest ranked integer type:
1098/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1099/// LHS < RHS, return -1.
1100int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1101  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1102  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1103  if (LHSC == RHSC) return 0;
1104
1105  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1106  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1107
1108  unsigned LHSRank = getIntegerRank(LHSC);
1109  unsigned RHSRank = getIntegerRank(RHSC);
1110
1111  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1112    if (LHSRank == RHSRank) return 0;
1113    return LHSRank > RHSRank ? 1 : -1;
1114  }
1115
1116  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1117  if (LHSUnsigned) {
1118    // If the unsigned [LHS] type is larger, return it.
1119    if (LHSRank >= RHSRank)
1120      return 1;
1121
1122    // If the signed type can represent all values of the unsigned type, it
1123    // wins.  Because we are dealing with 2's complement and types that are
1124    // powers of two larger than each other, this is always safe.
1125    return -1;
1126  }
1127
1128  // If the unsigned [RHS] type is larger, return it.
1129  if (RHSRank >= LHSRank)
1130    return -1;
1131
1132  // If the signed type can represent all values of the unsigned type, it
1133  // wins.  Because we are dealing with 2's complement and types that are
1134  // powers of two larger than each other, this is always safe.
1135  return 1;
1136}
1137
1138// getCFConstantStringType - Return the type used for constant CFStrings.
1139QualType ASTContext::getCFConstantStringType() {
1140  if (!CFConstantStringTypeDecl) {
1141    CFConstantStringTypeDecl =
1142      RecordDecl::Create(*this, Decl::Struct, NULL, SourceLocation(),
1143                         &Idents.get("NSConstantString"), 0);
1144    QualType FieldTypes[4];
1145
1146    // const int *isa;
1147    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1148    // int flags;
1149    FieldTypes[1] = IntTy;
1150    // const char *str;
1151    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1152    // long length;
1153    FieldTypes[3] = LongTy;
1154    // Create fields
1155    FieldDecl *FieldDecls[4];
1156
1157    for (unsigned i = 0; i < 4; ++i)
1158      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1159                                        FieldTypes[i]);
1160
1161    CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
1162  }
1163
1164  return getTagDeclType(CFConstantStringTypeDecl);
1165}
1166
1167// This returns true if a type has been typedefed to BOOL:
1168// typedef <type> BOOL;
1169static bool isTypeTypedefedAsBOOL(QualType T) {
1170  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1171    return !strcmp(TT->getDecl()->getName(), "BOOL");
1172
1173  return false;
1174}
1175
1176/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1177/// purpose.
1178int ASTContext::getObjCEncodingTypeSize(QualType type) {
1179  uint64_t sz = getTypeSize(type);
1180
1181  // Make all integer and enum types at least as large as an int
1182  if (sz > 0 && type->isIntegralType())
1183    sz = std::max(sz, getTypeSize(IntTy));
1184  // Treat arrays as pointers, since that's how they're passed in.
1185  else if (type->isArrayType())
1186    sz = getTypeSize(VoidPtrTy);
1187  return sz / getTypeSize(CharTy);
1188}
1189
1190/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1191/// declaration.
1192void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
1193                                              std::string& S)
1194{
1195  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1196  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1197  // Encode result type.
1198  getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
1199  // Compute size of all parameters.
1200  // Start with computing size of a pointer in number of bytes.
1201  // FIXME: There might(should) be a better way of doing this computation!
1202  SourceLocation Loc;
1203  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1204  // The first two arguments (self and _cmd) are pointers; account for
1205  // their size.
1206  int ParmOffset = 2 * PtrSize;
1207  int NumOfParams = Decl->getNumParams();
1208  for (int i = 0; i < NumOfParams; i++) {
1209    QualType PType = Decl->getParamDecl(i)->getType();
1210    int sz = getObjCEncodingTypeSize (PType);
1211    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1212    ParmOffset += sz;
1213  }
1214  S += llvm::utostr(ParmOffset);
1215  S += "@0:";
1216  S += llvm::utostr(PtrSize);
1217
1218  // Argument types.
1219  ParmOffset = 2 * PtrSize;
1220  for (int i = 0; i < NumOfParams; i++) {
1221    QualType PType = Decl->getParamDecl(i)->getType();
1222    // Process argument qualifiers for user supplied arguments; such as,
1223    // 'in', 'inout', etc.
1224    getObjCEncodingForTypeQualifier(
1225      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
1226    getObjCEncodingForType(PType, S, EncodingRecordTypes);
1227    S += llvm::utostr(ParmOffset);
1228    ParmOffset += getObjCEncodingTypeSize(PType);
1229  }
1230}
1231
1232void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1233       llvm::SmallVector<const RecordType *, 8> &ERType) const
1234{
1235  // FIXME: This currently doesn't encode:
1236  // @ An object (whether statically typed or typed id)
1237  // # A class object (Class)
1238  // : A method selector (SEL)
1239  // {name=type...} A structure
1240  // (name=type...) A union
1241  // bnum A bit field of num bits
1242
1243  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1244    char encoding;
1245    switch (BT->getKind()) {
1246    default: assert(0 && "Unhandled builtin type kind");
1247    case BuiltinType::Void:       encoding = 'v'; break;
1248    case BuiltinType::Bool:       encoding = 'B'; break;
1249    case BuiltinType::Char_U:
1250    case BuiltinType::UChar:      encoding = 'C'; break;
1251    case BuiltinType::UShort:     encoding = 'S'; break;
1252    case BuiltinType::UInt:       encoding = 'I'; break;
1253    case BuiltinType::ULong:      encoding = 'L'; break;
1254    case BuiltinType::ULongLong:  encoding = 'Q'; break;
1255    case BuiltinType::Char_S:
1256    case BuiltinType::SChar:      encoding = 'c'; break;
1257    case BuiltinType::Short:      encoding = 's'; break;
1258    case BuiltinType::Int:        encoding = 'i'; break;
1259    case BuiltinType::Long:       encoding = 'l'; break;
1260    case BuiltinType::LongLong:   encoding = 'q'; break;
1261    case BuiltinType::Float:      encoding = 'f'; break;
1262    case BuiltinType::Double:     encoding = 'd'; break;
1263    case BuiltinType::LongDouble: encoding = 'd'; break;
1264    }
1265
1266    S += encoding;
1267  }
1268  else if (T->isObjCQualifiedIdType()) {
1269    // Treat id<P...> same as 'id' for encoding purposes.
1270    return getObjCEncodingForType(getObjCIdType(), S, ERType);
1271
1272  }
1273  else if (const PointerType *PT = T->getAsPointerType()) {
1274    QualType PointeeTy = PT->getPointeeType();
1275    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
1276      S += '@';
1277      return;
1278    } else if (isObjCClassType(PointeeTy)) {
1279      S += '#';
1280      return;
1281    } else if (isObjCSelType(PointeeTy)) {
1282      S += ':';
1283      return;
1284    }
1285
1286    if (PointeeTy->isCharType()) {
1287      // char pointer types should be encoded as '*' unless it is a
1288      // type that has been typedef'd to 'BOOL'.
1289      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
1290        S += '*';
1291        return;
1292      }
1293    }
1294
1295    S += '^';
1296    getObjCEncodingForType(PT->getPointeeType(), S, ERType);
1297  } else if (const ArrayType *AT = T->getAsArrayType()) {
1298    S += '[';
1299
1300    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1301      S += llvm::utostr(CAT->getSize().getZExtValue());
1302    else
1303      assert(0 && "Unhandled array type!");
1304
1305    getObjCEncodingForType(AT->getElementType(), S, ERType);
1306    S += ']';
1307  } else if (T->getAsFunctionType()) {
1308    S += '?';
1309  } else if (const RecordType *RTy = T->getAsRecordType()) {
1310    RecordDecl *RDecl= RTy->getDecl();
1311    S += '{';
1312    S += RDecl->getName();
1313    bool found = false;
1314    for (unsigned i = 0, e = ERType.size(); i != e; ++i)
1315      if (ERType[i] == RTy) {
1316        found = true;
1317        break;
1318      }
1319    if (!found) {
1320      ERType.push_back(RTy);
1321      S += '=';
1322      for (int i = 0; i < RDecl->getNumMembers(); i++) {
1323        FieldDecl *field = RDecl->getMember(i);
1324        getObjCEncodingForType(field->getType(), S, ERType);
1325      }
1326      assert(ERType.back() == RTy && "Record Type stack mismatch.");
1327      ERType.pop_back();
1328    }
1329    S += '}';
1330  } else if (T->isEnumeralType()) {
1331    S += 'i';
1332  } else
1333    assert(0 && "@encode for type not implemented!");
1334}
1335
1336void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1337                                                 std::string& S) const {
1338  if (QT & Decl::OBJC_TQ_In)
1339    S += 'n';
1340  if (QT & Decl::OBJC_TQ_Inout)
1341    S += 'N';
1342  if (QT & Decl::OBJC_TQ_Out)
1343    S += 'o';
1344  if (QT & Decl::OBJC_TQ_Bycopy)
1345    S += 'O';
1346  if (QT & Decl::OBJC_TQ_Byref)
1347    S += 'R';
1348  if (QT & Decl::OBJC_TQ_Oneway)
1349    S += 'V';
1350}
1351
1352void ASTContext::setBuiltinVaListType(QualType T)
1353{
1354  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
1355
1356  BuiltinVaListType = T;
1357}
1358
1359void ASTContext::setObjCIdType(TypedefDecl *TD)
1360{
1361  assert(ObjCIdType.isNull() && "'id' type already set!");
1362
1363  ObjCIdType = getTypedefType(TD);
1364
1365  // typedef struct objc_object *id;
1366  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1367  assert(ptr && "'id' incorrectly typed");
1368  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1369  assert(rec && "'id' incorrectly typed");
1370  IdStructType = rec;
1371}
1372
1373void ASTContext::setObjCSelType(TypedefDecl *TD)
1374{
1375  assert(ObjCSelType.isNull() && "'SEL' type already set!");
1376
1377  ObjCSelType = getTypedefType(TD);
1378
1379  // typedef struct objc_selector *SEL;
1380  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1381  assert(ptr && "'SEL' incorrectly typed");
1382  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1383  assert(rec && "'SEL' incorrectly typed");
1384  SelStructType = rec;
1385}
1386
1387void ASTContext::setObjCProtoType(QualType QT)
1388{
1389  assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
1390  ObjCProtoType = QT;
1391}
1392
1393void ASTContext::setObjCClassType(TypedefDecl *TD)
1394{
1395  assert(ObjCClassType.isNull() && "'Class' type already set!");
1396
1397  ObjCClassType = getTypedefType(TD);
1398
1399  // typedef struct objc_class *Class;
1400  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1401  assert(ptr && "'Class' incorrectly typed");
1402  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1403  assert(rec && "'Class' incorrectly typed");
1404  ClassStructType = rec;
1405}
1406
1407void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
1408  assert(ObjCConstantStringType.isNull() &&
1409         "'NSConstantString' type already set!");
1410
1411  ObjCConstantStringType = getObjCInterfaceType(Decl);
1412}
1413
1414bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
1415  const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
1416  const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
1417
1418  return lBuiltin->getKind() == rBuiltin->getKind();
1419}
1420
1421/// objcTypesAreCompatible - This routine is called when two types
1422/// are of different class; one is interface type or is
1423/// a qualified interface type and the other type is of a different class.
1424/// Example, II or II<P>.
1425bool ASTContext::objcTypesAreCompatible(QualType LHS, QualType RHS) {
1426  // ID is compatible with all interface types.
1427  if (LHS->isObjCInterfaceType() && isObjCIdType(RHS))
1428    return true;
1429  else if (isObjCIdType(LHS) && RHS->isObjCInterfaceType())
1430    return true;
1431
1432  // II is compatible with II<P> if the base is the same.  Otherwise, no two
1433  // qualified interface types are the same.
1434  if (const ObjCInterfaceType *LHSIT = LHS->getAsObjCInterfaceType()) {
1435    if (const ObjCInterfaceType *RHSIT = RHS->getAsObjCInterfaceType()) {
1436      // If the base decls match and one is a qualified interface and one isn't,
1437      // then they are compatible.
1438      return LHSIT->getDecl() == RHSIT->getDecl() &&
1439                 isa<ObjCQualifiedInterfaceType>(LHSIT) !=
1440                 isa<ObjCQualifiedInterfaceType>(RHSIT);
1441    }
1442  }
1443  return false;
1444}
1445
1446bool ASTContext::QualifiedInterfaceTypesAreCompatible(QualType lhs,
1447                                                      QualType rhs) {
1448  const ObjCQualifiedInterfaceType *lhsQI =
1449    lhs->getAsObjCQualifiedInterfaceType();
1450  const ObjCQualifiedInterfaceType *rhsQI =
1451    rhs->getAsObjCQualifiedInterfaceType();
1452  assert(lhsQI && rhsQI && "QualifiedInterfaceTypesAreCompatible - bad type");
1453
1454  // Verify that the base decls are compatible, the RHS must be a subclass of
1455  // the LHS.
1456  if (!lhsQI->getDecl()->isSuperClassOf(rhsQI->getDecl()))
1457    return false;
1458
1459  // All protocols in lhs must have a presence in rhs.
1460  for (unsigned i = 0; i != lhsQI->getNumProtocols(); ++i) {
1461    bool match = false;
1462    ObjCProtocolDecl *lhsProto = lhsQI->getProtocols(i);
1463    for (unsigned j = 0; j != rhsQI->getNumProtocols(); ++j) {
1464      ObjCProtocolDecl *rhsProto = rhsQI->getProtocols(j);
1465      if (lhsProto == rhsProto) {
1466        match = true;
1467        break;
1468      }
1469    }
1470    if (!match)
1471      return false;
1472  }
1473  return true;
1474}
1475
1476/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
1477/// inheritance hierarchy of 'rProto'.
1478static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1479                                           ObjCProtocolDecl *rProto) {
1480  if (lProto == rProto)
1481    return true;
1482  ObjCProtocolDecl** RefPDecl = rProto->getReferencedProtocols();
1483  for (unsigned i = 0; i < rProto->getNumReferencedProtocols(); i++)
1484    if (ProtocolCompatibleWithProtocol(lProto, RefPDecl[i]))
1485      return true;
1486  return false;
1487}
1488
1489/// ClassImplementsProtocol - Checks that 'lProto' protocol
1490/// has been implemented in IDecl class, its super class or categories (if
1491/// lookupCategory is true).
1492static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
1493                                    ObjCInterfaceDecl *IDecl,
1494                                    bool lookupCategory) {
1495
1496  // 1st, look up the class.
1497  ObjCProtocolDecl **protoList = IDecl->getReferencedProtocols();
1498  for (unsigned i = 0; i < IDecl->getNumIntfRefProtocols(); i++) {
1499    if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
1500      return true;
1501  }
1502
1503  // 2nd, look up the category.
1504  if (lookupCategory)
1505    for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
1506         CDecl = CDecl->getNextClassCategory()) {
1507      protoList = CDecl->getReferencedProtocols();
1508      for (unsigned i = 0; i < CDecl->getNumReferencedProtocols(); i++) {
1509        if (ProtocolCompatibleWithProtocol(lProto, protoList[i]))
1510          return true;
1511      }
1512    }
1513
1514  // 3rd, look up the super class(s)
1515  if (IDecl->getSuperClass())
1516    return
1517      ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory);
1518
1519  return false;
1520}
1521
1522/// ObjCQualifiedIdTypesAreCompatible - Compares two types, at least
1523/// one of which is a protocol qualified 'id' type. When 'compare'
1524/// is true it is for comparison; when false, for assignment/initialization.
1525bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs,
1526                                                   QualType rhs,
1527                                                   bool compare) {
1528  // match id<P..> with an 'id' type in all cases.
1529  if (const PointerType *PT = lhs->getAsPointerType()) {
1530    QualType PointeeTy = PT->getPointeeType();
1531    if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
1532      return true;
1533
1534  }
1535  else if (const PointerType *PT = rhs->getAsPointerType()) {
1536    QualType PointeeTy = PT->getPointeeType();
1537    if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType())
1538      return true;
1539
1540  }
1541
1542  ObjCQualifiedInterfaceType *lhsQI = 0;
1543  ObjCQualifiedInterfaceType *rhsQI = 0;
1544  ObjCInterfaceDecl *lhsID = 0;
1545  ObjCInterfaceDecl *rhsID = 0;
1546  ObjCQualifiedIdType *lhsQID = dyn_cast<ObjCQualifiedIdType>(lhs);
1547  ObjCQualifiedIdType *rhsQID = dyn_cast<ObjCQualifiedIdType>(rhs);
1548
1549  if (lhsQID) {
1550    if (!rhsQID && rhs->getTypeClass() == Type::Pointer) {
1551      QualType rtype =
1552        cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
1553      rhsQI =
1554        dyn_cast<ObjCQualifiedInterfaceType>(
1555          rtype.getCanonicalType().getTypePtr());
1556      if (!rhsQI) {
1557        ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
1558                                  rtype.getCanonicalType().getTypePtr());
1559        if (IT)
1560          rhsID = IT->getDecl();
1561      }
1562    }
1563    if (!rhsQI && !rhsQID && !rhsID)
1564      return false;
1565
1566    unsigned numRhsProtocols = 0;
1567    ObjCProtocolDecl **rhsProtoList = 0;
1568    if (rhsQI) {
1569      numRhsProtocols = rhsQI->getNumProtocols();
1570      rhsProtoList = rhsQI->getReferencedProtocols();
1571    }
1572    else if (rhsQID) {
1573      numRhsProtocols = rhsQID->getNumProtocols();
1574      rhsProtoList = rhsQID->getReferencedProtocols();
1575    }
1576
1577    for (unsigned i =0; i < lhsQID->getNumProtocols(); i++) {
1578      ObjCProtocolDecl *lhsProto = lhsQID->getProtocols(i);
1579      bool match = false;
1580
1581      // when comparing an id<P> on lhs with a static type on rhs,
1582      // see if static class implements all of id's protocols, directly or
1583      // through its super class and categories.
1584      if (rhsID) {
1585        if (ClassImplementsProtocol(lhsProto, rhsID, true))
1586          match = true;
1587      }
1588      else for (unsigned j = 0; j < numRhsProtocols; j++) {
1589        ObjCProtocolDecl *rhsProto = rhsProtoList[j];
1590        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
1591            compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
1592          match = true;
1593          break;
1594        }
1595      }
1596      if (!match)
1597        return false;
1598    }
1599  }
1600  else if (rhsQID) {
1601    if (!lhsQID && lhs->getTypeClass() == Type::Pointer) {
1602      QualType ltype =
1603      cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
1604      lhsQI =
1605      dyn_cast<ObjCQualifiedInterfaceType>(
1606        ltype.getCanonicalType().getTypePtr());
1607      if (!lhsQI) {
1608        ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>(
1609                                  ltype.getCanonicalType().getTypePtr());
1610        if (IT)
1611          lhsID = IT->getDecl();
1612      }
1613    }
1614    if (!lhsQI && !lhsQID && !lhsID)
1615      return false;
1616
1617    unsigned numLhsProtocols = 0;
1618    ObjCProtocolDecl **lhsProtoList = 0;
1619    if (lhsQI) {
1620      numLhsProtocols = lhsQI->getNumProtocols();
1621      lhsProtoList = lhsQI->getReferencedProtocols();
1622    }
1623    else if (lhsQID) {
1624      numLhsProtocols = lhsQID->getNumProtocols();
1625      lhsProtoList = lhsQID->getReferencedProtocols();
1626    }
1627    bool match = false;
1628    // for static type vs. qualified 'id' type, check that class implements
1629    // one of 'id's protocols.
1630    if (lhsID) {
1631      for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
1632        ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
1633        if (ClassImplementsProtocol(rhsProto, lhsID, compare)) {
1634          match = true;
1635          break;
1636        }
1637      }
1638    }
1639    else for (unsigned i =0; i < numLhsProtocols; i++) {
1640      match = false;
1641      ObjCProtocolDecl *lhsProto = lhsProtoList[i];
1642      for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) {
1643        ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j);
1644        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
1645          compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) {
1646          match = true;
1647          break;
1648        }
1649      }
1650    }
1651    if (!match)
1652      return false;
1653  }
1654  return true;
1655}
1656
1657bool ASTContext::vectorTypesAreCompatible(QualType lhs, QualType rhs) {
1658  const VectorType *lVector = lhs->getAsVectorType();
1659  const VectorType *rVector = rhs->getAsVectorType();
1660
1661  if ((lVector->getElementType().getCanonicalType() ==
1662      rVector->getElementType().getCanonicalType()) &&
1663      (lVector->getNumElements() == rVector->getNumElements()))
1664    return true;
1665  return false;
1666}
1667
1668// C99 6.2.7p1: If both are complete types, then the following additional
1669// requirements apply...FIXME (handle compatibility across source files).
1670bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) {
1671  // "Class" and "id" are compatible built-in structure types.
1672  if (isObjCIdType(lhs) && isObjCClassType(rhs) ||
1673      isObjCClassType(lhs) && isObjCIdType(rhs))
1674    return true;
1675
1676  // Within a translation unit a tag type is
1677  // only compatible with itself.
1678  return lhs.getCanonicalType() == rhs.getCanonicalType();
1679}
1680
1681bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
1682  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
1683  // identically qualified and both shall be pointers to compatible types.
1684  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
1685      lhs.getAddressSpace() != rhs.getAddressSpace())
1686    return false;
1687
1688  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
1689  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
1690
1691  return typesAreCompatible(ltype, rtype);
1692}
1693
1694// C++ 5.17p6: When the left operand of an assignment operator denotes a
1695// reference to T, the operation assigns to the object of type T denoted by the
1696// reference.
1697bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
1698  QualType ltype = lhs;
1699
1700  if (lhs->isReferenceType())
1701    ltype = cast<ReferenceType>(lhs.getCanonicalType())->getPointeeType();
1702
1703  QualType rtype = rhs;
1704
1705  if (rhs->isReferenceType())
1706    rtype = cast<ReferenceType>(rhs.getCanonicalType())->getPointeeType();
1707
1708  return typesAreCompatible(ltype, rtype);
1709}
1710
1711bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
1712  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
1713  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
1714  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
1715  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
1716
1717  // first check the return types (common between C99 and K&R).
1718  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
1719    return false;
1720
1721  if (lproto && rproto) { // two C99 style function prototypes
1722    unsigned lproto_nargs = lproto->getNumArgs();
1723    unsigned rproto_nargs = rproto->getNumArgs();
1724
1725    if (lproto_nargs != rproto_nargs)
1726      return false;
1727
1728    // both prototypes have the same number of arguments.
1729    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
1730        (rproto->isVariadic() && !lproto->isVariadic()))
1731      return false;
1732
1733    // The use of ellipsis agree...now check the argument types.
1734    for (unsigned i = 0; i < lproto_nargs; i++)
1735      // C99 6.7.5.3p15: ...and each parameter declared with qualified type
1736      // is taken as having the unqualified version of it's declared type.
1737      if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
1738                              rproto->getArgType(i).getUnqualifiedType()))
1739        return false;
1740    return true;
1741  }
1742  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
1743    return true;
1744
1745  // we have a mixture of K&R style with C99 prototypes
1746  const FunctionTypeProto *proto = lproto ? lproto : rproto;
1747
1748  if (proto->isVariadic())
1749    return false;
1750
1751  // FIXME: Each parameter type T in the prototype must be compatible with the
1752  // type resulting from applying the usual argument conversions to T.
1753  return true;
1754}
1755
1756bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
1757  // Compatible arrays must have compatible element types
1758  QualType ltype = lhs->getAsArrayType()->getElementType();
1759  QualType rtype = rhs->getAsArrayType()->getElementType();
1760
1761  if (!typesAreCompatible(ltype, rtype))
1762    return false;
1763
1764  // Compatible arrays must be the same size
1765  if (const ConstantArrayType* LCAT = lhs->getAsConstantArrayType())
1766    if (const ConstantArrayType* RCAT = rhs->getAsConstantArrayType())
1767      return RCAT->getSize() == LCAT->getSize();
1768
1769  return true;
1770}
1771
1772/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
1773/// both shall have the identically qualified version of a compatible type.
1774/// C99 6.2.7p1: Two types have compatible types if their types are the
1775/// same. See 6.7.[2,3,5] for additional rules.
1776bool ASTContext::typesAreCompatible(QualType LHS_NC, QualType RHS_NC) {
1777  QualType LHS = LHS_NC.getCanonicalType();
1778  QualType RHS = RHS_NC.getCanonicalType();
1779
1780  // If two types are identical, they are are compatible
1781  if (LHS == RHS)
1782    return true;
1783
1784  if (LHS.getCVRQualifiers() != RHS.getCVRQualifiers() ||
1785      LHS.getAddressSpace() != RHS.getAddressSpace())
1786    return false;
1787
1788  // C++ [expr]: If an expression initially has the type "reference to T", the
1789  // type is adjusted to "T" prior to any further analysis, the expression
1790  // designates the object or function denoted by the reference, and the
1791  // expression is an lvalue.
1792  if (ReferenceType *RT = dyn_cast<ReferenceType>(LHS))
1793    LHS = RT->getPointeeType();
1794  if (ReferenceType *RT = dyn_cast<ReferenceType>(RHS))
1795    RHS = RT->getPointeeType();
1796
1797  Type::TypeClass LHSClass = LHS->getTypeClass();
1798  Type::TypeClass RHSClass = RHS->getTypeClass();
1799
1800  // We want to consider the two function types to be the same for these
1801  // comparisons, just force one to the other.
1802  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
1803  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
1804
1805  // Same as above for arrays
1806  if (LHSClass == Type::VariableArray) LHSClass = Type::ConstantArray;
1807  if (RHSClass == Type::VariableArray) RHSClass = Type::ConstantArray;
1808  if (LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray;
1809  if (RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray;
1810
1811  // If the canonical type classes don't match...
1812  if (LHSClass != RHSClass) {
1813    // For Objective-C, it is possible for two types to be compatible
1814    // when their classes don't match (when dealing with "id"). If either type
1815    // is an interface, we defer to objcTypesAreCompatible().
1816    if (LHS->isObjCInterfaceType() || RHS->isObjCInterfaceType())
1817      return objcTypesAreCompatible(LHS, RHS);
1818
1819    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
1820    // a signed integer type, or an unsigned integer type.
1821    if (LHS->isEnumeralType() && RHS->isIntegralType()) {
1822      EnumDecl* EDecl = cast<EnumType>(LHS)->getDecl();
1823      return EDecl->getIntegerType() == RHS;
1824    }
1825    if (RHS->isEnumeralType() && LHS->isIntegralType()) {
1826      EnumDecl* EDecl = cast<EnumType>(RHS)->getDecl();
1827      return EDecl->getIntegerType() == LHS;
1828    }
1829
1830    return false;
1831  }
1832  // The canonical type classes match.
1833  switch (LHSClass) {
1834  case Type::FunctionProto: assert(0 && "Canonicalized away above");
1835  case Type::Pointer:
1836    return pointerTypesAreCompatible(LHS, RHS);
1837  case Type::ConstantArray:
1838  case Type::VariableArray:
1839  case Type::IncompleteArray:
1840    return arrayTypesAreCompatible(LHS, RHS);
1841  case Type::FunctionNoProto:
1842    return functionTypesAreCompatible(LHS, RHS);
1843  case Type::Tagged: // handle structures, unions
1844    return tagTypesAreCompatible(LHS, RHS);
1845  case Type::Builtin:
1846    return builtinTypesAreCompatible(LHS, RHS);
1847  case Type::ObjCInterface:
1848    // The LHS must be a superclass of the RHS.
1849    return cast<ObjCInterfaceType>(LHS)->getDecl()->isSuperClassOf(
1850                                   cast<ObjCInterfaceType>(RHS)->getDecl());
1851  case Type::Vector:
1852  case Type::OCUVector:
1853    return vectorTypesAreCompatible(LHS, RHS);
1854  case Type::ObjCQualifiedInterface:
1855    return QualifiedInterfaceTypesAreCompatible(LHS, RHS);
1856  default:
1857    assert(0 && "unexpected type");
1858  }
1859  return true; // should never get here...
1860}
1861
1862/// Emit - Serialize an ASTContext object to Bitcode.
1863void ASTContext::Emit(llvm::Serializer& S) const {
1864  S.EmitRef(SourceMgr);
1865  S.EmitRef(Target);
1866  S.EmitRef(Idents);
1867  S.EmitRef(Selectors);
1868
1869  // Emit the size of the type vector so that we can reserve that size
1870  // when we reconstitute the ASTContext object.
1871  S.EmitInt(Types.size());
1872
1873  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
1874                                          I!=E;++I)
1875    (*I)->Emit(S);
1876
1877  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
1878}
1879
1880ASTContext* ASTContext::Create(llvm::Deserializer& D) {
1881  SourceManager &SM = D.ReadRef<SourceManager>();
1882  TargetInfo &t = D.ReadRef<TargetInfo>();
1883  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
1884  SelectorTable &sels = D.ReadRef<SelectorTable>();
1885
1886  unsigned size_reserve = D.ReadInt();
1887
1888  ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
1889
1890  for (unsigned i = 0; i < size_reserve; ++i)
1891    Type::Create(*A,i,D);
1892
1893  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
1894
1895  return A;
1896}
1897