ASTContext.cpp revision 561f81243f665cf2001caadc45df505f826b72d6
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34#include <map>
35
36using namespace clang;
37
38unsigned ASTContext::NumImplicitDefaultConstructors;
39unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyConstructors;
41unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42unsigned ASTContext::NumImplicitMoveConstructors;
43unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitDestructors;
49unsigned ASTContext::NumImplicitDestructorsDeclared;
50
51enum FloatingRank {
52  FloatRank, DoubleRank, LongDoubleRank
53};
54
55void
56ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57                                               TemplateTemplateParmDecl *Parm) {
58  ID.AddInteger(Parm->getDepth());
59  ID.AddInteger(Parm->getPosition());
60  ID.AddBoolean(Parm->isParameterPack());
61
62  TemplateParameterList *Params = Parm->getTemplateParameters();
63  ID.AddInteger(Params->size());
64  for (TemplateParameterList::const_iterator P = Params->begin(),
65                                          PEnd = Params->end();
66       P != PEnd; ++P) {
67    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68      ID.AddInteger(0);
69      ID.AddBoolean(TTP->isParameterPack());
70      continue;
71    }
72
73    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74      ID.AddInteger(1);
75      ID.AddBoolean(NTTP->isParameterPack());
76      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77      if (NTTP->isExpandedParameterPack()) {
78        ID.AddBoolean(true);
79        ID.AddInteger(NTTP->getNumExpansionTypes());
80        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82      } else
83        ID.AddBoolean(false);
84      continue;
85    }
86
87    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88    ID.AddInteger(2);
89    Profile(ID, TTP);
90  }
91}
92
93TemplateTemplateParmDecl *
94ASTContext::getCanonicalTemplateTemplateParmDecl(
95                                          TemplateTemplateParmDecl *TTP) const {
96  // Check if we already have a canonical template template parameter.
97  llvm::FoldingSetNodeID ID;
98  CanonicalTemplateTemplateParm::Profile(ID, TTP);
99  void *InsertPos = 0;
100  CanonicalTemplateTemplateParm *Canonical
101    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102  if (Canonical)
103    return Canonical->getParam();
104
105  // Build a canonical template parameter list.
106  TemplateParameterList *Params = TTP->getTemplateParameters();
107  llvm::SmallVector<NamedDecl *, 4> CanonParams;
108  CanonParams.reserve(Params->size());
109  for (TemplateParameterList::const_iterator P = Params->begin(),
110                                          PEnd = Params->end();
111       P != PEnd; ++P) {
112    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113      CanonParams.push_back(
114                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115                                               SourceLocation(),
116                                               SourceLocation(),
117                                               TTP->getDepth(),
118                                               TTP->getIndex(), 0, false,
119                                               TTP->isParameterPack()));
120    else if (NonTypeTemplateParmDecl *NTTP
121             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122      QualType T = getCanonicalType(NTTP->getType());
123      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124      NonTypeTemplateParmDecl *Param;
125      if (NTTP->isExpandedParameterPack()) {
126        llvm::SmallVector<QualType, 2> ExpandedTypes;
127        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130          ExpandedTInfos.push_back(
131                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
132        }
133
134        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135                                                SourceLocation(),
136                                                SourceLocation(),
137                                                NTTP->getDepth(),
138                                                NTTP->getPosition(), 0,
139                                                T,
140                                                TInfo,
141                                                ExpandedTypes.data(),
142                                                ExpandedTypes.size(),
143                                                ExpandedTInfos.data());
144      } else {
145        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146                                                SourceLocation(),
147                                                SourceLocation(),
148                                                NTTP->getDepth(),
149                                                NTTP->getPosition(), 0,
150                                                T,
151                                                NTTP->isParameterPack(),
152                                                TInfo);
153      }
154      CanonParams.push_back(Param);
155
156    } else
157      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158                                           cast<TemplateTemplateParmDecl>(*P)));
159  }
160
161  TemplateTemplateParmDecl *CanonTTP
162    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163                                       SourceLocation(), TTP->getDepth(),
164                                       TTP->getPosition(),
165                                       TTP->isParameterPack(),
166                                       0,
167                         TemplateParameterList::Create(*this, SourceLocation(),
168                                                       SourceLocation(),
169                                                       CanonParams.data(),
170                                                       CanonParams.size(),
171                                                       SourceLocation()));
172
173  // Get the new insert position for the node we care about.
174  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175  assert(Canonical == 0 && "Shouldn't be in the map!");
176  (void)Canonical;
177
178  // Create the canonical template template parameter entry.
179  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181  return CanonTTP;
182}
183
184CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185  if (!LangOpts.CPlusPlus) return 0;
186
187  switch (T.getCXXABI()) {
188  case CXXABI_ARM:
189    return CreateARMCXXABI(*this);
190  case CXXABI_Itanium:
191    return CreateItaniumCXXABI(*this);
192  case CXXABI_Microsoft:
193    return CreateMicrosoftCXXABI(*this);
194  }
195  return 0;
196}
197
198static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199                                             const LangOptions &LOpts) {
200  if (LOpts.FakeAddressSpaceMap) {
201    // The fake address space map must have a distinct entry for each
202    // language-specific address space.
203    static const unsigned FakeAddrSpaceMap[] = {
204      1, // opencl_global
205      2, // opencl_local
206      3  // opencl_constant
207    };
208    return FakeAddrSpaceMap;
209  } else {
210    return T.getAddressSpaceMap();
211  }
212}
213
214ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215                       const TargetInfo &t,
216                       IdentifierTable &idents, SelectorTable &sels,
217                       Builtin::Context &builtins,
218                       unsigned size_reserve) :
219  FunctionProtoTypes(this_()),
220  TemplateSpecializationTypes(this_()),
221  DependentTemplateSpecializationTypes(this_()),
222  SubstTemplateTemplateParmPacks(this_()),
223  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
224  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
225  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
226  jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
227  BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
228  NullTypeSourceInfo(QualType()),
229  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
230  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
231  Idents(idents), Selectors(sels),
232  BuiltinInfo(builtins),
233  DeclarationNames(*this),
234  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
235  LastSDM(0, 0),
236  UniqueBlockByRefTypeID(0) {
237  ObjCIdRedefinitionType = QualType();
238  ObjCClassRedefinitionType = QualType();
239  ObjCSelRedefinitionType = QualType();
240  if (size_reserve > 0) Types.reserve(size_reserve);
241  TUDecl = TranslationUnitDecl::Create(*this);
242  InitBuiltinTypes();
243}
244
245ASTContext::~ASTContext() {
246  // Release the DenseMaps associated with DeclContext objects.
247  // FIXME: Is this the ideal solution?
248  ReleaseDeclContextMaps();
249
250  // Call all of the deallocation functions.
251  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
252    Deallocations[I].first(Deallocations[I].second);
253
254  // Release all of the memory associated with overridden C++ methods.
255  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
256         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
257       OM != OMEnd; ++OM)
258    OM->second.Destroy();
259
260  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
261  // because they can contain DenseMaps.
262  for (llvm::DenseMap<const ObjCContainerDecl*,
263       const ASTRecordLayout*>::iterator
264       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
265    // Increment in loop to prevent using deallocated memory.
266    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
267      R->Destroy(*this);
268
269  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
270       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
271    // Increment in loop to prevent using deallocated memory.
272    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
273      R->Destroy(*this);
274  }
275
276  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
277                                                    AEnd = DeclAttrs.end();
278       A != AEnd; ++A)
279    A->second->~AttrVec();
280}
281
282void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
283  Deallocations.push_back(std::make_pair(Callback, Data));
284}
285
286void
287ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
288  ExternalSource.reset(Source.take());
289}
290
291void ASTContext::PrintStats() const {
292  fprintf(stderr, "*** AST Context Stats:\n");
293  fprintf(stderr, "  %d types total.\n", (int)Types.size());
294
295  unsigned counts[] = {
296#define TYPE(Name, Parent) 0,
297#define ABSTRACT_TYPE(Name, Parent)
298#include "clang/AST/TypeNodes.def"
299    0 // Extra
300  };
301
302  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
303    Type *T = Types[i];
304    counts[(unsigned)T->getTypeClass()]++;
305  }
306
307  unsigned Idx = 0;
308  unsigned TotalBytes = 0;
309#define TYPE(Name, Parent)                                              \
310  if (counts[Idx])                                                      \
311    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
312  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
313  ++Idx;
314#define ABSTRACT_TYPE(Name, Parent)
315#include "clang/AST/TypeNodes.def"
316
317  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
318
319  // Implicit special member functions.
320  fprintf(stderr, "  %u/%u implicit default constructors created\n",
321          NumImplicitDefaultConstructorsDeclared,
322          NumImplicitDefaultConstructors);
323  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
324          NumImplicitCopyConstructorsDeclared,
325          NumImplicitCopyConstructors);
326  if (getLangOptions().CPlusPlus)
327    fprintf(stderr, "  %u/%u implicit move constructors created\n",
328            NumImplicitMoveConstructorsDeclared,
329            NumImplicitMoveConstructors);
330  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
331          NumImplicitCopyAssignmentOperatorsDeclared,
332          NumImplicitCopyAssignmentOperators);
333  if (getLangOptions().CPlusPlus)
334    fprintf(stderr, "  %u/%u implicit move assignment operators created\n",
335            NumImplicitMoveAssignmentOperatorsDeclared,
336            NumImplicitMoveAssignmentOperators);
337  fprintf(stderr, "  %u/%u implicit destructors created\n",
338          NumImplicitDestructorsDeclared, NumImplicitDestructors);
339
340  if (ExternalSource.get()) {
341    fprintf(stderr, "\n");
342    ExternalSource->PrintStats();
343  }
344
345  BumpAlloc.PrintStats();
346}
347
348
349void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
350  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
351  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
352  Types.push_back(Ty);
353}
354
355void ASTContext::InitBuiltinTypes() {
356  assert(VoidTy.isNull() && "Context reinitialized?");
357
358  // C99 6.2.5p19.
359  InitBuiltinType(VoidTy,              BuiltinType::Void);
360
361  // C99 6.2.5p2.
362  InitBuiltinType(BoolTy,              BuiltinType::Bool);
363  // C99 6.2.5p3.
364  if (LangOpts.CharIsSigned)
365    InitBuiltinType(CharTy,            BuiltinType::Char_S);
366  else
367    InitBuiltinType(CharTy,            BuiltinType::Char_U);
368  // C99 6.2.5p4.
369  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
370  InitBuiltinType(ShortTy,             BuiltinType::Short);
371  InitBuiltinType(IntTy,               BuiltinType::Int);
372  InitBuiltinType(LongTy,              BuiltinType::Long);
373  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
374
375  // C99 6.2.5p6.
376  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
377  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
378  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
379  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
380  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
381
382  // C99 6.2.5p10.
383  InitBuiltinType(FloatTy,             BuiltinType::Float);
384  InitBuiltinType(DoubleTy,            BuiltinType::Double);
385  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
386
387  // GNU extension, 128-bit integers.
388  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
389  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
390
391  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
392    if (TargetInfo::isTypeSigned(Target.getWCharType()))
393      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
394    else  // -fshort-wchar makes wchar_t be unsigned.
395      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
396  } else // C99
397    WCharTy = getFromTargetType(Target.getWCharType());
398
399  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
400    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
401  else // C99
402    Char16Ty = getFromTargetType(Target.getChar16Type());
403
404  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
405    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
406  else // C99
407    Char32Ty = getFromTargetType(Target.getChar32Type());
408
409  // Placeholder type for type-dependent expressions whose type is
410  // completely unknown. No code should ever check a type against
411  // DependentTy and users should never see it; however, it is here to
412  // help diagnose failures to properly check for type-dependent
413  // expressions.
414  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
415
416  // Placeholder type for functions.
417  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
418
419  // Placeholder type for bound members.
420  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
421
422  // "any" type; useful for debugger-like clients.
423  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
424
425  // C99 6.2.5p11.
426  FloatComplexTy      = getComplexType(FloatTy);
427  DoubleComplexTy     = getComplexType(DoubleTy);
428  LongDoubleComplexTy = getComplexType(LongDoubleTy);
429
430  BuiltinVaListType = QualType();
431
432  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
433  ObjCIdTypedefType = QualType();
434  ObjCClassTypedefType = QualType();
435  ObjCSelTypedefType = QualType();
436
437  // Builtin types for 'id', 'Class', and 'SEL'.
438  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
439  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
440  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
441
442  ObjCConstantStringType = QualType();
443
444  // void * type
445  VoidPtrTy = getPointerType(VoidTy);
446
447  // nullptr type (C++0x 2.14.7)
448  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
449}
450
451Diagnostic &ASTContext::getDiagnostics() const {
452  return SourceMgr.getDiagnostics();
453}
454
455AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
456  AttrVec *&Result = DeclAttrs[D];
457  if (!Result) {
458    void *Mem = Allocate(sizeof(AttrVec));
459    Result = new (Mem) AttrVec;
460  }
461
462  return *Result;
463}
464
465/// \brief Erase the attributes corresponding to the given declaration.
466void ASTContext::eraseDeclAttrs(const Decl *D) {
467  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
468  if (Pos != DeclAttrs.end()) {
469    Pos->second->~AttrVec();
470    DeclAttrs.erase(Pos);
471  }
472}
473
474MemberSpecializationInfo *
475ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
476  assert(Var->isStaticDataMember() && "Not a static data member");
477  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
478    = InstantiatedFromStaticDataMember.find(Var);
479  if (Pos == InstantiatedFromStaticDataMember.end())
480    return 0;
481
482  return Pos->second;
483}
484
485void
486ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
487                                                TemplateSpecializationKind TSK,
488                                          SourceLocation PointOfInstantiation) {
489  assert(Inst->isStaticDataMember() && "Not a static data member");
490  assert(Tmpl->isStaticDataMember() && "Not a static data member");
491  assert(!InstantiatedFromStaticDataMember[Inst] &&
492         "Already noted what static data member was instantiated from");
493  InstantiatedFromStaticDataMember[Inst]
494    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
495}
496
497NamedDecl *
498ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
499  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
500    = InstantiatedFromUsingDecl.find(UUD);
501  if (Pos == InstantiatedFromUsingDecl.end())
502    return 0;
503
504  return Pos->second;
505}
506
507void
508ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
509  assert((isa<UsingDecl>(Pattern) ||
510          isa<UnresolvedUsingValueDecl>(Pattern) ||
511          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
512         "pattern decl is not a using decl");
513  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
514  InstantiatedFromUsingDecl[Inst] = Pattern;
515}
516
517UsingShadowDecl *
518ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
519  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
520    = InstantiatedFromUsingShadowDecl.find(Inst);
521  if (Pos == InstantiatedFromUsingShadowDecl.end())
522    return 0;
523
524  return Pos->second;
525}
526
527void
528ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
529                                               UsingShadowDecl *Pattern) {
530  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
531  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
532}
533
534FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
535  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
536    = InstantiatedFromUnnamedFieldDecl.find(Field);
537  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
538    return 0;
539
540  return Pos->second;
541}
542
543void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
544                                                     FieldDecl *Tmpl) {
545  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
546  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
547  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
548         "Already noted what unnamed field was instantiated from");
549
550  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
551}
552
553bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
554                                    const FieldDecl *LastFD) const {
555  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
556          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
557
558}
559
560bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
561                                             const FieldDecl *LastFD) const {
562  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
563          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
564          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
565
566}
567
568bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
569                                         const FieldDecl *LastFD) const {
570  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
571          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
572          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
573}
574
575bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
576                                         const FieldDecl *LastFD) const {
577  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
578          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
579}
580
581bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
582                                             const FieldDecl *LastFD) const {
583  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
584          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
585}
586
587ASTContext::overridden_cxx_method_iterator
588ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
589  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
590    = OverriddenMethods.find(Method);
591  if (Pos == OverriddenMethods.end())
592    return 0;
593
594  return Pos->second.begin();
595}
596
597ASTContext::overridden_cxx_method_iterator
598ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
599  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
600    = OverriddenMethods.find(Method);
601  if (Pos == OverriddenMethods.end())
602    return 0;
603
604  return Pos->second.end();
605}
606
607unsigned
608ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
609  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
610    = OverriddenMethods.find(Method);
611  if (Pos == OverriddenMethods.end())
612    return 0;
613
614  return Pos->second.size();
615}
616
617void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
618                                     const CXXMethodDecl *Overridden) {
619  OverriddenMethods[Method].push_back(Overridden);
620}
621
622//===----------------------------------------------------------------------===//
623//                         Type Sizing and Analysis
624//===----------------------------------------------------------------------===//
625
626/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
627/// scalar floating point type.
628const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
629  const BuiltinType *BT = T->getAs<BuiltinType>();
630  assert(BT && "Not a floating point type!");
631  switch (BT->getKind()) {
632  default: assert(0 && "Not a floating point type!");
633  case BuiltinType::Float:      return Target.getFloatFormat();
634  case BuiltinType::Double:     return Target.getDoubleFormat();
635  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
636  }
637}
638
639/// getDeclAlign - Return a conservative estimate of the alignment of the
640/// specified decl.  Note that bitfields do not have a valid alignment, so
641/// this method will assert on them.
642/// If @p RefAsPointee, references are treated like their underlying type
643/// (for alignof), else they're treated like pointers (for CodeGen).
644CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
645  unsigned Align = Target.getCharWidth();
646
647  bool UseAlignAttrOnly = false;
648  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
649    Align = AlignFromAttr;
650
651    // __attribute__((aligned)) can increase or decrease alignment
652    // *except* on a struct or struct member, where it only increases
653    // alignment unless 'packed' is also specified.
654    //
655    // It is an error for [[align]] to decrease alignment, so we can
656    // ignore that possibility;  Sema should diagnose it.
657    if (isa<FieldDecl>(D)) {
658      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
659        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
660    } else {
661      UseAlignAttrOnly = true;
662    }
663  }
664  else if (isa<FieldDecl>(D))
665      UseAlignAttrOnly =
666        D->hasAttr<PackedAttr>() ||
667        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
668
669  // If we're using the align attribute only, just ignore everything
670  // else about the declaration and its type.
671  if (UseAlignAttrOnly) {
672    // do nothing
673
674  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
675    QualType T = VD->getType();
676    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
677      if (RefAsPointee)
678        T = RT->getPointeeType();
679      else
680        T = getPointerType(RT->getPointeeType());
681    }
682    if (!T->isIncompleteType() && !T->isFunctionType()) {
683      // Adjust alignments of declarations with array type by the
684      // large-array alignment on the target.
685      unsigned MinWidth = Target.getLargeArrayMinWidth();
686      const ArrayType *arrayType;
687      if (MinWidth && (arrayType = getAsArrayType(T))) {
688        if (isa<VariableArrayType>(arrayType))
689          Align = std::max(Align, Target.getLargeArrayAlign());
690        else if (isa<ConstantArrayType>(arrayType) &&
691                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
692          Align = std::max(Align, Target.getLargeArrayAlign());
693
694        // Walk through any array types while we're at it.
695        T = getBaseElementType(arrayType);
696      }
697      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
698    }
699
700    // Fields can be subject to extra alignment constraints, like if
701    // the field is packed, the struct is packed, or the struct has a
702    // a max-field-alignment constraint (#pragma pack).  So calculate
703    // the actual alignment of the field within the struct, and then
704    // (as we're expected to) constrain that by the alignment of the type.
705    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
706      // So calculate the alignment of the field.
707      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
708
709      // Start with the record's overall alignment.
710      unsigned fieldAlign = toBits(layout.getAlignment());
711
712      // Use the GCD of that and the offset within the record.
713      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
714      if (offset > 0) {
715        // Alignment is always a power of 2, so the GCD will be a power of 2,
716        // which means we get to do this crazy thing instead of Euclid's.
717        uint64_t lowBitOfOffset = offset & (~offset + 1);
718        if (lowBitOfOffset < fieldAlign)
719          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
720      }
721
722      Align = std::min(Align, fieldAlign);
723    }
724  }
725
726  return toCharUnitsFromBits(Align);
727}
728
729std::pair<CharUnits, CharUnits>
730ASTContext::getTypeInfoInChars(const Type *T) const {
731  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
732  return std::make_pair(toCharUnitsFromBits(Info.first),
733                        toCharUnitsFromBits(Info.second));
734}
735
736std::pair<CharUnits, CharUnits>
737ASTContext::getTypeInfoInChars(QualType T) const {
738  return getTypeInfoInChars(T.getTypePtr());
739}
740
741/// getTypeSize - Return the size of the specified type, in bits.  This method
742/// does not work on incomplete types.
743///
744/// FIXME: Pointers into different addr spaces could have different sizes and
745/// alignment requirements: getPointerInfo should take an AddrSpace, this
746/// should take a QualType, &c.
747std::pair<uint64_t, unsigned>
748ASTContext::getTypeInfo(const Type *T) const {
749  uint64_t Width=0;
750  unsigned Align=8;
751  switch (T->getTypeClass()) {
752#define TYPE(Class, Base)
753#define ABSTRACT_TYPE(Class, Base)
754#define NON_CANONICAL_TYPE(Class, Base)
755#define DEPENDENT_TYPE(Class, Base) case Type::Class:
756#include "clang/AST/TypeNodes.def"
757    llvm_unreachable("Should not see dependent types");
758    break;
759
760  case Type::FunctionNoProto:
761  case Type::FunctionProto:
762    // GCC extension: alignof(function) = 32 bits
763    Width = 0;
764    Align = 32;
765    break;
766
767  case Type::IncompleteArray:
768  case Type::VariableArray:
769    Width = 0;
770    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
771    break;
772
773  case Type::ConstantArray: {
774    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
775
776    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
777    Width = EltInfo.first*CAT->getSize().getZExtValue();
778    Align = EltInfo.second;
779    Width = llvm::RoundUpToAlignment(Width, Align);
780    break;
781  }
782  case Type::ExtVector:
783  case Type::Vector: {
784    const VectorType *VT = cast<VectorType>(T);
785    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
786    Width = EltInfo.first*VT->getNumElements();
787    Align = Width;
788    // If the alignment is not a power of 2, round up to the next power of 2.
789    // This happens for non-power-of-2 length vectors.
790    if (Align & (Align-1)) {
791      Align = llvm::NextPowerOf2(Align);
792      Width = llvm::RoundUpToAlignment(Width, Align);
793    }
794    break;
795  }
796
797  case Type::Builtin:
798    switch (cast<BuiltinType>(T)->getKind()) {
799    default: assert(0 && "Unknown builtin type!");
800    case BuiltinType::Void:
801      // GCC extension: alignof(void) = 8 bits.
802      Width = 0;
803      Align = 8;
804      break;
805
806    case BuiltinType::Bool:
807      Width = Target.getBoolWidth();
808      Align = Target.getBoolAlign();
809      break;
810    case BuiltinType::Char_S:
811    case BuiltinType::Char_U:
812    case BuiltinType::UChar:
813    case BuiltinType::SChar:
814      Width = Target.getCharWidth();
815      Align = Target.getCharAlign();
816      break;
817    case BuiltinType::WChar_S:
818    case BuiltinType::WChar_U:
819      Width = Target.getWCharWidth();
820      Align = Target.getWCharAlign();
821      break;
822    case BuiltinType::Char16:
823      Width = Target.getChar16Width();
824      Align = Target.getChar16Align();
825      break;
826    case BuiltinType::Char32:
827      Width = Target.getChar32Width();
828      Align = Target.getChar32Align();
829      break;
830    case BuiltinType::UShort:
831    case BuiltinType::Short:
832      Width = Target.getShortWidth();
833      Align = Target.getShortAlign();
834      break;
835    case BuiltinType::UInt:
836    case BuiltinType::Int:
837      Width = Target.getIntWidth();
838      Align = Target.getIntAlign();
839      break;
840    case BuiltinType::ULong:
841    case BuiltinType::Long:
842      Width = Target.getLongWidth();
843      Align = Target.getLongAlign();
844      break;
845    case BuiltinType::ULongLong:
846    case BuiltinType::LongLong:
847      Width = Target.getLongLongWidth();
848      Align = Target.getLongLongAlign();
849      break;
850    case BuiltinType::Int128:
851    case BuiltinType::UInt128:
852      Width = 128;
853      Align = 128; // int128_t is 128-bit aligned on all targets.
854      break;
855    case BuiltinType::Float:
856      Width = Target.getFloatWidth();
857      Align = Target.getFloatAlign();
858      break;
859    case BuiltinType::Double:
860      Width = Target.getDoubleWidth();
861      Align = Target.getDoubleAlign();
862      break;
863    case BuiltinType::LongDouble:
864      Width = Target.getLongDoubleWidth();
865      Align = Target.getLongDoubleAlign();
866      break;
867    case BuiltinType::NullPtr:
868      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
869      Align = Target.getPointerAlign(0); //   == sizeof(void*)
870      break;
871    case BuiltinType::ObjCId:
872    case BuiltinType::ObjCClass:
873    case BuiltinType::ObjCSel:
874      Width = Target.getPointerWidth(0);
875      Align = Target.getPointerAlign(0);
876      break;
877    }
878    break;
879  case Type::ObjCObjectPointer:
880    Width = Target.getPointerWidth(0);
881    Align = Target.getPointerAlign(0);
882    break;
883  case Type::BlockPointer: {
884    unsigned AS = getTargetAddressSpace(
885        cast<BlockPointerType>(T)->getPointeeType());
886    Width = Target.getPointerWidth(AS);
887    Align = Target.getPointerAlign(AS);
888    break;
889  }
890  case Type::LValueReference:
891  case Type::RValueReference: {
892    // alignof and sizeof should never enter this code path here, so we go
893    // the pointer route.
894    unsigned AS = getTargetAddressSpace(
895        cast<ReferenceType>(T)->getPointeeType());
896    Width = Target.getPointerWidth(AS);
897    Align = Target.getPointerAlign(AS);
898    break;
899  }
900  case Type::Pointer: {
901    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
902    Width = Target.getPointerWidth(AS);
903    Align = Target.getPointerAlign(AS);
904    break;
905  }
906  case Type::MemberPointer: {
907    const MemberPointerType *MPT = cast<MemberPointerType>(T);
908    std::pair<uint64_t, unsigned> PtrDiffInfo =
909      getTypeInfo(getPointerDiffType());
910    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
911    Align = PtrDiffInfo.second;
912    break;
913  }
914  case Type::Complex: {
915    // Complex types have the same alignment as their elements, but twice the
916    // size.
917    std::pair<uint64_t, unsigned> EltInfo =
918      getTypeInfo(cast<ComplexType>(T)->getElementType());
919    Width = EltInfo.first*2;
920    Align = EltInfo.second;
921    break;
922  }
923  case Type::ObjCObject:
924    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
925  case Type::ObjCInterface: {
926    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
927    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
928    Width = toBits(Layout.getSize());
929    Align = toBits(Layout.getAlignment());
930    break;
931  }
932  case Type::Record:
933  case Type::Enum: {
934    const TagType *TT = cast<TagType>(T);
935
936    if (TT->getDecl()->isInvalidDecl()) {
937      Width = 8;
938      Align = 8;
939      break;
940    }
941
942    if (const EnumType *ET = dyn_cast<EnumType>(TT))
943      return getTypeInfo(ET->getDecl()->getIntegerType());
944
945    const RecordType *RT = cast<RecordType>(TT);
946    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
947    Width = toBits(Layout.getSize());
948    Align = toBits(Layout.getAlignment());
949    break;
950  }
951
952  case Type::SubstTemplateTypeParm:
953    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
954                       getReplacementType().getTypePtr());
955
956  case Type::Auto: {
957    const AutoType *A = cast<AutoType>(T);
958    assert(A->isDeduced() && "Cannot request the size of a dependent type");
959    return getTypeInfo(A->getDeducedType().getTypePtr());
960  }
961
962  case Type::Paren:
963    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
964
965  case Type::Typedef: {
966    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
967    std::pair<uint64_t, unsigned> Info
968      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
969    // If the typedef has an aligned attribute on it, it overrides any computed
970    // alignment we have.  This violates the GCC documentation (which says that
971    // attribute(aligned) can only round up) but matches its implementation.
972    if (unsigned AttrAlign = Typedef->getMaxAlignment())
973      Align = AttrAlign;
974    else
975      Align = Info.second;
976    Width = Info.first;
977    break;
978  }
979
980  case Type::TypeOfExpr:
981    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
982                         .getTypePtr());
983
984  case Type::TypeOf:
985    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
986
987  case Type::Decltype:
988    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
989                        .getTypePtr());
990
991  case Type::UnaryTransform:
992    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
993
994  case Type::Elaborated:
995    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
996
997  case Type::Attributed:
998    return getTypeInfo(
999                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1000
1001  case Type::TemplateSpecialization: {
1002    assert(getCanonicalType(T) != T &&
1003           "Cannot request the size of a dependent type");
1004    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1005    // A type alias template specialization may refer to a typedef with the
1006    // aligned attribute on it.
1007    if (TST->isTypeAlias())
1008      return getTypeInfo(TST->getAliasedType().getTypePtr());
1009    else
1010      return getTypeInfo(getCanonicalType(T));
1011  }
1012
1013  }
1014
1015  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1016  return std::make_pair(Width, Align);
1017}
1018
1019/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1020CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1021  return CharUnits::fromQuantity(BitSize / getCharWidth());
1022}
1023
1024/// toBits - Convert a size in characters to a size in characters.
1025int64_t ASTContext::toBits(CharUnits CharSize) const {
1026  return CharSize.getQuantity() * getCharWidth();
1027}
1028
1029/// getTypeSizeInChars - Return the size of the specified type, in characters.
1030/// This method does not work on incomplete types.
1031CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1032  return toCharUnitsFromBits(getTypeSize(T));
1033}
1034CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1035  return toCharUnitsFromBits(getTypeSize(T));
1036}
1037
1038/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1039/// characters. This method does not work on incomplete types.
1040CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1041  return toCharUnitsFromBits(getTypeAlign(T));
1042}
1043CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1044  return toCharUnitsFromBits(getTypeAlign(T));
1045}
1046
1047/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1048/// type for the current target in bits.  This can be different than the ABI
1049/// alignment in cases where it is beneficial for performance to overalign
1050/// a data type.
1051unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1052  unsigned ABIAlign = getTypeAlign(T);
1053
1054  // Double and long long should be naturally aligned if possible.
1055  if (const ComplexType* CT = T->getAs<ComplexType>())
1056    T = CT->getElementType().getTypePtr();
1057  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1058      T->isSpecificBuiltinType(BuiltinType::LongLong))
1059    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1060
1061  return ABIAlign;
1062}
1063
1064/// ShallowCollectObjCIvars -
1065/// Collect all ivars, including those synthesized, in the current class.
1066///
1067void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1068                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1069  // FIXME. This need be removed but there are two many places which
1070  // assume const-ness of ObjCInterfaceDecl
1071  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1072  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1073        Iv= Iv->getNextIvar())
1074    Ivars.push_back(Iv);
1075}
1076
1077/// DeepCollectObjCIvars -
1078/// This routine first collects all declared, but not synthesized, ivars in
1079/// super class and then collects all ivars, including those synthesized for
1080/// current class. This routine is used for implementation of current class
1081/// when all ivars, declared and synthesized are known.
1082///
1083void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1084                                      bool leafClass,
1085                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1086  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1087    DeepCollectObjCIvars(SuperClass, false, Ivars);
1088  if (!leafClass) {
1089    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1090         E = OI->ivar_end(); I != E; ++I)
1091      Ivars.push_back(*I);
1092  }
1093  else {
1094    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1095    for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1096         Iv= Iv->getNextIvar())
1097      Ivars.push_back(Iv);
1098  }
1099}
1100
1101/// CollectInheritedProtocols - Collect all protocols in current class and
1102/// those inherited by it.
1103void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1104                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1105  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1106    // We can use protocol_iterator here instead of
1107    // all_referenced_protocol_iterator since we are walking all categories.
1108    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1109         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1110      ObjCProtocolDecl *Proto = (*P);
1111      Protocols.insert(Proto);
1112      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1113           PE = Proto->protocol_end(); P != PE; ++P) {
1114        Protocols.insert(*P);
1115        CollectInheritedProtocols(*P, Protocols);
1116      }
1117    }
1118
1119    // Categories of this Interface.
1120    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1121         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1122      CollectInheritedProtocols(CDeclChain, Protocols);
1123    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1124      while (SD) {
1125        CollectInheritedProtocols(SD, Protocols);
1126        SD = SD->getSuperClass();
1127      }
1128  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1129    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1130         PE = OC->protocol_end(); P != PE; ++P) {
1131      ObjCProtocolDecl *Proto = (*P);
1132      Protocols.insert(Proto);
1133      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1134           PE = Proto->protocol_end(); P != PE; ++P)
1135        CollectInheritedProtocols(*P, Protocols);
1136    }
1137  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1138    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1139         PE = OP->protocol_end(); P != PE; ++P) {
1140      ObjCProtocolDecl *Proto = (*P);
1141      Protocols.insert(Proto);
1142      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1143           PE = Proto->protocol_end(); P != PE; ++P)
1144        CollectInheritedProtocols(*P, Protocols);
1145    }
1146  }
1147}
1148
1149unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1150  unsigned count = 0;
1151  // Count ivars declared in class extension.
1152  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1153       CDecl = CDecl->getNextClassExtension())
1154    count += CDecl->ivar_size();
1155
1156  // Count ivar defined in this class's implementation.  This
1157  // includes synthesized ivars.
1158  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1159    count += ImplDecl->ivar_size();
1160
1161  return count;
1162}
1163
1164/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1165ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1166  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1167    I = ObjCImpls.find(D);
1168  if (I != ObjCImpls.end())
1169    return cast<ObjCImplementationDecl>(I->second);
1170  return 0;
1171}
1172/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1173ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1174  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1175    I = ObjCImpls.find(D);
1176  if (I != ObjCImpls.end())
1177    return cast<ObjCCategoryImplDecl>(I->second);
1178  return 0;
1179}
1180
1181/// \brief Set the implementation of ObjCInterfaceDecl.
1182void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1183                           ObjCImplementationDecl *ImplD) {
1184  assert(IFaceD && ImplD && "Passed null params");
1185  ObjCImpls[IFaceD] = ImplD;
1186}
1187/// \brief Set the implementation of ObjCCategoryDecl.
1188void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1189                           ObjCCategoryImplDecl *ImplD) {
1190  assert(CatD && ImplD && "Passed null params");
1191  ObjCImpls[CatD] = ImplD;
1192}
1193
1194/// \brief Get the copy initialization expression of VarDecl,or NULL if
1195/// none exists.
1196Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1197  assert(VD && "Passed null params");
1198  assert(VD->hasAttr<BlocksAttr>() &&
1199         "getBlockVarCopyInits - not __block var");
1200  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1201    I = BlockVarCopyInits.find(VD);
1202  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1203}
1204
1205/// \brief Set the copy inialization expression of a block var decl.
1206void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1207  assert(VD && Init && "Passed null params");
1208  assert(VD->hasAttr<BlocksAttr>() &&
1209         "setBlockVarCopyInits - not __block var");
1210  BlockVarCopyInits[VD] = Init;
1211}
1212
1213/// \brief Allocate an uninitialized TypeSourceInfo.
1214///
1215/// The caller should initialize the memory held by TypeSourceInfo using
1216/// the TypeLoc wrappers.
1217///
1218/// \param T the type that will be the basis for type source info. This type
1219/// should refer to how the declarator was written in source code, not to
1220/// what type semantic analysis resolved the declarator to.
1221TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1222                                                 unsigned DataSize) const {
1223  if (!DataSize)
1224    DataSize = TypeLoc::getFullDataSizeForType(T);
1225  else
1226    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1227           "incorrect data size provided to CreateTypeSourceInfo!");
1228
1229  TypeSourceInfo *TInfo =
1230    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1231  new (TInfo) TypeSourceInfo(T);
1232  return TInfo;
1233}
1234
1235TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1236                                                     SourceLocation L) const {
1237  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1238  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1239  return DI;
1240}
1241
1242const ASTRecordLayout &
1243ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1244  return getObjCLayout(D, 0);
1245}
1246
1247const ASTRecordLayout &
1248ASTContext::getASTObjCImplementationLayout(
1249                                        const ObjCImplementationDecl *D) const {
1250  return getObjCLayout(D->getClassInterface(), D);
1251}
1252
1253//===----------------------------------------------------------------------===//
1254//                   Type creation/memoization methods
1255//===----------------------------------------------------------------------===//
1256
1257QualType
1258ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1259  unsigned fastQuals = quals.getFastQualifiers();
1260  quals.removeFastQualifiers();
1261
1262  // Check if we've already instantiated this type.
1263  llvm::FoldingSetNodeID ID;
1264  ExtQuals::Profile(ID, baseType, quals);
1265  void *insertPos = 0;
1266  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1267    assert(eq->getQualifiers() == quals);
1268    return QualType(eq, fastQuals);
1269  }
1270
1271  // If the base type is not canonical, make the appropriate canonical type.
1272  QualType canon;
1273  if (!baseType->isCanonicalUnqualified()) {
1274    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1275    canonSplit.second.addConsistentQualifiers(quals);
1276    canon = getExtQualType(canonSplit.first, canonSplit.second);
1277
1278    // Re-find the insert position.
1279    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1280  }
1281
1282  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1283  ExtQualNodes.InsertNode(eq, insertPos);
1284  return QualType(eq, fastQuals);
1285}
1286
1287QualType
1288ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1289  QualType CanT = getCanonicalType(T);
1290  if (CanT.getAddressSpace() == AddressSpace)
1291    return T;
1292
1293  // If we are composing extended qualifiers together, merge together
1294  // into one ExtQuals node.
1295  QualifierCollector Quals;
1296  const Type *TypeNode = Quals.strip(T);
1297
1298  // If this type already has an address space specified, it cannot get
1299  // another one.
1300  assert(!Quals.hasAddressSpace() &&
1301         "Type cannot be in multiple addr spaces!");
1302  Quals.addAddressSpace(AddressSpace);
1303
1304  return getExtQualType(TypeNode, Quals);
1305}
1306
1307QualType ASTContext::getObjCGCQualType(QualType T,
1308                                       Qualifiers::GC GCAttr) const {
1309  QualType CanT = getCanonicalType(T);
1310  if (CanT.getObjCGCAttr() == GCAttr)
1311    return T;
1312
1313  if (const PointerType *ptr = T->getAs<PointerType>()) {
1314    QualType Pointee = ptr->getPointeeType();
1315    if (Pointee->isAnyPointerType()) {
1316      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1317      return getPointerType(ResultType);
1318    }
1319  }
1320
1321  // If we are composing extended qualifiers together, merge together
1322  // into one ExtQuals node.
1323  QualifierCollector Quals;
1324  const Type *TypeNode = Quals.strip(T);
1325
1326  // If this type already has an ObjCGC specified, it cannot get
1327  // another one.
1328  assert(!Quals.hasObjCGCAttr() &&
1329         "Type cannot have multiple ObjCGCs!");
1330  Quals.addObjCGCAttr(GCAttr);
1331
1332  return getExtQualType(TypeNode, Quals);
1333}
1334
1335const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1336                                                   FunctionType::ExtInfo Info) {
1337  if (T->getExtInfo() == Info)
1338    return T;
1339
1340  QualType Result;
1341  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1342    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1343  } else {
1344    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1345    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1346    EPI.ExtInfo = Info;
1347    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1348                             FPT->getNumArgs(), EPI);
1349  }
1350
1351  return cast<FunctionType>(Result.getTypePtr());
1352}
1353
1354/// getComplexType - Return the uniqued reference to the type for a complex
1355/// number with the specified element type.
1356QualType ASTContext::getComplexType(QualType T) const {
1357  // Unique pointers, to guarantee there is only one pointer of a particular
1358  // structure.
1359  llvm::FoldingSetNodeID ID;
1360  ComplexType::Profile(ID, T);
1361
1362  void *InsertPos = 0;
1363  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1364    return QualType(CT, 0);
1365
1366  // If the pointee type isn't canonical, this won't be a canonical type either,
1367  // so fill in the canonical type field.
1368  QualType Canonical;
1369  if (!T.isCanonical()) {
1370    Canonical = getComplexType(getCanonicalType(T));
1371
1372    // Get the new insert position for the node we care about.
1373    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1374    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1375  }
1376  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1377  Types.push_back(New);
1378  ComplexTypes.InsertNode(New, InsertPos);
1379  return QualType(New, 0);
1380}
1381
1382/// getPointerType - Return the uniqued reference to the type for a pointer to
1383/// the specified type.
1384QualType ASTContext::getPointerType(QualType T) const {
1385  // Unique pointers, to guarantee there is only one pointer of a particular
1386  // structure.
1387  llvm::FoldingSetNodeID ID;
1388  PointerType::Profile(ID, T);
1389
1390  void *InsertPos = 0;
1391  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1392    return QualType(PT, 0);
1393
1394  // If the pointee type isn't canonical, this won't be a canonical type either,
1395  // so fill in the canonical type field.
1396  QualType Canonical;
1397  if (!T.isCanonical()) {
1398    Canonical = getPointerType(getCanonicalType(T));
1399
1400    // Get the new insert position for the node we care about.
1401    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1402    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1403  }
1404  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1405  Types.push_back(New);
1406  PointerTypes.InsertNode(New, InsertPos);
1407  return QualType(New, 0);
1408}
1409
1410/// getBlockPointerType - Return the uniqued reference to the type for
1411/// a pointer to the specified block.
1412QualType ASTContext::getBlockPointerType(QualType T) const {
1413  assert(T->isFunctionType() && "block of function types only");
1414  // Unique pointers, to guarantee there is only one block of a particular
1415  // structure.
1416  llvm::FoldingSetNodeID ID;
1417  BlockPointerType::Profile(ID, T);
1418
1419  void *InsertPos = 0;
1420  if (BlockPointerType *PT =
1421        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1422    return QualType(PT, 0);
1423
1424  // If the block pointee type isn't canonical, this won't be a canonical
1425  // type either so fill in the canonical type field.
1426  QualType Canonical;
1427  if (!T.isCanonical()) {
1428    Canonical = getBlockPointerType(getCanonicalType(T));
1429
1430    // Get the new insert position for the node we care about.
1431    BlockPointerType *NewIP =
1432      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1433    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1434  }
1435  BlockPointerType *New
1436    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1437  Types.push_back(New);
1438  BlockPointerTypes.InsertNode(New, InsertPos);
1439  return QualType(New, 0);
1440}
1441
1442/// getLValueReferenceType - Return the uniqued reference to the type for an
1443/// lvalue reference to the specified type.
1444QualType
1445ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1446  assert(getCanonicalType(T) != OverloadTy &&
1447         "Unresolved overloaded function type");
1448
1449  // Unique pointers, to guarantee there is only one pointer of a particular
1450  // structure.
1451  llvm::FoldingSetNodeID ID;
1452  ReferenceType::Profile(ID, T, SpelledAsLValue);
1453
1454  void *InsertPos = 0;
1455  if (LValueReferenceType *RT =
1456        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1457    return QualType(RT, 0);
1458
1459  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1460
1461  // If the referencee type isn't canonical, this won't be a canonical type
1462  // either, so fill in the canonical type field.
1463  QualType Canonical;
1464  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1465    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1466    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1467
1468    // Get the new insert position for the node we care about.
1469    LValueReferenceType *NewIP =
1470      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1471    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1472  }
1473
1474  LValueReferenceType *New
1475    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1476                                                     SpelledAsLValue);
1477  Types.push_back(New);
1478  LValueReferenceTypes.InsertNode(New, InsertPos);
1479
1480  return QualType(New, 0);
1481}
1482
1483/// getRValueReferenceType - Return the uniqued reference to the type for an
1484/// rvalue reference to the specified type.
1485QualType ASTContext::getRValueReferenceType(QualType T) const {
1486  // Unique pointers, to guarantee there is only one pointer of a particular
1487  // structure.
1488  llvm::FoldingSetNodeID ID;
1489  ReferenceType::Profile(ID, T, false);
1490
1491  void *InsertPos = 0;
1492  if (RValueReferenceType *RT =
1493        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1494    return QualType(RT, 0);
1495
1496  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1497
1498  // If the referencee type isn't canonical, this won't be a canonical type
1499  // either, so fill in the canonical type field.
1500  QualType Canonical;
1501  if (InnerRef || !T.isCanonical()) {
1502    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1503    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1504
1505    // Get the new insert position for the node we care about.
1506    RValueReferenceType *NewIP =
1507      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1508    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1509  }
1510
1511  RValueReferenceType *New
1512    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1513  Types.push_back(New);
1514  RValueReferenceTypes.InsertNode(New, InsertPos);
1515  return QualType(New, 0);
1516}
1517
1518/// getMemberPointerType - Return the uniqued reference to the type for a
1519/// member pointer to the specified type, in the specified class.
1520QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1521  // Unique pointers, to guarantee there is only one pointer of a particular
1522  // structure.
1523  llvm::FoldingSetNodeID ID;
1524  MemberPointerType::Profile(ID, T, Cls);
1525
1526  void *InsertPos = 0;
1527  if (MemberPointerType *PT =
1528      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1529    return QualType(PT, 0);
1530
1531  // If the pointee or class type isn't canonical, this won't be a canonical
1532  // type either, so fill in the canonical type field.
1533  QualType Canonical;
1534  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1535    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1536
1537    // Get the new insert position for the node we care about.
1538    MemberPointerType *NewIP =
1539      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1540    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1541  }
1542  MemberPointerType *New
1543    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1544  Types.push_back(New);
1545  MemberPointerTypes.InsertNode(New, InsertPos);
1546  return QualType(New, 0);
1547}
1548
1549/// getConstantArrayType - Return the unique reference to the type for an
1550/// array of the specified element type.
1551QualType ASTContext::getConstantArrayType(QualType EltTy,
1552                                          const llvm::APInt &ArySizeIn,
1553                                          ArrayType::ArraySizeModifier ASM,
1554                                          unsigned IndexTypeQuals) const {
1555  assert((EltTy->isDependentType() ||
1556          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1557         "Constant array of VLAs is illegal!");
1558
1559  // Convert the array size into a canonical width matching the pointer size for
1560  // the target.
1561  llvm::APInt ArySize(ArySizeIn);
1562  ArySize =
1563    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1564
1565  llvm::FoldingSetNodeID ID;
1566  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1567
1568  void *InsertPos = 0;
1569  if (ConstantArrayType *ATP =
1570      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1571    return QualType(ATP, 0);
1572
1573  // If the element type isn't canonical or has qualifiers, this won't
1574  // be a canonical type either, so fill in the canonical type field.
1575  QualType Canon;
1576  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1577    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1578    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1579                                 ASM, IndexTypeQuals);
1580    Canon = getQualifiedType(Canon, canonSplit.second);
1581
1582    // Get the new insert position for the node we care about.
1583    ConstantArrayType *NewIP =
1584      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1585    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1586  }
1587
1588  ConstantArrayType *New = new(*this,TypeAlignment)
1589    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1590  ConstantArrayTypes.InsertNode(New, InsertPos);
1591  Types.push_back(New);
1592  return QualType(New, 0);
1593}
1594
1595/// getVariableArrayDecayedType - Turns the given type, which may be
1596/// variably-modified, into the corresponding type with all the known
1597/// sizes replaced with [*].
1598QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1599  // Vastly most common case.
1600  if (!type->isVariablyModifiedType()) return type;
1601
1602  QualType result;
1603
1604  SplitQualType split = type.getSplitDesugaredType();
1605  const Type *ty = split.first;
1606  switch (ty->getTypeClass()) {
1607#define TYPE(Class, Base)
1608#define ABSTRACT_TYPE(Class, Base)
1609#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1610#include "clang/AST/TypeNodes.def"
1611    llvm_unreachable("didn't desugar past all non-canonical types?");
1612
1613  // These types should never be variably-modified.
1614  case Type::Builtin:
1615  case Type::Complex:
1616  case Type::Vector:
1617  case Type::ExtVector:
1618  case Type::DependentSizedExtVector:
1619  case Type::ObjCObject:
1620  case Type::ObjCInterface:
1621  case Type::ObjCObjectPointer:
1622  case Type::Record:
1623  case Type::Enum:
1624  case Type::UnresolvedUsing:
1625  case Type::TypeOfExpr:
1626  case Type::TypeOf:
1627  case Type::Decltype:
1628  case Type::UnaryTransform:
1629  case Type::DependentName:
1630  case Type::InjectedClassName:
1631  case Type::TemplateSpecialization:
1632  case Type::DependentTemplateSpecialization:
1633  case Type::TemplateTypeParm:
1634  case Type::SubstTemplateTypeParmPack:
1635  case Type::Auto:
1636  case Type::PackExpansion:
1637    llvm_unreachable("type should never be variably-modified");
1638
1639  // These types can be variably-modified but should never need to
1640  // further decay.
1641  case Type::FunctionNoProto:
1642  case Type::FunctionProto:
1643  case Type::BlockPointer:
1644  case Type::MemberPointer:
1645    return type;
1646
1647  // These types can be variably-modified.  All these modifications
1648  // preserve structure except as noted by comments.
1649  // TODO: if we ever care about optimizing VLAs, there are no-op
1650  // optimizations available here.
1651  case Type::Pointer:
1652    result = getPointerType(getVariableArrayDecayedType(
1653                              cast<PointerType>(ty)->getPointeeType()));
1654    break;
1655
1656  case Type::LValueReference: {
1657    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1658    result = getLValueReferenceType(
1659                 getVariableArrayDecayedType(lv->getPointeeType()),
1660                                    lv->isSpelledAsLValue());
1661    break;
1662  }
1663
1664  case Type::RValueReference: {
1665    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1666    result = getRValueReferenceType(
1667                 getVariableArrayDecayedType(lv->getPointeeType()));
1668    break;
1669  }
1670
1671  case Type::ConstantArray: {
1672    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1673    result = getConstantArrayType(
1674                 getVariableArrayDecayedType(cat->getElementType()),
1675                                  cat->getSize(),
1676                                  cat->getSizeModifier(),
1677                                  cat->getIndexTypeCVRQualifiers());
1678    break;
1679  }
1680
1681  case Type::DependentSizedArray: {
1682    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1683    result = getDependentSizedArrayType(
1684                 getVariableArrayDecayedType(dat->getElementType()),
1685                                        dat->getSizeExpr(),
1686                                        dat->getSizeModifier(),
1687                                        dat->getIndexTypeCVRQualifiers(),
1688                                        dat->getBracketsRange());
1689    break;
1690  }
1691
1692  // Turn incomplete types into [*] types.
1693  case Type::IncompleteArray: {
1694    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1695    result = getVariableArrayType(
1696                 getVariableArrayDecayedType(iat->getElementType()),
1697                                  /*size*/ 0,
1698                                  ArrayType::Normal,
1699                                  iat->getIndexTypeCVRQualifiers(),
1700                                  SourceRange());
1701    break;
1702  }
1703
1704  // Turn VLA types into [*] types.
1705  case Type::VariableArray: {
1706    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1707    result = getVariableArrayType(
1708                 getVariableArrayDecayedType(vat->getElementType()),
1709                                  /*size*/ 0,
1710                                  ArrayType::Star,
1711                                  vat->getIndexTypeCVRQualifiers(),
1712                                  vat->getBracketsRange());
1713    break;
1714  }
1715  }
1716
1717  // Apply the top-level qualifiers from the original.
1718  return getQualifiedType(result, split.second);
1719}
1720
1721/// getVariableArrayType - Returns a non-unique reference to the type for a
1722/// variable array of the specified element type.
1723QualType ASTContext::getVariableArrayType(QualType EltTy,
1724                                          Expr *NumElts,
1725                                          ArrayType::ArraySizeModifier ASM,
1726                                          unsigned IndexTypeQuals,
1727                                          SourceRange Brackets) const {
1728  // Since we don't unique expressions, it isn't possible to unique VLA's
1729  // that have an expression provided for their size.
1730  QualType Canon;
1731
1732  // Be sure to pull qualifiers off the element type.
1733  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1734    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1735    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1736                                 IndexTypeQuals, Brackets);
1737    Canon = getQualifiedType(Canon, canonSplit.second);
1738  }
1739
1740  VariableArrayType *New = new(*this, TypeAlignment)
1741    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1742
1743  VariableArrayTypes.push_back(New);
1744  Types.push_back(New);
1745  return QualType(New, 0);
1746}
1747
1748/// getDependentSizedArrayType - Returns a non-unique reference to
1749/// the type for a dependently-sized array of the specified element
1750/// type.
1751QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1752                                                Expr *numElements,
1753                                                ArrayType::ArraySizeModifier ASM,
1754                                                unsigned elementTypeQuals,
1755                                                SourceRange brackets) const {
1756  assert((!numElements || numElements->isTypeDependent() ||
1757          numElements->isValueDependent()) &&
1758         "Size must be type- or value-dependent!");
1759
1760  // Dependently-sized array types that do not have a specified number
1761  // of elements will have their sizes deduced from a dependent
1762  // initializer.  We do no canonicalization here at all, which is okay
1763  // because they can't be used in most locations.
1764  if (!numElements) {
1765    DependentSizedArrayType *newType
1766      = new (*this, TypeAlignment)
1767          DependentSizedArrayType(*this, elementType, QualType(),
1768                                  numElements, ASM, elementTypeQuals,
1769                                  brackets);
1770    Types.push_back(newType);
1771    return QualType(newType, 0);
1772  }
1773
1774  // Otherwise, we actually build a new type every time, but we
1775  // also build a canonical type.
1776
1777  SplitQualType canonElementType = getCanonicalType(elementType).split();
1778
1779  void *insertPos = 0;
1780  llvm::FoldingSetNodeID ID;
1781  DependentSizedArrayType::Profile(ID, *this,
1782                                   QualType(canonElementType.first, 0),
1783                                   ASM, elementTypeQuals, numElements);
1784
1785  // Look for an existing type with these properties.
1786  DependentSizedArrayType *canonTy =
1787    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1788
1789  // If we don't have one, build one.
1790  if (!canonTy) {
1791    canonTy = new (*this, TypeAlignment)
1792      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1793                              QualType(), numElements, ASM, elementTypeQuals,
1794                              brackets);
1795    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1796    Types.push_back(canonTy);
1797  }
1798
1799  // Apply qualifiers from the element type to the array.
1800  QualType canon = getQualifiedType(QualType(canonTy,0),
1801                                    canonElementType.second);
1802
1803  // If we didn't need extra canonicalization for the element type,
1804  // then just use that as our result.
1805  if (QualType(canonElementType.first, 0) == elementType)
1806    return canon;
1807
1808  // Otherwise, we need to build a type which follows the spelling
1809  // of the element type.
1810  DependentSizedArrayType *sugaredType
1811    = new (*this, TypeAlignment)
1812        DependentSizedArrayType(*this, elementType, canon, numElements,
1813                                ASM, elementTypeQuals, brackets);
1814  Types.push_back(sugaredType);
1815  return QualType(sugaredType, 0);
1816}
1817
1818QualType ASTContext::getIncompleteArrayType(QualType elementType,
1819                                            ArrayType::ArraySizeModifier ASM,
1820                                            unsigned elementTypeQuals) const {
1821  llvm::FoldingSetNodeID ID;
1822  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1823
1824  void *insertPos = 0;
1825  if (IncompleteArrayType *iat =
1826       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1827    return QualType(iat, 0);
1828
1829  // If the element type isn't canonical, this won't be a canonical type
1830  // either, so fill in the canonical type field.  We also have to pull
1831  // qualifiers off the element type.
1832  QualType canon;
1833
1834  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1835    SplitQualType canonSplit = getCanonicalType(elementType).split();
1836    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1837                                   ASM, elementTypeQuals);
1838    canon = getQualifiedType(canon, canonSplit.second);
1839
1840    // Get the new insert position for the node we care about.
1841    IncompleteArrayType *existing =
1842      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1843    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1844  }
1845
1846  IncompleteArrayType *newType = new (*this, TypeAlignment)
1847    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1848
1849  IncompleteArrayTypes.InsertNode(newType, insertPos);
1850  Types.push_back(newType);
1851  return QualType(newType, 0);
1852}
1853
1854/// getVectorType - Return the unique reference to a vector type of
1855/// the specified element type and size. VectorType must be a built-in type.
1856QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1857                                   VectorType::VectorKind VecKind) const {
1858  assert(vecType->isBuiltinType());
1859
1860  // Check if we've already instantiated a vector of this type.
1861  llvm::FoldingSetNodeID ID;
1862  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1863
1864  void *InsertPos = 0;
1865  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1866    return QualType(VTP, 0);
1867
1868  // If the element type isn't canonical, this won't be a canonical type either,
1869  // so fill in the canonical type field.
1870  QualType Canonical;
1871  if (!vecType.isCanonical()) {
1872    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1873
1874    // Get the new insert position for the node we care about.
1875    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1876    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1877  }
1878  VectorType *New = new (*this, TypeAlignment)
1879    VectorType(vecType, NumElts, Canonical, VecKind);
1880  VectorTypes.InsertNode(New, InsertPos);
1881  Types.push_back(New);
1882  return QualType(New, 0);
1883}
1884
1885/// getExtVectorType - Return the unique reference to an extended vector type of
1886/// the specified element type and size. VectorType must be a built-in type.
1887QualType
1888ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1889  assert(vecType->isBuiltinType() || vecType->isDependentType());
1890
1891  // Check if we've already instantiated a vector of this type.
1892  llvm::FoldingSetNodeID ID;
1893  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1894                      VectorType::GenericVector);
1895  void *InsertPos = 0;
1896  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1897    return QualType(VTP, 0);
1898
1899  // If the element type isn't canonical, this won't be a canonical type either,
1900  // so fill in the canonical type field.
1901  QualType Canonical;
1902  if (!vecType.isCanonical()) {
1903    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1904
1905    // Get the new insert position for the node we care about.
1906    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1907    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1908  }
1909  ExtVectorType *New = new (*this, TypeAlignment)
1910    ExtVectorType(vecType, NumElts, Canonical);
1911  VectorTypes.InsertNode(New, InsertPos);
1912  Types.push_back(New);
1913  return QualType(New, 0);
1914}
1915
1916QualType
1917ASTContext::getDependentSizedExtVectorType(QualType vecType,
1918                                           Expr *SizeExpr,
1919                                           SourceLocation AttrLoc) const {
1920  llvm::FoldingSetNodeID ID;
1921  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1922                                       SizeExpr);
1923
1924  void *InsertPos = 0;
1925  DependentSizedExtVectorType *Canon
1926    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1927  DependentSizedExtVectorType *New;
1928  if (Canon) {
1929    // We already have a canonical version of this array type; use it as
1930    // the canonical type for a newly-built type.
1931    New = new (*this, TypeAlignment)
1932      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1933                                  SizeExpr, AttrLoc);
1934  } else {
1935    QualType CanonVecTy = getCanonicalType(vecType);
1936    if (CanonVecTy == vecType) {
1937      New = new (*this, TypeAlignment)
1938        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1939                                    AttrLoc);
1940
1941      DependentSizedExtVectorType *CanonCheck
1942        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1943      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1944      (void)CanonCheck;
1945      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1946    } else {
1947      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1948                                                      SourceLocation());
1949      New = new (*this, TypeAlignment)
1950        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1951    }
1952  }
1953
1954  Types.push_back(New);
1955  return QualType(New, 0);
1956}
1957
1958/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1959///
1960QualType
1961ASTContext::getFunctionNoProtoType(QualType ResultTy,
1962                                   const FunctionType::ExtInfo &Info) const {
1963  const CallingConv DefaultCC = Info.getCC();
1964  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1965                               CC_X86StdCall : DefaultCC;
1966  // Unique functions, to guarantee there is only one function of a particular
1967  // structure.
1968  llvm::FoldingSetNodeID ID;
1969  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1970
1971  void *InsertPos = 0;
1972  if (FunctionNoProtoType *FT =
1973        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1974    return QualType(FT, 0);
1975
1976  QualType Canonical;
1977  if (!ResultTy.isCanonical() ||
1978      getCanonicalCallConv(CallConv) != CallConv) {
1979    Canonical =
1980      getFunctionNoProtoType(getCanonicalType(ResultTy),
1981                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1982
1983    // Get the new insert position for the node we care about.
1984    FunctionNoProtoType *NewIP =
1985      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1986    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1987  }
1988
1989  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1990  FunctionNoProtoType *New = new (*this, TypeAlignment)
1991    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1992  Types.push_back(New);
1993  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1994  return QualType(New, 0);
1995}
1996
1997/// getFunctionType - Return a normal function type with a typed argument
1998/// list.  isVariadic indicates whether the argument list includes '...'.
1999QualType
2000ASTContext::getFunctionType(QualType ResultTy,
2001                            const QualType *ArgArray, unsigned NumArgs,
2002                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2003  // Unique functions, to guarantee there is only one function of a particular
2004  // structure.
2005  llvm::FoldingSetNodeID ID;
2006  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2007
2008  void *InsertPos = 0;
2009  if (FunctionProtoType *FTP =
2010        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2011    return QualType(FTP, 0);
2012
2013  // Determine whether the type being created is already canonical or not.
2014  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2015  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2016    if (!ArgArray[i].isCanonicalAsParam())
2017      isCanonical = false;
2018
2019  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2020  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2021                               CC_X86StdCall : DefaultCC;
2022
2023  // If this type isn't canonical, get the canonical version of it.
2024  // The exception spec is not part of the canonical type.
2025  QualType Canonical;
2026  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2027    llvm::SmallVector<QualType, 16> CanonicalArgs;
2028    CanonicalArgs.reserve(NumArgs);
2029    for (unsigned i = 0; i != NumArgs; ++i)
2030      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2031
2032    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2033    CanonicalEPI.ExceptionSpecType = EST_None;
2034    CanonicalEPI.NumExceptions = 0;
2035    CanonicalEPI.ExtInfo
2036      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2037
2038    Canonical = getFunctionType(getCanonicalType(ResultTy),
2039                                CanonicalArgs.data(), NumArgs,
2040                                CanonicalEPI);
2041
2042    // Get the new insert position for the node we care about.
2043    FunctionProtoType *NewIP =
2044      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2045    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2046  }
2047
2048  // FunctionProtoType objects are allocated with extra bytes after
2049  // them for three variable size arrays at the end:
2050  //  - parameter types
2051  //  - exception types
2052  //  - consumed-arguments flags
2053  // Instead of the exception types, there could be a noexcept
2054  // expression.
2055  size_t Size = sizeof(FunctionProtoType) +
2056                NumArgs * sizeof(QualType);
2057  if (EPI.ExceptionSpecType == EST_Dynamic)
2058    Size += EPI.NumExceptions * sizeof(QualType);
2059  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2060    Size += sizeof(Expr*);
2061  }
2062  if (EPI.ConsumedArguments)
2063    Size += NumArgs * sizeof(bool);
2064
2065  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2066  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2067  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2068  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2069  Types.push_back(FTP);
2070  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2071  return QualType(FTP, 0);
2072}
2073
2074#ifndef NDEBUG
2075static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2076  if (!isa<CXXRecordDecl>(D)) return false;
2077  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2078  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2079    return true;
2080  if (RD->getDescribedClassTemplate() &&
2081      !isa<ClassTemplateSpecializationDecl>(RD))
2082    return true;
2083  return false;
2084}
2085#endif
2086
2087/// getInjectedClassNameType - Return the unique reference to the
2088/// injected class name type for the specified templated declaration.
2089QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2090                                              QualType TST) const {
2091  assert(NeedsInjectedClassNameType(Decl));
2092  if (Decl->TypeForDecl) {
2093    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2094  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2095    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2096    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2097    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2098  } else {
2099    Type *newType =
2100      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2101    Decl->TypeForDecl = newType;
2102    Types.push_back(newType);
2103  }
2104  return QualType(Decl->TypeForDecl, 0);
2105}
2106
2107/// getTypeDeclType - Return the unique reference to the type for the
2108/// specified type declaration.
2109QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2110  assert(Decl && "Passed null for Decl param");
2111  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2112
2113  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2114    return getTypedefType(Typedef);
2115
2116  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2117         "Template type parameter types are always available.");
2118
2119  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2120    assert(!Record->getPreviousDeclaration() &&
2121           "struct/union has previous declaration");
2122    assert(!NeedsInjectedClassNameType(Record));
2123    return getRecordType(Record);
2124  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2125    assert(!Enum->getPreviousDeclaration() &&
2126           "enum has previous declaration");
2127    return getEnumType(Enum);
2128  } else if (const UnresolvedUsingTypenameDecl *Using =
2129               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2130    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2131    Decl->TypeForDecl = newType;
2132    Types.push_back(newType);
2133  } else
2134    llvm_unreachable("TypeDecl without a type?");
2135
2136  return QualType(Decl->TypeForDecl, 0);
2137}
2138
2139/// getTypedefType - Return the unique reference to the type for the
2140/// specified typedef name decl.
2141QualType
2142ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2143                           QualType Canonical) const {
2144  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2145
2146  if (Canonical.isNull())
2147    Canonical = getCanonicalType(Decl->getUnderlyingType());
2148  TypedefType *newType = new(*this, TypeAlignment)
2149    TypedefType(Type::Typedef, Decl, Canonical);
2150  Decl->TypeForDecl = newType;
2151  Types.push_back(newType);
2152  return QualType(newType, 0);
2153}
2154
2155QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2156  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2157
2158  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2159    if (PrevDecl->TypeForDecl)
2160      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2161
2162  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2163  Decl->TypeForDecl = newType;
2164  Types.push_back(newType);
2165  return QualType(newType, 0);
2166}
2167
2168QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2169  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2170
2171  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2172    if (PrevDecl->TypeForDecl)
2173      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2174
2175  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2176  Decl->TypeForDecl = newType;
2177  Types.push_back(newType);
2178  return QualType(newType, 0);
2179}
2180
2181QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2182                                       QualType modifiedType,
2183                                       QualType equivalentType) {
2184  llvm::FoldingSetNodeID id;
2185  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2186
2187  void *insertPos = 0;
2188  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2189  if (type) return QualType(type, 0);
2190
2191  QualType canon = getCanonicalType(equivalentType);
2192  type = new (*this, TypeAlignment)
2193           AttributedType(canon, attrKind, modifiedType, equivalentType);
2194
2195  Types.push_back(type);
2196  AttributedTypes.InsertNode(type, insertPos);
2197
2198  return QualType(type, 0);
2199}
2200
2201
2202/// \brief Retrieve a substitution-result type.
2203QualType
2204ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2205                                         QualType Replacement) const {
2206  assert(Replacement.isCanonical()
2207         && "replacement types must always be canonical");
2208
2209  llvm::FoldingSetNodeID ID;
2210  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2211  void *InsertPos = 0;
2212  SubstTemplateTypeParmType *SubstParm
2213    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2214
2215  if (!SubstParm) {
2216    SubstParm = new (*this, TypeAlignment)
2217      SubstTemplateTypeParmType(Parm, Replacement);
2218    Types.push_back(SubstParm);
2219    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2220  }
2221
2222  return QualType(SubstParm, 0);
2223}
2224
2225/// \brief Retrieve a
2226QualType ASTContext::getSubstTemplateTypeParmPackType(
2227                                          const TemplateTypeParmType *Parm,
2228                                              const TemplateArgument &ArgPack) {
2229#ifndef NDEBUG
2230  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2231                                    PEnd = ArgPack.pack_end();
2232       P != PEnd; ++P) {
2233    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2234    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2235  }
2236#endif
2237
2238  llvm::FoldingSetNodeID ID;
2239  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2240  void *InsertPos = 0;
2241  if (SubstTemplateTypeParmPackType *SubstParm
2242        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2243    return QualType(SubstParm, 0);
2244
2245  QualType Canon;
2246  if (!Parm->isCanonicalUnqualified()) {
2247    Canon = getCanonicalType(QualType(Parm, 0));
2248    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2249                                             ArgPack);
2250    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2251  }
2252
2253  SubstTemplateTypeParmPackType *SubstParm
2254    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2255                                                               ArgPack);
2256  Types.push_back(SubstParm);
2257  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2258  return QualType(SubstParm, 0);
2259}
2260
2261/// \brief Retrieve the template type parameter type for a template
2262/// parameter or parameter pack with the given depth, index, and (optionally)
2263/// name.
2264QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2265                                             bool ParameterPack,
2266                                             TemplateTypeParmDecl *TTPDecl) const {
2267  llvm::FoldingSetNodeID ID;
2268  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2269  void *InsertPos = 0;
2270  TemplateTypeParmType *TypeParm
2271    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2272
2273  if (TypeParm)
2274    return QualType(TypeParm, 0);
2275
2276  if (TTPDecl) {
2277    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2278    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2279
2280    TemplateTypeParmType *TypeCheck
2281      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2282    assert(!TypeCheck && "Template type parameter canonical type broken");
2283    (void)TypeCheck;
2284  } else
2285    TypeParm = new (*this, TypeAlignment)
2286      TemplateTypeParmType(Depth, Index, ParameterPack);
2287
2288  Types.push_back(TypeParm);
2289  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2290
2291  return QualType(TypeParm, 0);
2292}
2293
2294TypeSourceInfo *
2295ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2296                                              SourceLocation NameLoc,
2297                                        const TemplateArgumentListInfo &Args,
2298                                              QualType Underlying) const {
2299  assert(!Name.getAsDependentTemplateName() &&
2300         "No dependent template names here!");
2301  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2302
2303  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2304  TemplateSpecializationTypeLoc TL
2305    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2306  TL.setTemplateNameLoc(NameLoc);
2307  TL.setLAngleLoc(Args.getLAngleLoc());
2308  TL.setRAngleLoc(Args.getRAngleLoc());
2309  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2310    TL.setArgLocInfo(i, Args[i].getLocInfo());
2311  return DI;
2312}
2313
2314QualType
2315ASTContext::getTemplateSpecializationType(TemplateName Template,
2316                                          const TemplateArgumentListInfo &Args,
2317                                          QualType Underlying) const {
2318  assert(!Template.getAsDependentTemplateName() &&
2319         "No dependent template names here!");
2320
2321  unsigned NumArgs = Args.size();
2322
2323  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2324  ArgVec.reserve(NumArgs);
2325  for (unsigned i = 0; i != NumArgs; ++i)
2326    ArgVec.push_back(Args[i].getArgument());
2327
2328  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2329                                       Underlying);
2330}
2331
2332QualType
2333ASTContext::getTemplateSpecializationType(TemplateName Template,
2334                                          const TemplateArgument *Args,
2335                                          unsigned NumArgs,
2336                                          QualType Underlying) const {
2337  assert(!Template.getAsDependentTemplateName() &&
2338         "No dependent template names here!");
2339  // Look through qualified template names.
2340  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2341    Template = TemplateName(QTN->getTemplateDecl());
2342
2343  bool isTypeAlias =
2344    Template.getAsTemplateDecl() &&
2345    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2346
2347  QualType CanonType;
2348  if (!Underlying.isNull())
2349    CanonType = getCanonicalType(Underlying);
2350  else {
2351    assert(!isTypeAlias &&
2352           "Underlying type for template alias must be computed by caller");
2353    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2354                                                       NumArgs);
2355  }
2356
2357  // Allocate the (non-canonical) template specialization type, but don't
2358  // try to unique it: these types typically have location information that
2359  // we don't unique and don't want to lose.
2360  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2361                       sizeof(TemplateArgument) * NumArgs +
2362                       (isTypeAlias ? sizeof(QualType) : 0),
2363                       TypeAlignment);
2364  TemplateSpecializationType *Spec
2365    = new (Mem) TemplateSpecializationType(Template,
2366                                           Args, NumArgs,
2367                                           CanonType,
2368                                         isTypeAlias ? Underlying : QualType());
2369
2370  Types.push_back(Spec);
2371  return QualType(Spec, 0);
2372}
2373
2374QualType
2375ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2376                                                   const TemplateArgument *Args,
2377                                                   unsigned NumArgs) const {
2378  assert(!Template.getAsDependentTemplateName() &&
2379         "No dependent template names here!");
2380  assert((!Template.getAsTemplateDecl() ||
2381          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2382         "Underlying type for template alias must be computed by caller");
2383
2384  // Look through qualified template names.
2385  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2386    Template = TemplateName(QTN->getTemplateDecl());
2387
2388  // Build the canonical template specialization type.
2389  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2390  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2391  CanonArgs.reserve(NumArgs);
2392  for (unsigned I = 0; I != NumArgs; ++I)
2393    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2394
2395  // Determine whether this canonical template specialization type already
2396  // exists.
2397  llvm::FoldingSetNodeID ID;
2398  TemplateSpecializationType::Profile(ID, CanonTemplate,
2399                                      CanonArgs.data(), NumArgs, *this);
2400
2401  void *InsertPos = 0;
2402  TemplateSpecializationType *Spec
2403    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2404
2405  if (!Spec) {
2406    // Allocate a new canonical template specialization type.
2407    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2408                          sizeof(TemplateArgument) * NumArgs),
2409                         TypeAlignment);
2410    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2411                                                CanonArgs.data(), NumArgs,
2412                                                QualType(), QualType());
2413    Types.push_back(Spec);
2414    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2415  }
2416
2417  assert(Spec->isDependentType() &&
2418         "Non-dependent template-id type must have a canonical type");
2419  return QualType(Spec, 0);
2420}
2421
2422QualType
2423ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2424                              NestedNameSpecifier *NNS,
2425                              QualType NamedType) const {
2426  llvm::FoldingSetNodeID ID;
2427  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2428
2429  void *InsertPos = 0;
2430  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2431  if (T)
2432    return QualType(T, 0);
2433
2434  QualType Canon = NamedType;
2435  if (!Canon.isCanonical()) {
2436    Canon = getCanonicalType(NamedType);
2437    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2438    assert(!CheckT && "Elaborated canonical type broken");
2439    (void)CheckT;
2440  }
2441
2442  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2443  Types.push_back(T);
2444  ElaboratedTypes.InsertNode(T, InsertPos);
2445  return QualType(T, 0);
2446}
2447
2448QualType
2449ASTContext::getParenType(QualType InnerType) const {
2450  llvm::FoldingSetNodeID ID;
2451  ParenType::Profile(ID, InnerType);
2452
2453  void *InsertPos = 0;
2454  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2455  if (T)
2456    return QualType(T, 0);
2457
2458  QualType Canon = InnerType;
2459  if (!Canon.isCanonical()) {
2460    Canon = getCanonicalType(InnerType);
2461    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2462    assert(!CheckT && "Paren canonical type broken");
2463    (void)CheckT;
2464  }
2465
2466  T = new (*this) ParenType(InnerType, Canon);
2467  Types.push_back(T);
2468  ParenTypes.InsertNode(T, InsertPos);
2469  return QualType(T, 0);
2470}
2471
2472QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2473                                          NestedNameSpecifier *NNS,
2474                                          const IdentifierInfo *Name,
2475                                          QualType Canon) const {
2476  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2477
2478  if (Canon.isNull()) {
2479    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2480    ElaboratedTypeKeyword CanonKeyword = Keyword;
2481    if (Keyword == ETK_None)
2482      CanonKeyword = ETK_Typename;
2483
2484    if (CanonNNS != NNS || CanonKeyword != Keyword)
2485      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2486  }
2487
2488  llvm::FoldingSetNodeID ID;
2489  DependentNameType::Profile(ID, Keyword, NNS, Name);
2490
2491  void *InsertPos = 0;
2492  DependentNameType *T
2493    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2494  if (T)
2495    return QualType(T, 0);
2496
2497  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2498  Types.push_back(T);
2499  DependentNameTypes.InsertNode(T, InsertPos);
2500  return QualType(T, 0);
2501}
2502
2503QualType
2504ASTContext::getDependentTemplateSpecializationType(
2505                                 ElaboratedTypeKeyword Keyword,
2506                                 NestedNameSpecifier *NNS,
2507                                 const IdentifierInfo *Name,
2508                                 const TemplateArgumentListInfo &Args) const {
2509  // TODO: avoid this copy
2510  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2511  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2512    ArgCopy.push_back(Args[I].getArgument());
2513  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2514                                                ArgCopy.size(),
2515                                                ArgCopy.data());
2516}
2517
2518QualType
2519ASTContext::getDependentTemplateSpecializationType(
2520                                 ElaboratedTypeKeyword Keyword,
2521                                 NestedNameSpecifier *NNS,
2522                                 const IdentifierInfo *Name,
2523                                 unsigned NumArgs,
2524                                 const TemplateArgument *Args) const {
2525  assert((!NNS || NNS->isDependent()) &&
2526         "nested-name-specifier must be dependent");
2527
2528  llvm::FoldingSetNodeID ID;
2529  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2530                                               Name, NumArgs, Args);
2531
2532  void *InsertPos = 0;
2533  DependentTemplateSpecializationType *T
2534    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2535  if (T)
2536    return QualType(T, 0);
2537
2538  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2539
2540  ElaboratedTypeKeyword CanonKeyword = Keyword;
2541  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2542
2543  bool AnyNonCanonArgs = false;
2544  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2545  for (unsigned I = 0; I != NumArgs; ++I) {
2546    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2547    if (!CanonArgs[I].structurallyEquals(Args[I]))
2548      AnyNonCanonArgs = true;
2549  }
2550
2551  QualType Canon;
2552  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2553    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2554                                                   Name, NumArgs,
2555                                                   CanonArgs.data());
2556
2557    // Find the insert position again.
2558    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2559  }
2560
2561  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2562                        sizeof(TemplateArgument) * NumArgs),
2563                       TypeAlignment);
2564  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2565                                                    Name, NumArgs, Args, Canon);
2566  Types.push_back(T);
2567  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2568  return QualType(T, 0);
2569}
2570
2571QualType ASTContext::getPackExpansionType(QualType Pattern,
2572                                      llvm::Optional<unsigned> NumExpansions) {
2573  llvm::FoldingSetNodeID ID;
2574  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2575
2576  assert(Pattern->containsUnexpandedParameterPack() &&
2577         "Pack expansions must expand one or more parameter packs");
2578  void *InsertPos = 0;
2579  PackExpansionType *T
2580    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2581  if (T)
2582    return QualType(T, 0);
2583
2584  QualType Canon;
2585  if (!Pattern.isCanonical()) {
2586    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2587
2588    // Find the insert position again.
2589    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2590  }
2591
2592  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2593  Types.push_back(T);
2594  PackExpansionTypes.InsertNode(T, InsertPos);
2595  return QualType(T, 0);
2596}
2597
2598/// CmpProtocolNames - Comparison predicate for sorting protocols
2599/// alphabetically.
2600static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2601                            const ObjCProtocolDecl *RHS) {
2602  return LHS->getDeclName() < RHS->getDeclName();
2603}
2604
2605static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2606                                unsigned NumProtocols) {
2607  if (NumProtocols == 0) return true;
2608
2609  for (unsigned i = 1; i != NumProtocols; ++i)
2610    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2611      return false;
2612  return true;
2613}
2614
2615static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2616                                   unsigned &NumProtocols) {
2617  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2618
2619  // Sort protocols, keyed by name.
2620  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2621
2622  // Remove duplicates.
2623  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2624  NumProtocols = ProtocolsEnd-Protocols;
2625}
2626
2627QualType ASTContext::getObjCObjectType(QualType BaseType,
2628                                       ObjCProtocolDecl * const *Protocols,
2629                                       unsigned NumProtocols) const {
2630  // If the base type is an interface and there aren't any protocols
2631  // to add, then the interface type will do just fine.
2632  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2633    return BaseType;
2634
2635  // Look in the folding set for an existing type.
2636  llvm::FoldingSetNodeID ID;
2637  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2638  void *InsertPos = 0;
2639  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2640    return QualType(QT, 0);
2641
2642  // Build the canonical type, which has the canonical base type and
2643  // a sorted-and-uniqued list of protocols.
2644  QualType Canonical;
2645  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2646  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2647    if (!ProtocolsSorted) {
2648      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2649                                                     Protocols + NumProtocols);
2650      unsigned UniqueCount = NumProtocols;
2651
2652      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2653      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2654                                    &Sorted[0], UniqueCount);
2655    } else {
2656      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2657                                    Protocols, NumProtocols);
2658    }
2659
2660    // Regenerate InsertPos.
2661    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2662  }
2663
2664  unsigned Size = sizeof(ObjCObjectTypeImpl);
2665  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2666  void *Mem = Allocate(Size, TypeAlignment);
2667  ObjCObjectTypeImpl *T =
2668    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2669
2670  Types.push_back(T);
2671  ObjCObjectTypes.InsertNode(T, InsertPos);
2672  return QualType(T, 0);
2673}
2674
2675/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2676/// the given object type.
2677QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2678  llvm::FoldingSetNodeID ID;
2679  ObjCObjectPointerType::Profile(ID, ObjectT);
2680
2681  void *InsertPos = 0;
2682  if (ObjCObjectPointerType *QT =
2683              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2684    return QualType(QT, 0);
2685
2686  // Find the canonical object type.
2687  QualType Canonical;
2688  if (!ObjectT.isCanonical()) {
2689    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2690
2691    // Regenerate InsertPos.
2692    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2693  }
2694
2695  // No match.
2696  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2697  ObjCObjectPointerType *QType =
2698    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2699
2700  Types.push_back(QType);
2701  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2702  return QualType(QType, 0);
2703}
2704
2705/// getObjCInterfaceType - Return the unique reference to the type for the
2706/// specified ObjC interface decl. The list of protocols is optional.
2707QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2708  if (Decl->TypeForDecl)
2709    return QualType(Decl->TypeForDecl, 0);
2710
2711  // FIXME: redeclarations?
2712  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2713  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2714  Decl->TypeForDecl = T;
2715  Types.push_back(T);
2716  return QualType(T, 0);
2717}
2718
2719/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2720/// TypeOfExprType AST's (since expression's are never shared). For example,
2721/// multiple declarations that refer to "typeof(x)" all contain different
2722/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2723/// on canonical type's (which are always unique).
2724QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2725  TypeOfExprType *toe;
2726  if (tofExpr->isTypeDependent()) {
2727    llvm::FoldingSetNodeID ID;
2728    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2729
2730    void *InsertPos = 0;
2731    DependentTypeOfExprType *Canon
2732      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2733    if (Canon) {
2734      // We already have a "canonical" version of an identical, dependent
2735      // typeof(expr) type. Use that as our canonical type.
2736      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2737                                          QualType((TypeOfExprType*)Canon, 0));
2738    }
2739    else {
2740      // Build a new, canonical typeof(expr) type.
2741      Canon
2742        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2743      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2744      toe = Canon;
2745    }
2746  } else {
2747    QualType Canonical = getCanonicalType(tofExpr->getType());
2748    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2749  }
2750  Types.push_back(toe);
2751  return QualType(toe, 0);
2752}
2753
2754/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2755/// TypeOfType AST's. The only motivation to unique these nodes would be
2756/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2757/// an issue. This doesn't effect the type checker, since it operates
2758/// on canonical type's (which are always unique).
2759QualType ASTContext::getTypeOfType(QualType tofType) const {
2760  QualType Canonical = getCanonicalType(tofType);
2761  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2762  Types.push_back(tot);
2763  return QualType(tot, 0);
2764}
2765
2766/// getDecltypeForExpr - Given an expr, will return the decltype for that
2767/// expression, according to the rules in C++0x [dcl.type.simple]p4
2768static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2769  if (e->isTypeDependent())
2770    return Context.DependentTy;
2771
2772  // If e is an id expression or a class member access, decltype(e) is defined
2773  // as the type of the entity named by e.
2774  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2775    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2776      return VD->getType();
2777  }
2778  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2779    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2780      return FD->getType();
2781  }
2782  // If e is a function call or an invocation of an overloaded operator,
2783  // (parentheses around e are ignored), decltype(e) is defined as the
2784  // return type of that function.
2785  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2786    return CE->getCallReturnType();
2787
2788  QualType T = e->getType();
2789
2790  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2791  // defined as T&, otherwise decltype(e) is defined as T.
2792  if (e->isLValue())
2793    T = Context.getLValueReferenceType(T);
2794
2795  return T;
2796}
2797
2798/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2799/// DecltypeType AST's. The only motivation to unique these nodes would be
2800/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2801/// an issue. This doesn't effect the type checker, since it operates
2802/// on canonical type's (which are always unique).
2803QualType ASTContext::getDecltypeType(Expr *e) const {
2804  DecltypeType *dt;
2805
2806  // C++0x [temp.type]p2:
2807  //   If an expression e involves a template parameter, decltype(e) denotes a
2808  //   unique dependent type. Two such decltype-specifiers refer to the same
2809  //   type only if their expressions are equivalent (14.5.6.1).
2810  if (e->isInstantiationDependent()) {
2811    llvm::FoldingSetNodeID ID;
2812    DependentDecltypeType::Profile(ID, *this, e);
2813
2814    void *InsertPos = 0;
2815    DependentDecltypeType *Canon
2816      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2817    if (Canon) {
2818      // We already have a "canonical" version of an equivalent, dependent
2819      // decltype type. Use that as our canonical type.
2820      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2821                                       QualType((DecltypeType*)Canon, 0));
2822    }
2823    else {
2824      // Build a new, canonical typeof(expr) type.
2825      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2826      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2827      dt = Canon;
2828    }
2829  } else {
2830    QualType T = getDecltypeForExpr(e, *this);
2831    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2832  }
2833  Types.push_back(dt);
2834  return QualType(dt, 0);
2835}
2836
2837/// getUnaryTransformationType - We don't unique these, since the memory
2838/// savings are minimal and these are rare.
2839QualType ASTContext::getUnaryTransformType(QualType BaseType,
2840                                           QualType UnderlyingType,
2841                                           UnaryTransformType::UTTKind Kind)
2842    const {
2843  UnaryTransformType *Ty =
2844    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2845                                                   Kind,
2846                                 UnderlyingType->isDependentType() ?
2847                                    QualType() : UnderlyingType);
2848  Types.push_back(Ty);
2849  return QualType(Ty, 0);
2850}
2851
2852/// getAutoType - We only unique auto types after they've been deduced.
2853QualType ASTContext::getAutoType(QualType DeducedType) const {
2854  void *InsertPos = 0;
2855  if (!DeducedType.isNull()) {
2856    // Look in the folding set for an existing type.
2857    llvm::FoldingSetNodeID ID;
2858    AutoType::Profile(ID, DeducedType);
2859    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2860      return QualType(AT, 0);
2861  }
2862
2863  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2864  Types.push_back(AT);
2865  if (InsertPos)
2866    AutoTypes.InsertNode(AT, InsertPos);
2867  return QualType(AT, 0);
2868}
2869
2870/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2871QualType ASTContext::getAutoDeductType() const {
2872  if (AutoDeductTy.isNull())
2873    AutoDeductTy = getAutoType(QualType());
2874  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2875  return AutoDeductTy;
2876}
2877
2878/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2879QualType ASTContext::getAutoRRefDeductType() const {
2880  if (AutoRRefDeductTy.isNull())
2881    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2882  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2883  return AutoRRefDeductTy;
2884}
2885
2886/// getTagDeclType - Return the unique reference to the type for the
2887/// specified TagDecl (struct/union/class/enum) decl.
2888QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2889  assert (Decl);
2890  // FIXME: What is the design on getTagDeclType when it requires casting
2891  // away const?  mutable?
2892  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2893}
2894
2895/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2896/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2897/// needs to agree with the definition in <stddef.h>.
2898CanQualType ASTContext::getSizeType() const {
2899  return getFromTargetType(Target.getSizeType());
2900}
2901
2902/// getSignedWCharType - Return the type of "signed wchar_t".
2903/// Used when in C++, as a GCC extension.
2904QualType ASTContext::getSignedWCharType() const {
2905  // FIXME: derive from "Target" ?
2906  return WCharTy;
2907}
2908
2909/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2910/// Used when in C++, as a GCC extension.
2911QualType ASTContext::getUnsignedWCharType() const {
2912  // FIXME: derive from "Target" ?
2913  return UnsignedIntTy;
2914}
2915
2916/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2917/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2918QualType ASTContext::getPointerDiffType() const {
2919  return getFromTargetType(Target.getPtrDiffType(0));
2920}
2921
2922//===----------------------------------------------------------------------===//
2923//                              Type Operators
2924//===----------------------------------------------------------------------===//
2925
2926CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2927  // Push qualifiers into arrays, and then discard any remaining
2928  // qualifiers.
2929  T = getCanonicalType(T);
2930  T = getVariableArrayDecayedType(T);
2931  const Type *Ty = T.getTypePtr();
2932  QualType Result;
2933  if (isa<ArrayType>(Ty)) {
2934    Result = getArrayDecayedType(QualType(Ty,0));
2935  } else if (isa<FunctionType>(Ty)) {
2936    Result = getPointerType(QualType(Ty, 0));
2937  } else {
2938    Result = QualType(Ty, 0);
2939  }
2940
2941  return CanQualType::CreateUnsafe(Result);
2942}
2943
2944QualType ASTContext::getUnqualifiedArrayType(QualType type,
2945                                             Qualifiers &quals) {
2946  SplitQualType splitType = type.getSplitUnqualifiedType();
2947
2948  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2949  // the unqualified desugared type and then drops it on the floor.
2950  // We then have to strip that sugar back off with
2951  // getUnqualifiedDesugaredType(), which is silly.
2952  const ArrayType *AT =
2953    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2954
2955  // If we don't have an array, just use the results in splitType.
2956  if (!AT) {
2957    quals = splitType.second;
2958    return QualType(splitType.first, 0);
2959  }
2960
2961  // Otherwise, recurse on the array's element type.
2962  QualType elementType = AT->getElementType();
2963  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2964
2965  // If that didn't change the element type, AT has no qualifiers, so we
2966  // can just use the results in splitType.
2967  if (elementType == unqualElementType) {
2968    assert(quals.empty()); // from the recursive call
2969    quals = splitType.second;
2970    return QualType(splitType.first, 0);
2971  }
2972
2973  // Otherwise, add in the qualifiers from the outermost type, then
2974  // build the type back up.
2975  quals.addConsistentQualifiers(splitType.second);
2976
2977  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2978    return getConstantArrayType(unqualElementType, CAT->getSize(),
2979                                CAT->getSizeModifier(), 0);
2980  }
2981
2982  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2983    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2984  }
2985
2986  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2987    return getVariableArrayType(unqualElementType,
2988                                VAT->getSizeExpr(),
2989                                VAT->getSizeModifier(),
2990                                VAT->getIndexTypeCVRQualifiers(),
2991                                VAT->getBracketsRange());
2992  }
2993
2994  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2995  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2996                                    DSAT->getSizeModifier(), 0,
2997                                    SourceRange());
2998}
2999
3000/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3001/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3002/// they point to and return true. If T1 and T2 aren't pointer types
3003/// or pointer-to-member types, or if they are not similar at this
3004/// level, returns false and leaves T1 and T2 unchanged. Top-level
3005/// qualifiers on T1 and T2 are ignored. This function will typically
3006/// be called in a loop that successively "unwraps" pointer and
3007/// pointer-to-member types to compare them at each level.
3008bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3009  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3010                    *T2PtrType = T2->getAs<PointerType>();
3011  if (T1PtrType && T2PtrType) {
3012    T1 = T1PtrType->getPointeeType();
3013    T2 = T2PtrType->getPointeeType();
3014    return true;
3015  }
3016
3017  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3018                          *T2MPType = T2->getAs<MemberPointerType>();
3019  if (T1MPType && T2MPType &&
3020      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3021                             QualType(T2MPType->getClass(), 0))) {
3022    T1 = T1MPType->getPointeeType();
3023    T2 = T2MPType->getPointeeType();
3024    return true;
3025  }
3026
3027  if (getLangOptions().ObjC1) {
3028    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3029                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3030    if (T1OPType && T2OPType) {
3031      T1 = T1OPType->getPointeeType();
3032      T2 = T2OPType->getPointeeType();
3033      return true;
3034    }
3035  }
3036
3037  // FIXME: Block pointers, too?
3038
3039  return false;
3040}
3041
3042DeclarationNameInfo
3043ASTContext::getNameForTemplate(TemplateName Name,
3044                               SourceLocation NameLoc) const {
3045  switch (Name.getKind()) {
3046  case TemplateName::QualifiedTemplate:
3047  case TemplateName::Template:
3048    // DNInfo work in progress: CHECKME: what about DNLoc?
3049    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3050                               NameLoc);
3051
3052  case TemplateName::OverloadedTemplate: {
3053    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3054    // DNInfo work in progress: CHECKME: what about DNLoc?
3055    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3056  }
3057
3058  case TemplateName::DependentTemplate: {
3059    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3060    DeclarationName DName;
3061    if (DTN->isIdentifier()) {
3062      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3063      return DeclarationNameInfo(DName, NameLoc);
3064    } else {
3065      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3066      // DNInfo work in progress: FIXME: source locations?
3067      DeclarationNameLoc DNLoc;
3068      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3069      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3070      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3071    }
3072  }
3073
3074  case TemplateName::SubstTemplateTemplateParm: {
3075    SubstTemplateTemplateParmStorage *subst
3076      = Name.getAsSubstTemplateTemplateParm();
3077    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3078                               NameLoc);
3079  }
3080
3081  case TemplateName::SubstTemplateTemplateParmPack: {
3082    SubstTemplateTemplateParmPackStorage *subst
3083      = Name.getAsSubstTemplateTemplateParmPack();
3084    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3085                               NameLoc);
3086  }
3087  }
3088
3089  llvm_unreachable("bad template name kind!");
3090}
3091
3092TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3093  switch (Name.getKind()) {
3094  case TemplateName::QualifiedTemplate:
3095  case TemplateName::Template: {
3096    TemplateDecl *Template = Name.getAsTemplateDecl();
3097    if (TemplateTemplateParmDecl *TTP
3098          = dyn_cast<TemplateTemplateParmDecl>(Template))
3099      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3100
3101    // The canonical template name is the canonical template declaration.
3102    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3103  }
3104
3105  case TemplateName::OverloadedTemplate:
3106    llvm_unreachable("cannot canonicalize overloaded template");
3107
3108  case TemplateName::DependentTemplate: {
3109    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3110    assert(DTN && "Non-dependent template names must refer to template decls.");
3111    return DTN->CanonicalTemplateName;
3112  }
3113
3114  case TemplateName::SubstTemplateTemplateParm: {
3115    SubstTemplateTemplateParmStorage *subst
3116      = Name.getAsSubstTemplateTemplateParm();
3117    return getCanonicalTemplateName(subst->getReplacement());
3118  }
3119
3120  case TemplateName::SubstTemplateTemplateParmPack: {
3121    SubstTemplateTemplateParmPackStorage *subst
3122                                  = Name.getAsSubstTemplateTemplateParmPack();
3123    TemplateTemplateParmDecl *canonParameter
3124      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3125    TemplateArgument canonArgPack
3126      = getCanonicalTemplateArgument(subst->getArgumentPack());
3127    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3128  }
3129  }
3130
3131  llvm_unreachable("bad template name!");
3132}
3133
3134bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3135  X = getCanonicalTemplateName(X);
3136  Y = getCanonicalTemplateName(Y);
3137  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3138}
3139
3140TemplateArgument
3141ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3142  switch (Arg.getKind()) {
3143    case TemplateArgument::Null:
3144      return Arg;
3145
3146    case TemplateArgument::Expression:
3147      return Arg;
3148
3149    case TemplateArgument::Declaration:
3150      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3151
3152    case TemplateArgument::Template:
3153      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3154
3155    case TemplateArgument::TemplateExpansion:
3156      return TemplateArgument(getCanonicalTemplateName(
3157                                         Arg.getAsTemplateOrTemplatePattern()),
3158                              Arg.getNumTemplateExpansions());
3159
3160    case TemplateArgument::Integral:
3161      return TemplateArgument(*Arg.getAsIntegral(),
3162                              getCanonicalType(Arg.getIntegralType()));
3163
3164    case TemplateArgument::Type:
3165      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3166
3167    case TemplateArgument::Pack: {
3168      if (Arg.pack_size() == 0)
3169        return Arg;
3170
3171      TemplateArgument *CanonArgs
3172        = new (*this) TemplateArgument[Arg.pack_size()];
3173      unsigned Idx = 0;
3174      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3175                                        AEnd = Arg.pack_end();
3176           A != AEnd; (void)++A, ++Idx)
3177        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3178
3179      return TemplateArgument(CanonArgs, Arg.pack_size());
3180    }
3181  }
3182
3183  // Silence GCC warning
3184  assert(false && "Unhandled template argument kind");
3185  return TemplateArgument();
3186}
3187
3188NestedNameSpecifier *
3189ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3190  if (!NNS)
3191    return 0;
3192
3193  switch (NNS->getKind()) {
3194  case NestedNameSpecifier::Identifier:
3195    // Canonicalize the prefix but keep the identifier the same.
3196    return NestedNameSpecifier::Create(*this,
3197                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3198                                       NNS->getAsIdentifier());
3199
3200  case NestedNameSpecifier::Namespace:
3201    // A namespace is canonical; build a nested-name-specifier with
3202    // this namespace and no prefix.
3203    return NestedNameSpecifier::Create(*this, 0,
3204                                 NNS->getAsNamespace()->getOriginalNamespace());
3205
3206  case NestedNameSpecifier::NamespaceAlias:
3207    // A namespace is canonical; build a nested-name-specifier with
3208    // this namespace and no prefix.
3209    return NestedNameSpecifier::Create(*this, 0,
3210                                    NNS->getAsNamespaceAlias()->getNamespace()
3211                                                      ->getOriginalNamespace());
3212
3213  case NestedNameSpecifier::TypeSpec:
3214  case NestedNameSpecifier::TypeSpecWithTemplate: {
3215    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3216
3217    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3218    // break it apart into its prefix and identifier, then reconsititute those
3219    // as the canonical nested-name-specifier. This is required to canonicalize
3220    // a dependent nested-name-specifier involving typedefs of dependent-name
3221    // types, e.g.,
3222    //   typedef typename T::type T1;
3223    //   typedef typename T1::type T2;
3224    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3225      NestedNameSpecifier *Prefix
3226        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3227      return NestedNameSpecifier::Create(*this, Prefix,
3228                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3229    }
3230
3231    // Do the same thing as above, but with dependent-named specializations.
3232    if (const DependentTemplateSpecializationType *DTST
3233          = T->getAs<DependentTemplateSpecializationType>()) {
3234      NestedNameSpecifier *Prefix
3235        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3236
3237      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3238                                                 Prefix, DTST->getIdentifier(),
3239                                                 DTST->getNumArgs(),
3240                                                 DTST->getArgs());
3241      T = getCanonicalType(T);
3242    }
3243
3244    return NestedNameSpecifier::Create(*this, 0, false,
3245                                       const_cast<Type*>(T.getTypePtr()));
3246  }
3247
3248  case NestedNameSpecifier::Global:
3249    // The global specifier is canonical and unique.
3250    return NNS;
3251  }
3252
3253  // Required to silence a GCC warning
3254  return 0;
3255}
3256
3257
3258const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3259  // Handle the non-qualified case efficiently.
3260  if (!T.hasLocalQualifiers()) {
3261    // Handle the common positive case fast.
3262    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3263      return AT;
3264  }
3265
3266  // Handle the common negative case fast.
3267  if (!isa<ArrayType>(T.getCanonicalType()))
3268    return 0;
3269
3270  // Apply any qualifiers from the array type to the element type.  This
3271  // implements C99 6.7.3p8: "If the specification of an array type includes
3272  // any type qualifiers, the element type is so qualified, not the array type."
3273
3274  // If we get here, we either have type qualifiers on the type, or we have
3275  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3276  // we must propagate them down into the element type.
3277
3278  SplitQualType split = T.getSplitDesugaredType();
3279  Qualifiers qs = split.second;
3280
3281  // If we have a simple case, just return now.
3282  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3283  if (ATy == 0 || qs.empty())
3284    return ATy;
3285
3286  // Otherwise, we have an array and we have qualifiers on it.  Push the
3287  // qualifiers into the array element type and return a new array type.
3288  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3289
3290  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3291    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3292                                                CAT->getSizeModifier(),
3293                                           CAT->getIndexTypeCVRQualifiers()));
3294  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3295    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3296                                                  IAT->getSizeModifier(),
3297                                           IAT->getIndexTypeCVRQualifiers()));
3298
3299  if (const DependentSizedArrayType *DSAT
3300        = dyn_cast<DependentSizedArrayType>(ATy))
3301    return cast<ArrayType>(
3302                     getDependentSizedArrayType(NewEltTy,
3303                                                DSAT->getSizeExpr(),
3304                                                DSAT->getSizeModifier(),
3305                                              DSAT->getIndexTypeCVRQualifiers(),
3306                                                DSAT->getBracketsRange()));
3307
3308  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3309  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3310                                              VAT->getSizeExpr(),
3311                                              VAT->getSizeModifier(),
3312                                              VAT->getIndexTypeCVRQualifiers(),
3313                                              VAT->getBracketsRange()));
3314}
3315
3316/// getArrayDecayedType - Return the properly qualified result of decaying the
3317/// specified array type to a pointer.  This operation is non-trivial when
3318/// handling typedefs etc.  The canonical type of "T" must be an array type,
3319/// this returns a pointer to a properly qualified element of the array.
3320///
3321/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3322QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3323  // Get the element type with 'getAsArrayType' so that we don't lose any
3324  // typedefs in the element type of the array.  This also handles propagation
3325  // of type qualifiers from the array type into the element type if present
3326  // (C99 6.7.3p8).
3327  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3328  assert(PrettyArrayType && "Not an array type!");
3329
3330  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3331
3332  // int x[restrict 4] ->  int *restrict
3333  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3334}
3335
3336QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3337  return getBaseElementType(array->getElementType());
3338}
3339
3340QualType ASTContext::getBaseElementType(QualType type) const {
3341  Qualifiers qs;
3342  while (true) {
3343    SplitQualType split = type.getSplitDesugaredType();
3344    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3345    if (!array) break;
3346
3347    type = array->getElementType();
3348    qs.addConsistentQualifiers(split.second);
3349  }
3350
3351  return getQualifiedType(type, qs);
3352}
3353
3354/// getConstantArrayElementCount - Returns number of constant array elements.
3355uint64_t
3356ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3357  uint64_t ElementCount = 1;
3358  do {
3359    ElementCount *= CA->getSize().getZExtValue();
3360    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3361  } while (CA);
3362  return ElementCount;
3363}
3364
3365/// getFloatingRank - Return a relative rank for floating point types.
3366/// This routine will assert if passed a built-in type that isn't a float.
3367static FloatingRank getFloatingRank(QualType T) {
3368  if (const ComplexType *CT = T->getAs<ComplexType>())
3369    return getFloatingRank(CT->getElementType());
3370
3371  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3372  switch (T->getAs<BuiltinType>()->getKind()) {
3373  default: assert(0 && "getFloatingRank(): not a floating type");
3374  case BuiltinType::Float:      return FloatRank;
3375  case BuiltinType::Double:     return DoubleRank;
3376  case BuiltinType::LongDouble: return LongDoubleRank;
3377  }
3378}
3379
3380/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3381/// point or a complex type (based on typeDomain/typeSize).
3382/// 'typeDomain' is a real floating point or complex type.
3383/// 'typeSize' is a real floating point or complex type.
3384QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3385                                                       QualType Domain) const {
3386  FloatingRank EltRank = getFloatingRank(Size);
3387  if (Domain->isComplexType()) {
3388    switch (EltRank) {
3389    default: assert(0 && "getFloatingRank(): illegal value for rank");
3390    case FloatRank:      return FloatComplexTy;
3391    case DoubleRank:     return DoubleComplexTy;
3392    case LongDoubleRank: return LongDoubleComplexTy;
3393    }
3394  }
3395
3396  assert(Domain->isRealFloatingType() && "Unknown domain!");
3397  switch (EltRank) {
3398  default: assert(0 && "getFloatingRank(): illegal value for rank");
3399  case FloatRank:      return FloatTy;
3400  case DoubleRank:     return DoubleTy;
3401  case LongDoubleRank: return LongDoubleTy;
3402  }
3403}
3404
3405/// getFloatingTypeOrder - Compare the rank of the two specified floating
3406/// point types, ignoring the domain of the type (i.e. 'double' ==
3407/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3408/// LHS < RHS, return -1.
3409int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3410  FloatingRank LHSR = getFloatingRank(LHS);
3411  FloatingRank RHSR = getFloatingRank(RHS);
3412
3413  if (LHSR == RHSR)
3414    return 0;
3415  if (LHSR > RHSR)
3416    return 1;
3417  return -1;
3418}
3419
3420/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3421/// routine will assert if passed a built-in type that isn't an integer or enum,
3422/// or if it is not canonicalized.
3423unsigned ASTContext::getIntegerRank(const Type *T) const {
3424  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3425  if (const EnumType* ET = dyn_cast<EnumType>(T))
3426    T = ET->getDecl()->getPromotionType().getTypePtr();
3427
3428  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3429      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3430    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3431
3432  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3433    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3434
3435  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3436    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3437
3438  switch (cast<BuiltinType>(T)->getKind()) {
3439  default: assert(0 && "getIntegerRank(): not a built-in integer");
3440  case BuiltinType::Bool:
3441    return 1 + (getIntWidth(BoolTy) << 3);
3442  case BuiltinType::Char_S:
3443  case BuiltinType::Char_U:
3444  case BuiltinType::SChar:
3445  case BuiltinType::UChar:
3446    return 2 + (getIntWidth(CharTy) << 3);
3447  case BuiltinType::Short:
3448  case BuiltinType::UShort:
3449    return 3 + (getIntWidth(ShortTy) << 3);
3450  case BuiltinType::Int:
3451  case BuiltinType::UInt:
3452    return 4 + (getIntWidth(IntTy) << 3);
3453  case BuiltinType::Long:
3454  case BuiltinType::ULong:
3455    return 5 + (getIntWidth(LongTy) << 3);
3456  case BuiltinType::LongLong:
3457  case BuiltinType::ULongLong:
3458    return 6 + (getIntWidth(LongLongTy) << 3);
3459  case BuiltinType::Int128:
3460  case BuiltinType::UInt128:
3461    return 7 + (getIntWidth(Int128Ty) << 3);
3462  }
3463}
3464
3465/// \brief Whether this is a promotable bitfield reference according
3466/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3467///
3468/// \returns the type this bit-field will promote to, or NULL if no
3469/// promotion occurs.
3470QualType ASTContext::isPromotableBitField(Expr *E) const {
3471  if (E->isTypeDependent() || E->isValueDependent())
3472    return QualType();
3473
3474  FieldDecl *Field = E->getBitField();
3475  if (!Field)
3476    return QualType();
3477
3478  QualType FT = Field->getType();
3479
3480  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3481  uint64_t BitWidth = BitWidthAP.getZExtValue();
3482  uint64_t IntSize = getTypeSize(IntTy);
3483  // GCC extension compatibility: if the bit-field size is less than or equal
3484  // to the size of int, it gets promoted no matter what its type is.
3485  // For instance, unsigned long bf : 4 gets promoted to signed int.
3486  if (BitWidth < IntSize)
3487    return IntTy;
3488
3489  if (BitWidth == IntSize)
3490    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3491
3492  // Types bigger than int are not subject to promotions, and therefore act
3493  // like the base type.
3494  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3495  // is ridiculous.
3496  return QualType();
3497}
3498
3499/// getPromotedIntegerType - Returns the type that Promotable will
3500/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3501/// integer type.
3502QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3503  assert(!Promotable.isNull());
3504  assert(Promotable->isPromotableIntegerType());
3505  if (const EnumType *ET = Promotable->getAs<EnumType>())
3506    return ET->getDecl()->getPromotionType();
3507  if (Promotable->isSignedIntegerType())
3508    return IntTy;
3509  uint64_t PromotableSize = getTypeSize(Promotable);
3510  uint64_t IntSize = getTypeSize(IntTy);
3511  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3512  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3513}
3514
3515/// getIntegerTypeOrder - Returns the highest ranked integer type:
3516/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3517/// LHS < RHS, return -1.
3518int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3519  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3520  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3521  if (LHSC == RHSC) return 0;
3522
3523  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3524  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3525
3526  unsigned LHSRank = getIntegerRank(LHSC);
3527  unsigned RHSRank = getIntegerRank(RHSC);
3528
3529  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3530    if (LHSRank == RHSRank) return 0;
3531    return LHSRank > RHSRank ? 1 : -1;
3532  }
3533
3534  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3535  if (LHSUnsigned) {
3536    // If the unsigned [LHS] type is larger, return it.
3537    if (LHSRank >= RHSRank)
3538      return 1;
3539
3540    // If the signed type can represent all values of the unsigned type, it
3541    // wins.  Because we are dealing with 2's complement and types that are
3542    // powers of two larger than each other, this is always safe.
3543    return -1;
3544  }
3545
3546  // If the unsigned [RHS] type is larger, return it.
3547  if (RHSRank >= LHSRank)
3548    return -1;
3549
3550  // If the signed type can represent all values of the unsigned type, it
3551  // wins.  Because we are dealing with 2's complement and types that are
3552  // powers of two larger than each other, this is always safe.
3553  return 1;
3554}
3555
3556static RecordDecl *
3557CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3558                 DeclContext *DC, IdentifierInfo *Id) {
3559  SourceLocation Loc;
3560  if (Ctx.getLangOptions().CPlusPlus)
3561    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3562  else
3563    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3564}
3565
3566// getCFConstantStringType - Return the type used for constant CFStrings.
3567QualType ASTContext::getCFConstantStringType() const {
3568  if (!CFConstantStringTypeDecl) {
3569    CFConstantStringTypeDecl =
3570      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3571                       &Idents.get("NSConstantString"));
3572    CFConstantStringTypeDecl->startDefinition();
3573
3574    QualType FieldTypes[4];
3575
3576    // const int *isa;
3577    FieldTypes[0] = getPointerType(IntTy.withConst());
3578    // int flags;
3579    FieldTypes[1] = IntTy;
3580    // const char *str;
3581    FieldTypes[2] = getPointerType(CharTy.withConst());
3582    // long length;
3583    FieldTypes[3] = LongTy;
3584
3585    // Create fields
3586    for (unsigned i = 0; i < 4; ++i) {
3587      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3588                                           SourceLocation(),
3589                                           SourceLocation(), 0,
3590                                           FieldTypes[i], /*TInfo=*/0,
3591                                           /*BitWidth=*/0,
3592                                           /*Mutable=*/false,
3593                                           /*HasInit=*/false);
3594      Field->setAccess(AS_public);
3595      CFConstantStringTypeDecl->addDecl(Field);
3596    }
3597
3598    CFConstantStringTypeDecl->completeDefinition();
3599  }
3600
3601  return getTagDeclType(CFConstantStringTypeDecl);
3602}
3603
3604void ASTContext::setCFConstantStringType(QualType T) {
3605  const RecordType *Rec = T->getAs<RecordType>();
3606  assert(Rec && "Invalid CFConstantStringType");
3607  CFConstantStringTypeDecl = Rec->getDecl();
3608}
3609
3610// getNSConstantStringType - Return the type used for constant NSStrings.
3611QualType ASTContext::getNSConstantStringType() const {
3612  if (!NSConstantStringTypeDecl) {
3613    NSConstantStringTypeDecl =
3614    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3615                     &Idents.get("__builtin_NSString"));
3616    NSConstantStringTypeDecl->startDefinition();
3617
3618    QualType FieldTypes[3];
3619
3620    // const int *isa;
3621    FieldTypes[0] = getPointerType(IntTy.withConst());
3622    // const char *str;
3623    FieldTypes[1] = getPointerType(CharTy.withConst());
3624    // unsigned int length;
3625    FieldTypes[2] = UnsignedIntTy;
3626
3627    // Create fields
3628    for (unsigned i = 0; i < 3; ++i) {
3629      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3630                                           SourceLocation(),
3631                                           SourceLocation(), 0,
3632                                           FieldTypes[i], /*TInfo=*/0,
3633                                           /*BitWidth=*/0,
3634                                           /*Mutable=*/false,
3635                                           /*HasInit=*/false);
3636      Field->setAccess(AS_public);
3637      NSConstantStringTypeDecl->addDecl(Field);
3638    }
3639
3640    NSConstantStringTypeDecl->completeDefinition();
3641  }
3642
3643  return getTagDeclType(NSConstantStringTypeDecl);
3644}
3645
3646void ASTContext::setNSConstantStringType(QualType T) {
3647  const RecordType *Rec = T->getAs<RecordType>();
3648  assert(Rec && "Invalid NSConstantStringType");
3649  NSConstantStringTypeDecl = Rec->getDecl();
3650}
3651
3652QualType ASTContext::getObjCFastEnumerationStateType() const {
3653  if (!ObjCFastEnumerationStateTypeDecl) {
3654    ObjCFastEnumerationStateTypeDecl =
3655      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3656                       &Idents.get("__objcFastEnumerationState"));
3657    ObjCFastEnumerationStateTypeDecl->startDefinition();
3658
3659    QualType FieldTypes[] = {
3660      UnsignedLongTy,
3661      getPointerType(ObjCIdTypedefType),
3662      getPointerType(UnsignedLongTy),
3663      getConstantArrayType(UnsignedLongTy,
3664                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3665    };
3666
3667    for (size_t i = 0; i < 4; ++i) {
3668      FieldDecl *Field = FieldDecl::Create(*this,
3669                                           ObjCFastEnumerationStateTypeDecl,
3670                                           SourceLocation(),
3671                                           SourceLocation(), 0,
3672                                           FieldTypes[i], /*TInfo=*/0,
3673                                           /*BitWidth=*/0,
3674                                           /*Mutable=*/false,
3675                                           /*HasInit=*/false);
3676      Field->setAccess(AS_public);
3677      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3678    }
3679
3680    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3681  }
3682
3683  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3684}
3685
3686QualType ASTContext::getBlockDescriptorType() const {
3687  if (BlockDescriptorType)
3688    return getTagDeclType(BlockDescriptorType);
3689
3690  RecordDecl *T;
3691  // FIXME: Needs the FlagAppleBlock bit.
3692  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3693                       &Idents.get("__block_descriptor"));
3694  T->startDefinition();
3695
3696  QualType FieldTypes[] = {
3697    UnsignedLongTy,
3698    UnsignedLongTy,
3699  };
3700
3701  const char *FieldNames[] = {
3702    "reserved",
3703    "Size"
3704  };
3705
3706  for (size_t i = 0; i < 2; ++i) {
3707    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3708                                         SourceLocation(),
3709                                         &Idents.get(FieldNames[i]),
3710                                         FieldTypes[i], /*TInfo=*/0,
3711                                         /*BitWidth=*/0,
3712                                         /*Mutable=*/false,
3713                                         /*HasInit=*/false);
3714    Field->setAccess(AS_public);
3715    T->addDecl(Field);
3716  }
3717
3718  T->completeDefinition();
3719
3720  BlockDescriptorType = T;
3721
3722  return getTagDeclType(BlockDescriptorType);
3723}
3724
3725void ASTContext::setBlockDescriptorType(QualType T) {
3726  const RecordType *Rec = T->getAs<RecordType>();
3727  assert(Rec && "Invalid BlockDescriptorType");
3728  BlockDescriptorType = Rec->getDecl();
3729}
3730
3731QualType ASTContext::getBlockDescriptorExtendedType() const {
3732  if (BlockDescriptorExtendedType)
3733    return getTagDeclType(BlockDescriptorExtendedType);
3734
3735  RecordDecl *T;
3736  // FIXME: Needs the FlagAppleBlock bit.
3737  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3738                       &Idents.get("__block_descriptor_withcopydispose"));
3739  T->startDefinition();
3740
3741  QualType FieldTypes[] = {
3742    UnsignedLongTy,
3743    UnsignedLongTy,
3744    getPointerType(VoidPtrTy),
3745    getPointerType(VoidPtrTy)
3746  };
3747
3748  const char *FieldNames[] = {
3749    "reserved",
3750    "Size",
3751    "CopyFuncPtr",
3752    "DestroyFuncPtr"
3753  };
3754
3755  for (size_t i = 0; i < 4; ++i) {
3756    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3757                                         SourceLocation(),
3758                                         &Idents.get(FieldNames[i]),
3759                                         FieldTypes[i], /*TInfo=*/0,
3760                                         /*BitWidth=*/0,
3761                                         /*Mutable=*/false,
3762                                         /*HasInit=*/false);
3763    Field->setAccess(AS_public);
3764    T->addDecl(Field);
3765  }
3766
3767  T->completeDefinition();
3768
3769  BlockDescriptorExtendedType = T;
3770
3771  return getTagDeclType(BlockDescriptorExtendedType);
3772}
3773
3774void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3775  const RecordType *Rec = T->getAs<RecordType>();
3776  assert(Rec && "Invalid BlockDescriptorType");
3777  BlockDescriptorExtendedType = Rec->getDecl();
3778}
3779
3780bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3781  if (Ty->isObjCRetainableType())
3782    return true;
3783  if (getLangOptions().CPlusPlus) {
3784    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3785      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3786      return RD->hasConstCopyConstructor();
3787
3788    }
3789  }
3790  return false;
3791}
3792
3793QualType
3794ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3795  //  type = struct __Block_byref_1_X {
3796  //    void *__isa;
3797  //    struct __Block_byref_1_X *__forwarding;
3798  //    unsigned int __flags;
3799  //    unsigned int __size;
3800  //    void *__copy_helper;            // as needed
3801  //    void *__destroy_help            // as needed
3802  //    int X;
3803  //  } *
3804
3805  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3806
3807  // FIXME: Move up
3808  llvm::SmallString<36> Name;
3809  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3810                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3811  RecordDecl *T;
3812  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3813  T->startDefinition();
3814  QualType Int32Ty = IntTy;
3815  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3816  QualType FieldTypes[] = {
3817    getPointerType(VoidPtrTy),
3818    getPointerType(getTagDeclType(T)),
3819    Int32Ty,
3820    Int32Ty,
3821    getPointerType(VoidPtrTy),
3822    getPointerType(VoidPtrTy),
3823    Ty
3824  };
3825
3826  llvm::StringRef FieldNames[] = {
3827    "__isa",
3828    "__forwarding",
3829    "__flags",
3830    "__size",
3831    "__copy_helper",
3832    "__destroy_helper",
3833    DeclName,
3834  };
3835
3836  for (size_t i = 0; i < 7; ++i) {
3837    if (!HasCopyAndDispose && i >=4 && i <= 5)
3838      continue;
3839    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3840                                         SourceLocation(),
3841                                         &Idents.get(FieldNames[i]),
3842                                         FieldTypes[i], /*TInfo=*/0,
3843                                         /*BitWidth=*/0, /*Mutable=*/false,
3844                                         /*HasInit=*/false);
3845    Field->setAccess(AS_public);
3846    T->addDecl(Field);
3847  }
3848
3849  T->completeDefinition();
3850
3851  return getPointerType(getTagDeclType(T));
3852}
3853
3854void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3855  const RecordType *Rec = T->getAs<RecordType>();
3856  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3857  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3858}
3859
3860// This returns true if a type has been typedefed to BOOL:
3861// typedef <type> BOOL;
3862static bool isTypeTypedefedAsBOOL(QualType T) {
3863  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3864    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3865      return II->isStr("BOOL");
3866
3867  return false;
3868}
3869
3870/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3871/// purpose.
3872CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3873  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3874    return CharUnits::Zero();
3875
3876  CharUnits sz = getTypeSizeInChars(type);
3877
3878  // Make all integer and enum types at least as large as an int
3879  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3880    sz = std::max(sz, getTypeSizeInChars(IntTy));
3881  // Treat arrays as pointers, since that's how they're passed in.
3882  else if (type->isArrayType())
3883    sz = getTypeSizeInChars(VoidPtrTy);
3884  return sz;
3885}
3886
3887static inline
3888std::string charUnitsToString(const CharUnits &CU) {
3889  return llvm::itostr(CU.getQuantity());
3890}
3891
3892/// getObjCEncodingForBlock - Return the encoded type for this block
3893/// declaration.
3894std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3895  std::string S;
3896
3897  const BlockDecl *Decl = Expr->getBlockDecl();
3898  QualType BlockTy =
3899      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3900  // Encode result type.
3901  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3902  // Compute size of all parameters.
3903  // Start with computing size of a pointer in number of bytes.
3904  // FIXME: There might(should) be a better way of doing this computation!
3905  SourceLocation Loc;
3906  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3907  CharUnits ParmOffset = PtrSize;
3908  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3909       E = Decl->param_end(); PI != E; ++PI) {
3910    QualType PType = (*PI)->getType();
3911    CharUnits sz = getObjCEncodingTypeSize(PType);
3912    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3913    ParmOffset += sz;
3914  }
3915  // Size of the argument frame
3916  S += charUnitsToString(ParmOffset);
3917  // Block pointer and offset.
3918  S += "@?0";
3919  ParmOffset = PtrSize;
3920
3921  // Argument types.
3922  ParmOffset = PtrSize;
3923  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3924       Decl->param_end(); PI != E; ++PI) {
3925    ParmVarDecl *PVDecl = *PI;
3926    QualType PType = PVDecl->getOriginalType();
3927    if (const ArrayType *AT =
3928          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3929      // Use array's original type only if it has known number of
3930      // elements.
3931      if (!isa<ConstantArrayType>(AT))
3932        PType = PVDecl->getType();
3933    } else if (PType->isFunctionType())
3934      PType = PVDecl->getType();
3935    getObjCEncodingForType(PType, S);
3936    S += charUnitsToString(ParmOffset);
3937    ParmOffset += getObjCEncodingTypeSize(PType);
3938  }
3939
3940  return S;
3941}
3942
3943bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3944                                                std::string& S) {
3945  // Encode result type.
3946  getObjCEncodingForType(Decl->getResultType(), S);
3947  CharUnits ParmOffset;
3948  // Compute size of all parameters.
3949  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3950       E = Decl->param_end(); PI != E; ++PI) {
3951    QualType PType = (*PI)->getType();
3952    CharUnits sz = getObjCEncodingTypeSize(PType);
3953    if (sz.isZero())
3954      return true;
3955
3956    assert (sz.isPositive() &&
3957        "getObjCEncodingForFunctionDecl - Incomplete param type");
3958    ParmOffset += sz;
3959  }
3960  S += charUnitsToString(ParmOffset);
3961  ParmOffset = CharUnits::Zero();
3962
3963  // Argument types.
3964  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3965       E = Decl->param_end(); PI != E; ++PI) {
3966    ParmVarDecl *PVDecl = *PI;
3967    QualType PType = PVDecl->getOriginalType();
3968    if (const ArrayType *AT =
3969          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3970      // Use array's original type only if it has known number of
3971      // elements.
3972      if (!isa<ConstantArrayType>(AT))
3973        PType = PVDecl->getType();
3974    } else if (PType->isFunctionType())
3975      PType = PVDecl->getType();
3976    getObjCEncodingForType(PType, S);
3977    S += charUnitsToString(ParmOffset);
3978    ParmOffset += getObjCEncodingTypeSize(PType);
3979  }
3980
3981  return false;
3982}
3983
3984/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3985/// declaration.
3986bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3987                                              std::string& S) const {
3988  // FIXME: This is not very efficient.
3989  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3990  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3991  // Encode result type.
3992  getObjCEncodingForType(Decl->getResultType(), S);
3993  // Compute size of all parameters.
3994  // Start with computing size of a pointer in number of bytes.
3995  // FIXME: There might(should) be a better way of doing this computation!
3996  SourceLocation Loc;
3997  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3998  // The first two arguments (self and _cmd) are pointers; account for
3999  // their size.
4000  CharUnits ParmOffset = 2 * PtrSize;
4001  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4002       E = Decl->sel_param_end(); PI != E; ++PI) {
4003    QualType PType = (*PI)->getType();
4004    CharUnits sz = getObjCEncodingTypeSize(PType);
4005    if (sz.isZero())
4006      return true;
4007
4008    assert (sz.isPositive() &&
4009        "getObjCEncodingForMethodDecl - Incomplete param type");
4010    ParmOffset += sz;
4011  }
4012  S += charUnitsToString(ParmOffset);
4013  S += "@0:";
4014  S += charUnitsToString(PtrSize);
4015
4016  // Argument types.
4017  ParmOffset = 2 * PtrSize;
4018  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4019       E = Decl->sel_param_end(); PI != E; ++PI) {
4020    ParmVarDecl *PVDecl = *PI;
4021    QualType PType = PVDecl->getOriginalType();
4022    if (const ArrayType *AT =
4023          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4024      // Use array's original type only if it has known number of
4025      // elements.
4026      if (!isa<ConstantArrayType>(AT))
4027        PType = PVDecl->getType();
4028    } else if (PType->isFunctionType())
4029      PType = PVDecl->getType();
4030    // Process argument qualifiers for user supplied arguments; such as,
4031    // 'in', 'inout', etc.
4032    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4033    getObjCEncodingForType(PType, S);
4034    S += charUnitsToString(ParmOffset);
4035    ParmOffset += getObjCEncodingTypeSize(PType);
4036  }
4037
4038  return false;
4039}
4040
4041/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4042/// property declaration. If non-NULL, Container must be either an
4043/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4044/// NULL when getting encodings for protocol properties.
4045/// Property attributes are stored as a comma-delimited C string. The simple
4046/// attributes readonly and bycopy are encoded as single characters. The
4047/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4048/// encoded as single characters, followed by an identifier. Property types
4049/// are also encoded as a parametrized attribute. The characters used to encode
4050/// these attributes are defined by the following enumeration:
4051/// @code
4052/// enum PropertyAttributes {
4053/// kPropertyReadOnly = 'R',   // property is read-only.
4054/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4055/// kPropertyByref = '&',  // property is a reference to the value last assigned
4056/// kPropertyDynamic = 'D',    // property is dynamic
4057/// kPropertyGetter = 'G',     // followed by getter selector name
4058/// kPropertySetter = 'S',     // followed by setter selector name
4059/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4060/// kPropertyType = 't'              // followed by old-style type encoding.
4061/// kPropertyWeak = 'W'              // 'weak' property
4062/// kPropertyStrong = 'P'            // property GC'able
4063/// kPropertyNonAtomic = 'N'         // property non-atomic
4064/// };
4065/// @endcode
4066void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4067                                                const Decl *Container,
4068                                                std::string& S) const {
4069  // Collect information from the property implementation decl(s).
4070  bool Dynamic = false;
4071  ObjCPropertyImplDecl *SynthesizePID = 0;
4072
4073  // FIXME: Duplicated code due to poor abstraction.
4074  if (Container) {
4075    if (const ObjCCategoryImplDecl *CID =
4076        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4077      for (ObjCCategoryImplDecl::propimpl_iterator
4078             i = CID->propimpl_begin(), e = CID->propimpl_end();
4079           i != e; ++i) {
4080        ObjCPropertyImplDecl *PID = *i;
4081        if (PID->getPropertyDecl() == PD) {
4082          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4083            Dynamic = true;
4084          } else {
4085            SynthesizePID = PID;
4086          }
4087        }
4088      }
4089    } else {
4090      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4091      for (ObjCCategoryImplDecl::propimpl_iterator
4092             i = OID->propimpl_begin(), e = OID->propimpl_end();
4093           i != e; ++i) {
4094        ObjCPropertyImplDecl *PID = *i;
4095        if (PID->getPropertyDecl() == PD) {
4096          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4097            Dynamic = true;
4098          } else {
4099            SynthesizePID = PID;
4100          }
4101        }
4102      }
4103    }
4104  }
4105
4106  // FIXME: This is not very efficient.
4107  S = "T";
4108
4109  // Encode result type.
4110  // GCC has some special rules regarding encoding of properties which
4111  // closely resembles encoding of ivars.
4112  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4113                             true /* outermost type */,
4114                             true /* encoding for property */);
4115
4116  if (PD->isReadOnly()) {
4117    S += ",R";
4118  } else {
4119    switch (PD->getSetterKind()) {
4120    case ObjCPropertyDecl::Assign: break;
4121    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4122    case ObjCPropertyDecl::Retain: S += ",&"; break;
4123    }
4124  }
4125
4126  // It really isn't clear at all what this means, since properties
4127  // are "dynamic by default".
4128  if (Dynamic)
4129    S += ",D";
4130
4131  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4132    S += ",N";
4133
4134  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4135    S += ",G";
4136    S += PD->getGetterName().getAsString();
4137  }
4138
4139  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4140    S += ",S";
4141    S += PD->getSetterName().getAsString();
4142  }
4143
4144  if (SynthesizePID) {
4145    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4146    S += ",V";
4147    S += OID->getNameAsString();
4148  }
4149
4150  // FIXME: OBJCGC: weak & strong
4151}
4152
4153/// getLegacyIntegralTypeEncoding -
4154/// Another legacy compatibility encoding: 32-bit longs are encoded as
4155/// 'l' or 'L' , but not always.  For typedefs, we need to use
4156/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4157///
4158void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4159  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4160    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4161      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4162        PointeeTy = UnsignedIntTy;
4163      else
4164        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4165          PointeeTy = IntTy;
4166    }
4167  }
4168}
4169
4170void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4171                                        const FieldDecl *Field) const {
4172  // We follow the behavior of gcc, expanding structures which are
4173  // directly pointed to, and expanding embedded structures. Note that
4174  // these rules are sufficient to prevent recursive encoding of the
4175  // same type.
4176  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4177                             true /* outermost type */);
4178}
4179
4180static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4181    switch (T->getAs<BuiltinType>()->getKind()) {
4182    default: assert(0 && "Unhandled builtin type kind");
4183    case BuiltinType::Void:       return 'v';
4184    case BuiltinType::Bool:       return 'B';
4185    case BuiltinType::Char_U:
4186    case BuiltinType::UChar:      return 'C';
4187    case BuiltinType::UShort:     return 'S';
4188    case BuiltinType::UInt:       return 'I';
4189    case BuiltinType::ULong:
4190        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4191    case BuiltinType::UInt128:    return 'T';
4192    case BuiltinType::ULongLong:  return 'Q';
4193    case BuiltinType::Char_S:
4194    case BuiltinType::SChar:      return 'c';
4195    case BuiltinType::Short:      return 's';
4196    case BuiltinType::WChar_S:
4197    case BuiltinType::WChar_U:
4198    case BuiltinType::Int:        return 'i';
4199    case BuiltinType::Long:
4200      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4201    case BuiltinType::LongLong:   return 'q';
4202    case BuiltinType::Int128:     return 't';
4203    case BuiltinType::Float:      return 'f';
4204    case BuiltinType::Double:     return 'd';
4205    case BuiltinType::LongDouble: return 'D';
4206    }
4207}
4208
4209static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4210                           QualType T, const FieldDecl *FD) {
4211  const Expr *E = FD->getBitWidth();
4212  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4213  S += 'b';
4214  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4215  // The GNU runtime requires more information; bitfields are encoded as b,
4216  // then the offset (in bits) of the first element, then the type of the
4217  // bitfield, then the size in bits.  For example, in this structure:
4218  //
4219  // struct
4220  // {
4221  //    int integer;
4222  //    int flags:2;
4223  // };
4224  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4225  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4226  // information is not especially sensible, but we're stuck with it for
4227  // compatibility with GCC, although providing it breaks anything that
4228  // actually uses runtime introspection and wants to work on both runtimes...
4229  if (!Ctx->getLangOptions().NeXTRuntime) {
4230    const RecordDecl *RD = FD->getParent();
4231    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4232    // FIXME: This same linear search is also used in ExprConstant - it might
4233    // be better if the FieldDecl stored its offset.  We'd be increasing the
4234    // size of the object slightly, but saving some time every time it is used.
4235    unsigned i = 0;
4236    for (RecordDecl::field_iterator Field = RD->field_begin(),
4237                                 FieldEnd = RD->field_end();
4238         Field != FieldEnd; (void)++Field, ++i) {
4239      if (*Field == FD)
4240        break;
4241    }
4242    S += llvm::utostr(RL.getFieldOffset(i));
4243    if (T->isEnumeralType())
4244      S += 'i';
4245    else
4246      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4247  }
4248  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4249  S += llvm::utostr(N);
4250}
4251
4252// FIXME: Use SmallString for accumulating string.
4253void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4254                                            bool ExpandPointedToStructures,
4255                                            bool ExpandStructures,
4256                                            const FieldDecl *FD,
4257                                            bool OutermostType,
4258                                            bool EncodingProperty,
4259                                            bool StructField) const {
4260  if (T->getAs<BuiltinType>()) {
4261    if (FD && FD->isBitField())
4262      return EncodeBitField(this, S, T, FD);
4263    S += ObjCEncodingForPrimitiveKind(this, T);
4264    return;
4265  }
4266
4267  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4268    S += 'j';
4269    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4270                               false);
4271    return;
4272  }
4273
4274  // encoding for pointer or r3eference types.
4275  QualType PointeeTy;
4276  if (const PointerType *PT = T->getAs<PointerType>()) {
4277    if (PT->isObjCSelType()) {
4278      S += ':';
4279      return;
4280    }
4281    PointeeTy = PT->getPointeeType();
4282  }
4283  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4284    PointeeTy = RT->getPointeeType();
4285  if (!PointeeTy.isNull()) {
4286    bool isReadOnly = false;
4287    // For historical/compatibility reasons, the read-only qualifier of the
4288    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4289    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4290    // Also, do not emit the 'r' for anything but the outermost type!
4291    if (isa<TypedefType>(T.getTypePtr())) {
4292      if (OutermostType && T.isConstQualified()) {
4293        isReadOnly = true;
4294        S += 'r';
4295      }
4296    } else if (OutermostType) {
4297      QualType P = PointeeTy;
4298      while (P->getAs<PointerType>())
4299        P = P->getAs<PointerType>()->getPointeeType();
4300      if (P.isConstQualified()) {
4301        isReadOnly = true;
4302        S += 'r';
4303      }
4304    }
4305    if (isReadOnly) {
4306      // Another legacy compatibility encoding. Some ObjC qualifier and type
4307      // combinations need to be rearranged.
4308      // Rewrite "in const" from "nr" to "rn"
4309      if (llvm::StringRef(S).endswith("nr"))
4310        S.replace(S.end()-2, S.end(), "rn");
4311    }
4312
4313    if (PointeeTy->isCharType()) {
4314      // char pointer types should be encoded as '*' unless it is a
4315      // type that has been typedef'd to 'BOOL'.
4316      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4317        S += '*';
4318        return;
4319      }
4320    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4321      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4322      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4323        S += '#';
4324        return;
4325      }
4326      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4327      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4328        S += '@';
4329        return;
4330      }
4331      // fall through...
4332    }
4333    S += '^';
4334    getLegacyIntegralTypeEncoding(PointeeTy);
4335
4336    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4337                               NULL);
4338    return;
4339  }
4340
4341  if (const ArrayType *AT =
4342      // Ignore type qualifiers etc.
4343        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4344    if (isa<IncompleteArrayType>(AT) && !StructField) {
4345      // Incomplete arrays are encoded as a pointer to the array element.
4346      S += '^';
4347
4348      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4349                                 false, ExpandStructures, FD);
4350    } else {
4351      S += '[';
4352
4353      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4354        if (getTypeSize(CAT->getElementType()) == 0)
4355          S += '0';
4356        else
4357          S += llvm::utostr(CAT->getSize().getZExtValue());
4358      } else {
4359        //Variable length arrays are encoded as a regular array with 0 elements.
4360        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4361               "Unknown array type!");
4362        S += '0';
4363      }
4364
4365      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4366                                 false, ExpandStructures, FD);
4367      S += ']';
4368    }
4369    return;
4370  }
4371
4372  if (T->getAs<FunctionType>()) {
4373    S += '?';
4374    return;
4375  }
4376
4377  if (const RecordType *RTy = T->getAs<RecordType>()) {
4378    RecordDecl *RDecl = RTy->getDecl();
4379    S += RDecl->isUnion() ? '(' : '{';
4380    // Anonymous structures print as '?'
4381    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4382      S += II->getName();
4383      if (ClassTemplateSpecializationDecl *Spec
4384          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4385        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4386        std::string TemplateArgsStr
4387          = TemplateSpecializationType::PrintTemplateArgumentList(
4388                                            TemplateArgs.data(),
4389                                            TemplateArgs.size(),
4390                                            (*this).PrintingPolicy);
4391
4392        S += TemplateArgsStr;
4393      }
4394    } else {
4395      S += '?';
4396    }
4397    if (ExpandStructures) {
4398      S += '=';
4399      if (!RDecl->isUnion()) {
4400        getObjCEncodingForStructureImpl(RDecl, S, FD);
4401      } else {
4402        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4403                                     FieldEnd = RDecl->field_end();
4404             Field != FieldEnd; ++Field) {
4405          if (FD) {
4406            S += '"';
4407            S += Field->getNameAsString();
4408            S += '"';
4409          }
4410
4411          // Special case bit-fields.
4412          if (Field->isBitField()) {
4413            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4414                                       (*Field));
4415          } else {
4416            QualType qt = Field->getType();
4417            getLegacyIntegralTypeEncoding(qt);
4418            getObjCEncodingForTypeImpl(qt, S, false, true,
4419                                       FD, /*OutermostType*/false,
4420                                       /*EncodingProperty*/false,
4421                                       /*StructField*/true);
4422          }
4423        }
4424      }
4425    }
4426    S += RDecl->isUnion() ? ')' : '}';
4427    return;
4428  }
4429
4430  if (T->isEnumeralType()) {
4431    if (FD && FD->isBitField())
4432      EncodeBitField(this, S, T, FD);
4433    else
4434      S += 'i';
4435    return;
4436  }
4437
4438  if (T->isBlockPointerType()) {
4439    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4440    return;
4441  }
4442
4443  // Ignore protocol qualifiers when mangling at this level.
4444  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4445    T = OT->getBaseType();
4446
4447  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4448    // @encode(class_name)
4449    ObjCInterfaceDecl *OI = OIT->getDecl();
4450    S += '{';
4451    const IdentifierInfo *II = OI->getIdentifier();
4452    S += II->getName();
4453    S += '=';
4454    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4455    DeepCollectObjCIvars(OI, true, Ivars);
4456    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4457      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4458      if (Field->isBitField())
4459        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4460      else
4461        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4462    }
4463    S += '}';
4464    return;
4465  }
4466
4467  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4468    if (OPT->isObjCIdType()) {
4469      S += '@';
4470      return;
4471    }
4472
4473    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4474      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4475      // Since this is a binary compatibility issue, need to consult with runtime
4476      // folks. Fortunately, this is a *very* obsure construct.
4477      S += '#';
4478      return;
4479    }
4480
4481    if (OPT->isObjCQualifiedIdType()) {
4482      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4483                                 ExpandPointedToStructures,
4484                                 ExpandStructures, FD);
4485      if (FD || EncodingProperty) {
4486        // Note that we do extended encoding of protocol qualifer list
4487        // Only when doing ivar or property encoding.
4488        S += '"';
4489        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4490             E = OPT->qual_end(); I != E; ++I) {
4491          S += '<';
4492          S += (*I)->getNameAsString();
4493          S += '>';
4494        }
4495        S += '"';
4496      }
4497      return;
4498    }
4499
4500    QualType PointeeTy = OPT->getPointeeType();
4501    if (!EncodingProperty &&
4502        isa<TypedefType>(PointeeTy.getTypePtr())) {
4503      // Another historical/compatibility reason.
4504      // We encode the underlying type which comes out as
4505      // {...};
4506      S += '^';
4507      getObjCEncodingForTypeImpl(PointeeTy, S,
4508                                 false, ExpandPointedToStructures,
4509                                 NULL);
4510      return;
4511    }
4512
4513    S += '@';
4514    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4515      S += '"';
4516      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4517      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4518           E = OPT->qual_end(); I != E; ++I) {
4519        S += '<';
4520        S += (*I)->getNameAsString();
4521        S += '>';
4522      }
4523      S += '"';
4524    }
4525    return;
4526  }
4527
4528  // gcc just blithely ignores member pointers.
4529  // TODO: maybe there should be a mangling for these
4530  if (T->getAs<MemberPointerType>())
4531    return;
4532
4533  if (T->isVectorType()) {
4534    // This matches gcc's encoding, even though technically it is
4535    // insufficient.
4536    // FIXME. We should do a better job than gcc.
4537    return;
4538  }
4539
4540  assert(0 && "@encode for type not implemented!");
4541}
4542
4543void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4544                                                 std::string &S,
4545                                                 const FieldDecl *FD,
4546                                                 bool includeVBases) const {
4547  assert(RDecl && "Expected non-null RecordDecl");
4548  assert(!RDecl->isUnion() && "Should not be called for unions");
4549  if (!RDecl->getDefinition())
4550    return;
4551
4552  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4553  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4554  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4555
4556  if (CXXRec) {
4557    for (CXXRecordDecl::base_class_iterator
4558           BI = CXXRec->bases_begin(),
4559           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4560      if (!BI->isVirtual()) {
4561        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4562        if (base->isEmpty())
4563          continue;
4564        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4565        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4566                                  std::make_pair(offs, base));
4567      }
4568    }
4569  }
4570
4571  unsigned i = 0;
4572  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4573                               FieldEnd = RDecl->field_end();
4574       Field != FieldEnd; ++Field, ++i) {
4575    uint64_t offs = layout.getFieldOffset(i);
4576    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4577                              std::make_pair(offs, *Field));
4578  }
4579
4580  if (CXXRec && includeVBases) {
4581    for (CXXRecordDecl::base_class_iterator
4582           BI = CXXRec->vbases_begin(),
4583           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4584      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4585      if (base->isEmpty())
4586        continue;
4587      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4588      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4589                                std::make_pair(offs, base));
4590    }
4591  }
4592
4593  CharUnits size;
4594  if (CXXRec) {
4595    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4596  } else {
4597    size = layout.getSize();
4598  }
4599
4600  uint64_t CurOffs = 0;
4601  std::multimap<uint64_t, NamedDecl *>::iterator
4602    CurLayObj = FieldOrBaseOffsets.begin();
4603
4604  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4605    assert(CXXRec && CXXRec->isDynamicClass() &&
4606           "Offset 0 was empty but no VTable ?");
4607    if (FD) {
4608      S += "\"_vptr$";
4609      std::string recname = CXXRec->getNameAsString();
4610      if (recname.empty()) recname = "?";
4611      S += recname;
4612      S += '"';
4613    }
4614    S += "^^?";
4615    CurOffs += getTypeSize(VoidPtrTy);
4616  }
4617
4618  if (!RDecl->hasFlexibleArrayMember()) {
4619    // Mark the end of the structure.
4620    uint64_t offs = toBits(size);
4621    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4622                              std::make_pair(offs, (NamedDecl*)0));
4623  }
4624
4625  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4626    assert(CurOffs <= CurLayObj->first);
4627
4628    if (CurOffs < CurLayObj->first) {
4629      uint64_t padding = CurLayObj->first - CurOffs;
4630      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4631      // packing/alignment of members is different that normal, in which case
4632      // the encoding will be out-of-sync with the real layout.
4633      // If the runtime switches to just consider the size of types without
4634      // taking into account alignment, we could make padding explicit in the
4635      // encoding (e.g. using arrays of chars). The encoding strings would be
4636      // longer then though.
4637      CurOffs += padding;
4638    }
4639
4640    NamedDecl *dcl = CurLayObj->second;
4641    if (dcl == 0)
4642      break; // reached end of structure.
4643
4644    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4645      // We expand the bases without their virtual bases since those are going
4646      // in the initial structure. Note that this differs from gcc which
4647      // expands virtual bases each time one is encountered in the hierarchy,
4648      // making the encoding type bigger than it really is.
4649      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4650      assert(!base->isEmpty());
4651      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4652    } else {
4653      FieldDecl *field = cast<FieldDecl>(dcl);
4654      if (FD) {
4655        S += '"';
4656        S += field->getNameAsString();
4657        S += '"';
4658      }
4659
4660      if (field->isBitField()) {
4661        EncodeBitField(this, S, field->getType(), field);
4662        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4663      } else {
4664        QualType qt = field->getType();
4665        getLegacyIntegralTypeEncoding(qt);
4666        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4667                                   /*OutermostType*/false,
4668                                   /*EncodingProperty*/false,
4669                                   /*StructField*/true);
4670        CurOffs += getTypeSize(field->getType());
4671      }
4672    }
4673  }
4674}
4675
4676void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4677                                                 std::string& S) const {
4678  if (QT & Decl::OBJC_TQ_In)
4679    S += 'n';
4680  if (QT & Decl::OBJC_TQ_Inout)
4681    S += 'N';
4682  if (QT & Decl::OBJC_TQ_Out)
4683    S += 'o';
4684  if (QT & Decl::OBJC_TQ_Bycopy)
4685    S += 'O';
4686  if (QT & Decl::OBJC_TQ_Byref)
4687    S += 'R';
4688  if (QT & Decl::OBJC_TQ_Oneway)
4689    S += 'V';
4690}
4691
4692void ASTContext::setBuiltinVaListType(QualType T) {
4693  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4694
4695  BuiltinVaListType = T;
4696}
4697
4698void ASTContext::setObjCIdType(QualType T) {
4699  ObjCIdTypedefType = T;
4700}
4701
4702void ASTContext::setObjCSelType(QualType T) {
4703  ObjCSelTypedefType = T;
4704}
4705
4706void ASTContext::setObjCProtoType(QualType QT) {
4707  ObjCProtoType = QT;
4708}
4709
4710void ASTContext::setObjCClassType(QualType T) {
4711  ObjCClassTypedefType = T;
4712}
4713
4714void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4715  assert(ObjCConstantStringType.isNull() &&
4716         "'NSConstantString' type already set!");
4717
4718  ObjCConstantStringType = getObjCInterfaceType(Decl);
4719}
4720
4721/// \brief Retrieve the template name that corresponds to a non-empty
4722/// lookup.
4723TemplateName
4724ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4725                                      UnresolvedSetIterator End) const {
4726  unsigned size = End - Begin;
4727  assert(size > 1 && "set is not overloaded!");
4728
4729  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4730                          size * sizeof(FunctionTemplateDecl*));
4731  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4732
4733  NamedDecl **Storage = OT->getStorage();
4734  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4735    NamedDecl *D = *I;
4736    assert(isa<FunctionTemplateDecl>(D) ||
4737           (isa<UsingShadowDecl>(D) &&
4738            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4739    *Storage++ = D;
4740  }
4741
4742  return TemplateName(OT);
4743}
4744
4745/// \brief Retrieve the template name that represents a qualified
4746/// template name such as \c std::vector.
4747TemplateName
4748ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4749                                     bool TemplateKeyword,
4750                                     TemplateDecl *Template) const {
4751  assert(NNS && "Missing nested-name-specifier in qualified template name");
4752
4753  // FIXME: Canonicalization?
4754  llvm::FoldingSetNodeID ID;
4755  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4756
4757  void *InsertPos = 0;
4758  QualifiedTemplateName *QTN =
4759    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4760  if (!QTN) {
4761    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4762    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4763  }
4764
4765  return TemplateName(QTN);
4766}
4767
4768/// \brief Retrieve the template name that represents a dependent
4769/// template name such as \c MetaFun::template apply.
4770TemplateName
4771ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4772                                     const IdentifierInfo *Name) const {
4773  assert((!NNS || NNS->isDependent()) &&
4774         "Nested name specifier must be dependent");
4775
4776  llvm::FoldingSetNodeID ID;
4777  DependentTemplateName::Profile(ID, NNS, Name);
4778
4779  void *InsertPos = 0;
4780  DependentTemplateName *QTN =
4781    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4782
4783  if (QTN)
4784    return TemplateName(QTN);
4785
4786  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4787  if (CanonNNS == NNS) {
4788    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4789  } else {
4790    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4791    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4792    DependentTemplateName *CheckQTN =
4793      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4794    assert(!CheckQTN && "Dependent type name canonicalization broken");
4795    (void)CheckQTN;
4796  }
4797
4798  DependentTemplateNames.InsertNode(QTN, InsertPos);
4799  return TemplateName(QTN);
4800}
4801
4802/// \brief Retrieve the template name that represents a dependent
4803/// template name such as \c MetaFun::template operator+.
4804TemplateName
4805ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4806                                     OverloadedOperatorKind Operator) const {
4807  assert((!NNS || NNS->isDependent()) &&
4808         "Nested name specifier must be dependent");
4809
4810  llvm::FoldingSetNodeID ID;
4811  DependentTemplateName::Profile(ID, NNS, Operator);
4812
4813  void *InsertPos = 0;
4814  DependentTemplateName *QTN
4815    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4816
4817  if (QTN)
4818    return TemplateName(QTN);
4819
4820  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4821  if (CanonNNS == NNS) {
4822    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4823  } else {
4824    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4825    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4826
4827    DependentTemplateName *CheckQTN
4828      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4829    assert(!CheckQTN && "Dependent template name canonicalization broken");
4830    (void)CheckQTN;
4831  }
4832
4833  DependentTemplateNames.InsertNode(QTN, InsertPos);
4834  return TemplateName(QTN);
4835}
4836
4837TemplateName
4838ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4839                                         TemplateName replacement) const {
4840  llvm::FoldingSetNodeID ID;
4841  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4842
4843  void *insertPos = 0;
4844  SubstTemplateTemplateParmStorage *subst
4845    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4846
4847  if (!subst) {
4848    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4849    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4850  }
4851
4852  return TemplateName(subst);
4853}
4854
4855TemplateName
4856ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4857                                       const TemplateArgument &ArgPack) const {
4858  ASTContext &Self = const_cast<ASTContext &>(*this);
4859  llvm::FoldingSetNodeID ID;
4860  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4861
4862  void *InsertPos = 0;
4863  SubstTemplateTemplateParmPackStorage *Subst
4864    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4865
4866  if (!Subst) {
4867    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4868                                                           ArgPack.pack_size(),
4869                                                         ArgPack.pack_begin());
4870    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4871  }
4872
4873  return TemplateName(Subst);
4874}
4875
4876/// getFromTargetType - Given one of the integer types provided by
4877/// TargetInfo, produce the corresponding type. The unsigned @p Type
4878/// is actually a value of type @c TargetInfo::IntType.
4879CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4880  switch (Type) {
4881  case TargetInfo::NoInt: return CanQualType();
4882  case TargetInfo::SignedShort: return ShortTy;
4883  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4884  case TargetInfo::SignedInt: return IntTy;
4885  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4886  case TargetInfo::SignedLong: return LongTy;
4887  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4888  case TargetInfo::SignedLongLong: return LongLongTy;
4889  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4890  }
4891
4892  assert(false && "Unhandled TargetInfo::IntType value");
4893  return CanQualType();
4894}
4895
4896//===----------------------------------------------------------------------===//
4897//                        Type Predicates.
4898//===----------------------------------------------------------------------===//
4899
4900/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4901/// garbage collection attribute.
4902///
4903Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4904  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4905    return Qualifiers::GCNone;
4906
4907  assert(getLangOptions().ObjC1);
4908  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4909
4910  // Default behaviour under objective-C's gc is for ObjC pointers
4911  // (or pointers to them) be treated as though they were declared
4912  // as __strong.
4913  if (GCAttrs == Qualifiers::GCNone) {
4914    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4915      return Qualifiers::Strong;
4916    else if (Ty->isPointerType())
4917      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4918  } else {
4919    // It's not valid to set GC attributes on anything that isn't a
4920    // pointer.
4921#ifndef NDEBUG
4922    QualType CT = Ty->getCanonicalTypeInternal();
4923    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4924      CT = AT->getElementType();
4925    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4926#endif
4927  }
4928  return GCAttrs;
4929}
4930
4931//===----------------------------------------------------------------------===//
4932//                        Type Compatibility Testing
4933//===----------------------------------------------------------------------===//
4934
4935/// areCompatVectorTypes - Return true if the two specified vector types are
4936/// compatible.
4937static bool areCompatVectorTypes(const VectorType *LHS,
4938                                 const VectorType *RHS) {
4939  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4940  return LHS->getElementType() == RHS->getElementType() &&
4941         LHS->getNumElements() == RHS->getNumElements();
4942}
4943
4944bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4945                                          QualType SecondVec) {
4946  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4947  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4948
4949  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4950    return true;
4951
4952  // Treat Neon vector types and most AltiVec vector types as if they are the
4953  // equivalent GCC vector types.
4954  const VectorType *First = FirstVec->getAs<VectorType>();
4955  const VectorType *Second = SecondVec->getAs<VectorType>();
4956  if (First->getNumElements() == Second->getNumElements() &&
4957      hasSameType(First->getElementType(), Second->getElementType()) &&
4958      First->getVectorKind() != VectorType::AltiVecPixel &&
4959      First->getVectorKind() != VectorType::AltiVecBool &&
4960      Second->getVectorKind() != VectorType::AltiVecPixel &&
4961      Second->getVectorKind() != VectorType::AltiVecBool)
4962    return true;
4963
4964  return false;
4965}
4966
4967//===----------------------------------------------------------------------===//
4968// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4969//===----------------------------------------------------------------------===//
4970
4971/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4972/// inheritance hierarchy of 'rProto'.
4973bool
4974ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4975                                           ObjCProtocolDecl *rProto) const {
4976  if (lProto == rProto)
4977    return true;
4978  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4979       E = rProto->protocol_end(); PI != E; ++PI)
4980    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4981      return true;
4982  return false;
4983}
4984
4985/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4986/// return true if lhs's protocols conform to rhs's protocol; false
4987/// otherwise.
4988bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4989  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4990    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4991  return false;
4992}
4993
4994/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4995/// Class<p1, ...>.
4996bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4997                                                      QualType rhs) {
4998  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4999  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5000  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5001
5002  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5003       E = lhsQID->qual_end(); I != E; ++I) {
5004    bool match = false;
5005    ObjCProtocolDecl *lhsProto = *I;
5006    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5007         E = rhsOPT->qual_end(); J != E; ++J) {
5008      ObjCProtocolDecl *rhsProto = *J;
5009      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5010        match = true;
5011        break;
5012      }
5013    }
5014    if (!match)
5015      return false;
5016  }
5017  return true;
5018}
5019
5020/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5021/// ObjCQualifiedIDType.
5022bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5023                                                   bool compare) {
5024  // Allow id<P..> and an 'id' or void* type in all cases.
5025  if (lhs->isVoidPointerType() ||
5026      lhs->isObjCIdType() || lhs->isObjCClassType())
5027    return true;
5028  else if (rhs->isVoidPointerType() ||
5029           rhs->isObjCIdType() || rhs->isObjCClassType())
5030    return true;
5031
5032  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5033    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5034
5035    if (!rhsOPT) return false;
5036
5037    if (rhsOPT->qual_empty()) {
5038      // If the RHS is a unqualified interface pointer "NSString*",
5039      // make sure we check the class hierarchy.
5040      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5041        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5042             E = lhsQID->qual_end(); I != E; ++I) {
5043          // when comparing an id<P> on lhs with a static type on rhs,
5044          // see if static class implements all of id's protocols, directly or
5045          // through its super class and categories.
5046          if (!rhsID->ClassImplementsProtocol(*I, true))
5047            return false;
5048        }
5049      }
5050      // If there are no qualifiers and no interface, we have an 'id'.
5051      return true;
5052    }
5053    // Both the right and left sides have qualifiers.
5054    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5055         E = lhsQID->qual_end(); I != E; ++I) {
5056      ObjCProtocolDecl *lhsProto = *I;
5057      bool match = false;
5058
5059      // when comparing an id<P> on lhs with a static type on rhs,
5060      // see if static class implements all of id's protocols, directly or
5061      // through its super class and categories.
5062      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5063           E = rhsOPT->qual_end(); J != E; ++J) {
5064        ObjCProtocolDecl *rhsProto = *J;
5065        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5066            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5067          match = true;
5068          break;
5069        }
5070      }
5071      // If the RHS is a qualified interface pointer "NSString<P>*",
5072      // make sure we check the class hierarchy.
5073      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5074        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5075             E = lhsQID->qual_end(); I != E; ++I) {
5076          // when comparing an id<P> on lhs with a static type on rhs,
5077          // see if static class implements all of id's protocols, directly or
5078          // through its super class and categories.
5079          if (rhsID->ClassImplementsProtocol(*I, true)) {
5080            match = true;
5081            break;
5082          }
5083        }
5084      }
5085      if (!match)
5086        return false;
5087    }
5088
5089    return true;
5090  }
5091
5092  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5093  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5094
5095  if (const ObjCObjectPointerType *lhsOPT =
5096        lhs->getAsObjCInterfacePointerType()) {
5097    // If both the right and left sides have qualifiers.
5098    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5099         E = lhsOPT->qual_end(); I != E; ++I) {
5100      ObjCProtocolDecl *lhsProto = *I;
5101      bool match = false;
5102
5103      // when comparing an id<P> on rhs with a static type on lhs,
5104      // see if static class implements all of id's protocols, directly or
5105      // through its super class and categories.
5106      // First, lhs protocols in the qualifier list must be found, direct
5107      // or indirect in rhs's qualifier list or it is a mismatch.
5108      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5109           E = rhsQID->qual_end(); J != E; ++J) {
5110        ObjCProtocolDecl *rhsProto = *J;
5111        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5112            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5113          match = true;
5114          break;
5115        }
5116      }
5117      if (!match)
5118        return false;
5119    }
5120
5121    // Static class's protocols, or its super class or category protocols
5122    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5123    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5124      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5125      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5126      // This is rather dubious but matches gcc's behavior. If lhs has
5127      // no type qualifier and its class has no static protocol(s)
5128      // assume that it is mismatch.
5129      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5130        return false;
5131      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5132           LHSInheritedProtocols.begin(),
5133           E = LHSInheritedProtocols.end(); I != E; ++I) {
5134        bool match = false;
5135        ObjCProtocolDecl *lhsProto = (*I);
5136        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5137             E = rhsQID->qual_end(); J != E; ++J) {
5138          ObjCProtocolDecl *rhsProto = *J;
5139          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5140              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5141            match = true;
5142            break;
5143          }
5144        }
5145        if (!match)
5146          return false;
5147      }
5148    }
5149    return true;
5150  }
5151  return false;
5152}
5153
5154/// canAssignObjCInterfaces - Return true if the two interface types are
5155/// compatible for assignment from RHS to LHS.  This handles validation of any
5156/// protocol qualifiers on the LHS or RHS.
5157///
5158bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5159                                         const ObjCObjectPointerType *RHSOPT) {
5160  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5161  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5162
5163  // If either type represents the built-in 'id' or 'Class' types, return true.
5164  if (LHS->isObjCUnqualifiedIdOrClass() ||
5165      RHS->isObjCUnqualifiedIdOrClass())
5166    return true;
5167
5168  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5169    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5170                                             QualType(RHSOPT,0),
5171                                             false);
5172
5173  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5174    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5175                                                QualType(RHSOPT,0));
5176
5177  // If we have 2 user-defined types, fall into that path.
5178  if (LHS->getInterface() && RHS->getInterface())
5179    return canAssignObjCInterfaces(LHS, RHS);
5180
5181  return false;
5182}
5183
5184/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5185/// for providing type-safety for objective-c pointers used to pass/return
5186/// arguments in block literals. When passed as arguments, passing 'A*' where
5187/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5188/// not OK. For the return type, the opposite is not OK.
5189bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5190                                         const ObjCObjectPointerType *LHSOPT,
5191                                         const ObjCObjectPointerType *RHSOPT,
5192                                         bool BlockReturnType) {
5193  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5194    return true;
5195
5196  if (LHSOPT->isObjCBuiltinType()) {
5197    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5198  }
5199
5200  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5201    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5202                                             QualType(RHSOPT,0),
5203                                             false);
5204
5205  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5206  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5207  if (LHS && RHS)  { // We have 2 user-defined types.
5208    if (LHS != RHS) {
5209      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5210        return BlockReturnType;
5211      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5212        return !BlockReturnType;
5213    }
5214    else
5215      return true;
5216  }
5217  return false;
5218}
5219
5220/// getIntersectionOfProtocols - This routine finds the intersection of set
5221/// of protocols inherited from two distinct objective-c pointer objects.
5222/// It is used to build composite qualifier list of the composite type of
5223/// the conditional expression involving two objective-c pointer objects.
5224static
5225void getIntersectionOfProtocols(ASTContext &Context,
5226                                const ObjCObjectPointerType *LHSOPT,
5227                                const ObjCObjectPointerType *RHSOPT,
5228      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5229
5230  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5231  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5232  assert(LHS->getInterface() && "LHS must have an interface base");
5233  assert(RHS->getInterface() && "RHS must have an interface base");
5234
5235  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5236  unsigned LHSNumProtocols = LHS->getNumProtocols();
5237  if (LHSNumProtocols > 0)
5238    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5239  else {
5240    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5241    Context.CollectInheritedProtocols(LHS->getInterface(),
5242                                      LHSInheritedProtocols);
5243    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5244                                LHSInheritedProtocols.end());
5245  }
5246
5247  unsigned RHSNumProtocols = RHS->getNumProtocols();
5248  if (RHSNumProtocols > 0) {
5249    ObjCProtocolDecl **RHSProtocols =
5250      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5251    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5252      if (InheritedProtocolSet.count(RHSProtocols[i]))
5253        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5254  }
5255  else {
5256    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5257    Context.CollectInheritedProtocols(RHS->getInterface(),
5258                                      RHSInheritedProtocols);
5259    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5260         RHSInheritedProtocols.begin(),
5261         E = RHSInheritedProtocols.end(); I != E; ++I)
5262      if (InheritedProtocolSet.count((*I)))
5263        IntersectionOfProtocols.push_back((*I));
5264  }
5265}
5266
5267/// areCommonBaseCompatible - Returns common base class of the two classes if
5268/// one found. Note that this is O'2 algorithm. But it will be called as the
5269/// last type comparison in a ?-exp of ObjC pointer types before a
5270/// warning is issued. So, its invokation is extremely rare.
5271QualType ASTContext::areCommonBaseCompatible(
5272                                          const ObjCObjectPointerType *Lptr,
5273                                          const ObjCObjectPointerType *Rptr) {
5274  const ObjCObjectType *LHS = Lptr->getObjectType();
5275  const ObjCObjectType *RHS = Rptr->getObjectType();
5276  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5277  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5278  if (!LDecl || !RDecl || (LDecl == RDecl))
5279    return QualType();
5280
5281  do {
5282    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5283    if (canAssignObjCInterfaces(LHS, RHS)) {
5284      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5285      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5286
5287      QualType Result = QualType(LHS, 0);
5288      if (!Protocols.empty())
5289        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5290      Result = getObjCObjectPointerType(Result);
5291      return Result;
5292    }
5293  } while ((LDecl = LDecl->getSuperClass()));
5294
5295  return QualType();
5296}
5297
5298bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5299                                         const ObjCObjectType *RHS) {
5300  assert(LHS->getInterface() && "LHS is not an interface type");
5301  assert(RHS->getInterface() && "RHS is not an interface type");
5302
5303  // Verify that the base decls are compatible: the RHS must be a subclass of
5304  // the LHS.
5305  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5306    return false;
5307
5308  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5309  // protocol qualified at all, then we are good.
5310  if (LHS->getNumProtocols() == 0)
5311    return true;
5312
5313  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5314  // more detailed analysis is required.
5315  if (RHS->getNumProtocols() == 0) {
5316    // OK, if LHS is a superclass of RHS *and*
5317    // this superclass is assignment compatible with LHS.
5318    // false otherwise.
5319    bool IsSuperClass =
5320      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5321    if (IsSuperClass) {
5322      // OK if conversion of LHS to SuperClass results in narrowing of types
5323      // ; i.e., SuperClass may implement at least one of the protocols
5324      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5325      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5326      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5327      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5328      // If super class has no protocols, it is not a match.
5329      if (SuperClassInheritedProtocols.empty())
5330        return false;
5331
5332      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5333           LHSPE = LHS->qual_end();
5334           LHSPI != LHSPE; LHSPI++) {
5335        bool SuperImplementsProtocol = false;
5336        ObjCProtocolDecl *LHSProto = (*LHSPI);
5337
5338        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5339             SuperClassInheritedProtocols.begin(),
5340             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5341          ObjCProtocolDecl *SuperClassProto = (*I);
5342          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5343            SuperImplementsProtocol = true;
5344            break;
5345          }
5346        }
5347        if (!SuperImplementsProtocol)
5348          return false;
5349      }
5350      return true;
5351    }
5352    return false;
5353  }
5354
5355  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5356                                     LHSPE = LHS->qual_end();
5357       LHSPI != LHSPE; LHSPI++) {
5358    bool RHSImplementsProtocol = false;
5359
5360    // If the RHS doesn't implement the protocol on the left, the types
5361    // are incompatible.
5362    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5363                                       RHSPE = RHS->qual_end();
5364         RHSPI != RHSPE; RHSPI++) {
5365      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5366        RHSImplementsProtocol = true;
5367        break;
5368      }
5369    }
5370    // FIXME: For better diagnostics, consider passing back the protocol name.
5371    if (!RHSImplementsProtocol)
5372      return false;
5373  }
5374  // The RHS implements all protocols listed on the LHS.
5375  return true;
5376}
5377
5378bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5379  // get the "pointed to" types
5380  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5381  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5382
5383  if (!LHSOPT || !RHSOPT)
5384    return false;
5385
5386  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5387         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5388}
5389
5390bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5391  return canAssignObjCInterfaces(
5392                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5393                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5394}
5395
5396/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5397/// both shall have the identically qualified version of a compatible type.
5398/// C99 6.2.7p1: Two types have compatible types if their types are the
5399/// same. See 6.7.[2,3,5] for additional rules.
5400bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5401                                    bool CompareUnqualified) {
5402  if (getLangOptions().CPlusPlus)
5403    return hasSameType(LHS, RHS);
5404
5405  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5406}
5407
5408bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5409  return !mergeTypes(LHS, RHS, true).isNull();
5410}
5411
5412/// mergeTransparentUnionType - if T is a transparent union type and a member
5413/// of T is compatible with SubType, return the merged type, else return
5414/// QualType()
5415QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5416                                               bool OfBlockPointer,
5417                                               bool Unqualified) {
5418  if (const RecordType *UT = T->getAsUnionType()) {
5419    RecordDecl *UD = UT->getDecl();
5420    if (UD->hasAttr<TransparentUnionAttr>()) {
5421      for (RecordDecl::field_iterator it = UD->field_begin(),
5422           itend = UD->field_end(); it != itend; ++it) {
5423        QualType ET = it->getType().getUnqualifiedType();
5424        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5425        if (!MT.isNull())
5426          return MT;
5427      }
5428    }
5429  }
5430
5431  return QualType();
5432}
5433
5434/// mergeFunctionArgumentTypes - merge two types which appear as function
5435/// argument types
5436QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5437                                                bool OfBlockPointer,
5438                                                bool Unqualified) {
5439  // GNU extension: two types are compatible if they appear as a function
5440  // argument, one of the types is a transparent union type and the other
5441  // type is compatible with a union member
5442  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5443                                              Unqualified);
5444  if (!lmerge.isNull())
5445    return lmerge;
5446
5447  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5448                                              Unqualified);
5449  if (!rmerge.isNull())
5450    return rmerge;
5451
5452  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5453}
5454
5455QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5456                                        bool OfBlockPointer,
5457                                        bool Unqualified) {
5458  const FunctionType *lbase = lhs->getAs<FunctionType>();
5459  const FunctionType *rbase = rhs->getAs<FunctionType>();
5460  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5461  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5462  bool allLTypes = true;
5463  bool allRTypes = true;
5464
5465  // Check return type
5466  QualType retType;
5467  if (OfBlockPointer) {
5468    QualType RHS = rbase->getResultType();
5469    QualType LHS = lbase->getResultType();
5470    bool UnqualifiedResult = Unqualified;
5471    if (!UnqualifiedResult)
5472      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5473    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5474  }
5475  else
5476    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5477                         Unqualified);
5478  if (retType.isNull()) return QualType();
5479
5480  if (Unqualified)
5481    retType = retType.getUnqualifiedType();
5482
5483  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5484  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5485  if (Unqualified) {
5486    LRetType = LRetType.getUnqualifiedType();
5487    RRetType = RRetType.getUnqualifiedType();
5488  }
5489
5490  if (getCanonicalType(retType) != LRetType)
5491    allLTypes = false;
5492  if (getCanonicalType(retType) != RRetType)
5493    allRTypes = false;
5494
5495  // FIXME: double check this
5496  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5497  //                           rbase->getRegParmAttr() != 0 &&
5498  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5499  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5500  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5501
5502  // Compatible functions must have compatible calling conventions
5503  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5504    return QualType();
5505
5506  // Regparm is part of the calling convention.
5507  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5508    return QualType();
5509  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5510    return QualType();
5511
5512  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5513    return QualType();
5514
5515  // It's noreturn if either type is.
5516  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5517  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5518  if (NoReturn != lbaseInfo.getNoReturn())
5519    allLTypes = false;
5520  if (NoReturn != rbaseInfo.getNoReturn())
5521    allRTypes = false;
5522
5523  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5524
5525  if (lproto && rproto) { // two C99 style function prototypes
5526    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5527           "C++ shouldn't be here");
5528    unsigned lproto_nargs = lproto->getNumArgs();
5529    unsigned rproto_nargs = rproto->getNumArgs();
5530
5531    // Compatible functions must have the same number of arguments
5532    if (lproto_nargs != rproto_nargs)
5533      return QualType();
5534
5535    // Variadic and non-variadic functions aren't compatible
5536    if (lproto->isVariadic() != rproto->isVariadic())
5537      return QualType();
5538
5539    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5540      return QualType();
5541
5542    // Check argument compatibility
5543    llvm::SmallVector<QualType, 10> types;
5544    for (unsigned i = 0; i < lproto_nargs; i++) {
5545      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5546      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5547      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5548                                                    OfBlockPointer,
5549                                                    Unqualified);
5550      if (argtype.isNull()) return QualType();
5551
5552      if (Unqualified)
5553        argtype = argtype.getUnqualifiedType();
5554
5555      types.push_back(argtype);
5556      if (Unqualified) {
5557        largtype = largtype.getUnqualifiedType();
5558        rargtype = rargtype.getUnqualifiedType();
5559      }
5560
5561      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5562        allLTypes = false;
5563      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5564        allRTypes = false;
5565    }
5566    if (allLTypes) return lhs;
5567    if (allRTypes) return rhs;
5568
5569    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5570    EPI.ExtInfo = einfo;
5571    return getFunctionType(retType, types.begin(), types.size(), EPI);
5572  }
5573
5574  if (lproto) allRTypes = false;
5575  if (rproto) allLTypes = false;
5576
5577  const FunctionProtoType *proto = lproto ? lproto : rproto;
5578  if (proto) {
5579    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5580    if (proto->isVariadic()) return QualType();
5581    // Check that the types are compatible with the types that
5582    // would result from default argument promotions (C99 6.7.5.3p15).
5583    // The only types actually affected are promotable integer
5584    // types and floats, which would be passed as a different
5585    // type depending on whether the prototype is visible.
5586    unsigned proto_nargs = proto->getNumArgs();
5587    for (unsigned i = 0; i < proto_nargs; ++i) {
5588      QualType argTy = proto->getArgType(i);
5589
5590      // Look at the promotion type of enum types, since that is the type used
5591      // to pass enum values.
5592      if (const EnumType *Enum = argTy->getAs<EnumType>())
5593        argTy = Enum->getDecl()->getPromotionType();
5594
5595      if (argTy->isPromotableIntegerType() ||
5596          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5597        return QualType();
5598    }
5599
5600    if (allLTypes) return lhs;
5601    if (allRTypes) return rhs;
5602
5603    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5604    EPI.ExtInfo = einfo;
5605    return getFunctionType(retType, proto->arg_type_begin(),
5606                           proto->getNumArgs(), EPI);
5607  }
5608
5609  if (allLTypes) return lhs;
5610  if (allRTypes) return rhs;
5611  return getFunctionNoProtoType(retType, einfo);
5612}
5613
5614QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5615                                bool OfBlockPointer,
5616                                bool Unqualified, bool BlockReturnType) {
5617  // C++ [expr]: If an expression initially has the type "reference to T", the
5618  // type is adjusted to "T" prior to any further analysis, the expression
5619  // designates the object or function denoted by the reference, and the
5620  // expression is an lvalue unless the reference is an rvalue reference and
5621  // the expression is a function call (possibly inside parentheses).
5622  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5623  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5624
5625  if (Unqualified) {
5626    LHS = LHS.getUnqualifiedType();
5627    RHS = RHS.getUnqualifiedType();
5628  }
5629
5630  QualType LHSCan = getCanonicalType(LHS),
5631           RHSCan = getCanonicalType(RHS);
5632
5633  // If two types are identical, they are compatible.
5634  if (LHSCan == RHSCan)
5635    return LHS;
5636
5637  // If the qualifiers are different, the types aren't compatible... mostly.
5638  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5639  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5640  if (LQuals != RQuals) {
5641    // If any of these qualifiers are different, we have a type
5642    // mismatch.
5643    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5644        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5645        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5646      return QualType();
5647
5648    // Exactly one GC qualifier difference is allowed: __strong is
5649    // okay if the other type has no GC qualifier but is an Objective
5650    // C object pointer (i.e. implicitly strong by default).  We fix
5651    // this by pretending that the unqualified type was actually
5652    // qualified __strong.
5653    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5654    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5655    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5656
5657    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5658      return QualType();
5659
5660    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5661      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5662    }
5663    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5664      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5665    }
5666    return QualType();
5667  }
5668
5669  // Okay, qualifiers are equal.
5670
5671  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5672  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5673
5674  // We want to consider the two function types to be the same for these
5675  // comparisons, just force one to the other.
5676  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5677  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5678
5679  // Same as above for arrays
5680  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5681    LHSClass = Type::ConstantArray;
5682  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5683    RHSClass = Type::ConstantArray;
5684
5685  // ObjCInterfaces are just specialized ObjCObjects.
5686  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5687  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5688
5689  // Canonicalize ExtVector -> Vector.
5690  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5691  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5692
5693  // If the canonical type classes don't match.
5694  if (LHSClass != RHSClass) {
5695    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5696    // a signed integer type, or an unsigned integer type.
5697    // Compatibility is based on the underlying type, not the promotion
5698    // type.
5699    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5700      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5701        return RHS;
5702    }
5703    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5704      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5705        return LHS;
5706    }
5707
5708    return QualType();
5709  }
5710
5711  // The canonical type classes match.
5712  switch (LHSClass) {
5713#define TYPE(Class, Base)
5714#define ABSTRACT_TYPE(Class, Base)
5715#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5716#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5717#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5718#include "clang/AST/TypeNodes.def"
5719    assert(false && "Non-canonical and dependent types shouldn't get here");
5720    return QualType();
5721
5722  case Type::LValueReference:
5723  case Type::RValueReference:
5724  case Type::MemberPointer:
5725    assert(false && "C++ should never be in mergeTypes");
5726    return QualType();
5727
5728  case Type::ObjCInterface:
5729  case Type::IncompleteArray:
5730  case Type::VariableArray:
5731  case Type::FunctionProto:
5732  case Type::ExtVector:
5733    assert(false && "Types are eliminated above");
5734    return QualType();
5735
5736  case Type::Pointer:
5737  {
5738    // Merge two pointer types, while trying to preserve typedef info
5739    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5740    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5741    if (Unqualified) {
5742      LHSPointee = LHSPointee.getUnqualifiedType();
5743      RHSPointee = RHSPointee.getUnqualifiedType();
5744    }
5745    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5746                                     Unqualified);
5747    if (ResultType.isNull()) return QualType();
5748    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5749      return LHS;
5750    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5751      return RHS;
5752    return getPointerType(ResultType);
5753  }
5754  case Type::BlockPointer:
5755  {
5756    // Merge two block pointer types, while trying to preserve typedef info
5757    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5758    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5759    if (Unqualified) {
5760      LHSPointee = LHSPointee.getUnqualifiedType();
5761      RHSPointee = RHSPointee.getUnqualifiedType();
5762    }
5763    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5764                                     Unqualified);
5765    if (ResultType.isNull()) return QualType();
5766    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5767      return LHS;
5768    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5769      return RHS;
5770    return getBlockPointerType(ResultType);
5771  }
5772  case Type::ConstantArray:
5773  {
5774    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5775    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5776    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5777      return QualType();
5778
5779    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5780    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5781    if (Unqualified) {
5782      LHSElem = LHSElem.getUnqualifiedType();
5783      RHSElem = RHSElem.getUnqualifiedType();
5784    }
5785
5786    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5787    if (ResultType.isNull()) return QualType();
5788    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5789      return LHS;
5790    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5791      return RHS;
5792    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5793                                          ArrayType::ArraySizeModifier(), 0);
5794    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5795                                          ArrayType::ArraySizeModifier(), 0);
5796    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5797    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5798    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5799      return LHS;
5800    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5801      return RHS;
5802    if (LVAT) {
5803      // FIXME: This isn't correct! But tricky to implement because
5804      // the array's size has to be the size of LHS, but the type
5805      // has to be different.
5806      return LHS;
5807    }
5808    if (RVAT) {
5809      // FIXME: This isn't correct! But tricky to implement because
5810      // the array's size has to be the size of RHS, but the type
5811      // has to be different.
5812      return RHS;
5813    }
5814    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5815    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5816    return getIncompleteArrayType(ResultType,
5817                                  ArrayType::ArraySizeModifier(), 0);
5818  }
5819  case Type::FunctionNoProto:
5820    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5821  case Type::Record:
5822  case Type::Enum:
5823    return QualType();
5824  case Type::Builtin:
5825    // Only exactly equal builtin types are compatible, which is tested above.
5826    return QualType();
5827  case Type::Complex:
5828    // Distinct complex types are incompatible.
5829    return QualType();
5830  case Type::Vector:
5831    // FIXME: The merged type should be an ExtVector!
5832    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5833                             RHSCan->getAs<VectorType>()))
5834      return LHS;
5835    return QualType();
5836  case Type::ObjCObject: {
5837    // Check if the types are assignment compatible.
5838    // FIXME: This should be type compatibility, e.g. whether
5839    // "LHS x; RHS x;" at global scope is legal.
5840    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5841    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5842    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5843      return LHS;
5844
5845    return QualType();
5846  }
5847  case Type::ObjCObjectPointer: {
5848    if (OfBlockPointer) {
5849      if (canAssignObjCInterfacesInBlockPointer(
5850                                          LHS->getAs<ObjCObjectPointerType>(),
5851                                          RHS->getAs<ObjCObjectPointerType>(),
5852                                          BlockReturnType))
5853      return LHS;
5854      return QualType();
5855    }
5856    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5857                                RHS->getAs<ObjCObjectPointerType>()))
5858      return LHS;
5859
5860    return QualType();
5861    }
5862  }
5863
5864  return QualType();
5865}
5866
5867/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5868/// 'RHS' attributes and returns the merged version; including for function
5869/// return types.
5870QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5871  QualType LHSCan = getCanonicalType(LHS),
5872  RHSCan = getCanonicalType(RHS);
5873  // If two types are identical, they are compatible.
5874  if (LHSCan == RHSCan)
5875    return LHS;
5876  if (RHSCan->isFunctionType()) {
5877    if (!LHSCan->isFunctionType())
5878      return QualType();
5879    QualType OldReturnType =
5880      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5881    QualType NewReturnType =
5882      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5883    QualType ResReturnType =
5884      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5885    if (ResReturnType.isNull())
5886      return QualType();
5887    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5888      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5889      // In either case, use OldReturnType to build the new function type.
5890      const FunctionType *F = LHS->getAs<FunctionType>();
5891      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5892        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5893        EPI.ExtInfo = getFunctionExtInfo(LHS);
5894        QualType ResultType
5895          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5896                            FPT->getNumArgs(), EPI);
5897        return ResultType;
5898      }
5899    }
5900    return QualType();
5901  }
5902
5903  // If the qualifiers are different, the types can still be merged.
5904  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5905  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5906  if (LQuals != RQuals) {
5907    // If any of these qualifiers are different, we have a type mismatch.
5908    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5909        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5910      return QualType();
5911
5912    // Exactly one GC qualifier difference is allowed: __strong is
5913    // okay if the other type has no GC qualifier but is an Objective
5914    // C object pointer (i.e. implicitly strong by default).  We fix
5915    // this by pretending that the unqualified type was actually
5916    // qualified __strong.
5917    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5918    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5919    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5920
5921    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5922      return QualType();
5923
5924    if (GC_L == Qualifiers::Strong)
5925      return LHS;
5926    if (GC_R == Qualifiers::Strong)
5927      return RHS;
5928    return QualType();
5929  }
5930
5931  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5932    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5933    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5934    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5935    if (ResQT == LHSBaseQT)
5936      return LHS;
5937    if (ResQT == RHSBaseQT)
5938      return RHS;
5939  }
5940  return QualType();
5941}
5942
5943//===----------------------------------------------------------------------===//
5944//                         Integer Predicates
5945//===----------------------------------------------------------------------===//
5946
5947unsigned ASTContext::getIntWidth(QualType T) const {
5948  if (const EnumType *ET = dyn_cast<EnumType>(T))
5949    T = ET->getDecl()->getIntegerType();
5950  if (T->isBooleanType())
5951    return 1;
5952  // For builtin types, just use the standard type sizing method
5953  return (unsigned)getTypeSize(T);
5954}
5955
5956QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5957  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5958
5959  // Turn <4 x signed int> -> <4 x unsigned int>
5960  if (const VectorType *VTy = T->getAs<VectorType>())
5961    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5962                         VTy->getNumElements(), VTy->getVectorKind());
5963
5964  // For enums, we return the unsigned version of the base type.
5965  if (const EnumType *ETy = T->getAs<EnumType>())
5966    T = ETy->getDecl()->getIntegerType();
5967
5968  const BuiltinType *BTy = T->getAs<BuiltinType>();
5969  assert(BTy && "Unexpected signed integer type");
5970  switch (BTy->getKind()) {
5971  case BuiltinType::Char_S:
5972  case BuiltinType::SChar:
5973    return UnsignedCharTy;
5974  case BuiltinType::Short:
5975    return UnsignedShortTy;
5976  case BuiltinType::Int:
5977    return UnsignedIntTy;
5978  case BuiltinType::Long:
5979    return UnsignedLongTy;
5980  case BuiltinType::LongLong:
5981    return UnsignedLongLongTy;
5982  case BuiltinType::Int128:
5983    return UnsignedInt128Ty;
5984  default:
5985    assert(0 && "Unexpected signed integer type");
5986    return QualType();
5987  }
5988}
5989
5990ASTMutationListener::~ASTMutationListener() { }
5991
5992
5993//===----------------------------------------------------------------------===//
5994//                          Builtin Type Computation
5995//===----------------------------------------------------------------------===//
5996
5997/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5998/// pointer over the consumed characters.  This returns the resultant type.  If
5999/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6000/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6001/// a vector of "i*".
6002///
6003/// RequiresICE is filled in on return to indicate whether the value is required
6004/// to be an Integer Constant Expression.
6005static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6006                                  ASTContext::GetBuiltinTypeError &Error,
6007                                  bool &RequiresICE,
6008                                  bool AllowTypeModifiers) {
6009  // Modifiers.
6010  int HowLong = 0;
6011  bool Signed = false, Unsigned = false;
6012  RequiresICE = false;
6013
6014  // Read the prefixed modifiers first.
6015  bool Done = false;
6016  while (!Done) {
6017    switch (*Str++) {
6018    default: Done = true; --Str; break;
6019    case 'I':
6020      RequiresICE = true;
6021      break;
6022    case 'S':
6023      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6024      assert(!Signed && "Can't use 'S' modifier multiple times!");
6025      Signed = true;
6026      break;
6027    case 'U':
6028      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6029      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6030      Unsigned = true;
6031      break;
6032    case 'L':
6033      assert(HowLong <= 2 && "Can't have LLLL modifier");
6034      ++HowLong;
6035      break;
6036    }
6037  }
6038
6039  QualType Type;
6040
6041  // Read the base type.
6042  switch (*Str++) {
6043  default: assert(0 && "Unknown builtin type letter!");
6044  case 'v':
6045    assert(HowLong == 0 && !Signed && !Unsigned &&
6046           "Bad modifiers used with 'v'!");
6047    Type = Context.VoidTy;
6048    break;
6049  case 'f':
6050    assert(HowLong == 0 && !Signed && !Unsigned &&
6051           "Bad modifiers used with 'f'!");
6052    Type = Context.FloatTy;
6053    break;
6054  case 'd':
6055    assert(HowLong < 2 && !Signed && !Unsigned &&
6056           "Bad modifiers used with 'd'!");
6057    if (HowLong)
6058      Type = Context.LongDoubleTy;
6059    else
6060      Type = Context.DoubleTy;
6061    break;
6062  case 's':
6063    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6064    if (Unsigned)
6065      Type = Context.UnsignedShortTy;
6066    else
6067      Type = Context.ShortTy;
6068    break;
6069  case 'i':
6070    if (HowLong == 3)
6071      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6072    else if (HowLong == 2)
6073      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6074    else if (HowLong == 1)
6075      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6076    else
6077      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6078    break;
6079  case 'c':
6080    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6081    if (Signed)
6082      Type = Context.SignedCharTy;
6083    else if (Unsigned)
6084      Type = Context.UnsignedCharTy;
6085    else
6086      Type = Context.CharTy;
6087    break;
6088  case 'b': // boolean
6089    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6090    Type = Context.BoolTy;
6091    break;
6092  case 'z':  // size_t.
6093    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6094    Type = Context.getSizeType();
6095    break;
6096  case 'F':
6097    Type = Context.getCFConstantStringType();
6098    break;
6099  case 'G':
6100    Type = Context.getObjCIdType();
6101    break;
6102  case 'H':
6103    Type = Context.getObjCSelType();
6104    break;
6105  case 'a':
6106    Type = Context.getBuiltinVaListType();
6107    assert(!Type.isNull() && "builtin va list type not initialized!");
6108    break;
6109  case 'A':
6110    // This is a "reference" to a va_list; however, what exactly
6111    // this means depends on how va_list is defined. There are two
6112    // different kinds of va_list: ones passed by value, and ones
6113    // passed by reference.  An example of a by-value va_list is
6114    // x86, where va_list is a char*. An example of by-ref va_list
6115    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6116    // we want this argument to be a char*&; for x86-64, we want
6117    // it to be a __va_list_tag*.
6118    Type = Context.getBuiltinVaListType();
6119    assert(!Type.isNull() && "builtin va list type not initialized!");
6120    if (Type->isArrayType())
6121      Type = Context.getArrayDecayedType(Type);
6122    else
6123      Type = Context.getLValueReferenceType(Type);
6124    break;
6125  case 'V': {
6126    char *End;
6127    unsigned NumElements = strtoul(Str, &End, 10);
6128    assert(End != Str && "Missing vector size");
6129    Str = End;
6130
6131    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6132                                             RequiresICE, false);
6133    assert(!RequiresICE && "Can't require vector ICE");
6134
6135    // TODO: No way to make AltiVec vectors in builtins yet.
6136    Type = Context.getVectorType(ElementType, NumElements,
6137                                 VectorType::GenericVector);
6138    break;
6139  }
6140  case 'X': {
6141    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6142                                             false);
6143    assert(!RequiresICE && "Can't require complex ICE");
6144    Type = Context.getComplexType(ElementType);
6145    break;
6146  }
6147  case 'P':
6148    Type = Context.getFILEType();
6149    if (Type.isNull()) {
6150      Error = ASTContext::GE_Missing_stdio;
6151      return QualType();
6152    }
6153    break;
6154  case 'J':
6155    if (Signed)
6156      Type = Context.getsigjmp_bufType();
6157    else
6158      Type = Context.getjmp_bufType();
6159
6160    if (Type.isNull()) {
6161      Error = ASTContext::GE_Missing_setjmp;
6162      return QualType();
6163    }
6164    break;
6165  }
6166
6167  // If there are modifiers and if we're allowed to parse them, go for it.
6168  Done = !AllowTypeModifiers;
6169  while (!Done) {
6170    switch (char c = *Str++) {
6171    default: Done = true; --Str; break;
6172    case '*':
6173    case '&': {
6174      // Both pointers and references can have their pointee types
6175      // qualified with an address space.
6176      char *End;
6177      unsigned AddrSpace = strtoul(Str, &End, 10);
6178      if (End != Str && AddrSpace != 0) {
6179        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6180        Str = End;
6181      }
6182      if (c == '*')
6183        Type = Context.getPointerType(Type);
6184      else
6185        Type = Context.getLValueReferenceType(Type);
6186      break;
6187    }
6188    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6189    case 'C':
6190      Type = Type.withConst();
6191      break;
6192    case 'D':
6193      Type = Context.getVolatileType(Type);
6194      break;
6195    }
6196  }
6197
6198  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6199         "Integer constant 'I' type must be an integer");
6200
6201  return Type;
6202}
6203
6204/// GetBuiltinType - Return the type for the specified builtin.
6205QualType ASTContext::GetBuiltinType(unsigned Id,
6206                                    GetBuiltinTypeError &Error,
6207                                    unsigned *IntegerConstantArgs) const {
6208  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6209
6210  llvm::SmallVector<QualType, 8> ArgTypes;
6211
6212  bool RequiresICE = false;
6213  Error = GE_None;
6214  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6215                                       RequiresICE, true);
6216  if (Error != GE_None)
6217    return QualType();
6218
6219  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6220
6221  while (TypeStr[0] && TypeStr[0] != '.') {
6222    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6223    if (Error != GE_None)
6224      return QualType();
6225
6226    // If this argument is required to be an IntegerConstantExpression and the
6227    // caller cares, fill in the bitmask we return.
6228    if (RequiresICE && IntegerConstantArgs)
6229      *IntegerConstantArgs |= 1 << ArgTypes.size();
6230
6231    // Do array -> pointer decay.  The builtin should use the decayed type.
6232    if (Ty->isArrayType())
6233      Ty = getArrayDecayedType(Ty);
6234
6235    ArgTypes.push_back(Ty);
6236  }
6237
6238  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6239         "'.' should only occur at end of builtin type list!");
6240
6241  FunctionType::ExtInfo EI;
6242  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6243
6244  bool Variadic = (TypeStr[0] == '.');
6245
6246  // We really shouldn't be making a no-proto type here, especially in C++.
6247  if (ArgTypes.empty() && Variadic)
6248    return getFunctionNoProtoType(ResType, EI);
6249
6250  FunctionProtoType::ExtProtoInfo EPI;
6251  EPI.ExtInfo = EI;
6252  EPI.Variadic = Variadic;
6253
6254  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6255}
6256
6257GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6258  GVALinkage External = GVA_StrongExternal;
6259
6260  Linkage L = FD->getLinkage();
6261  switch (L) {
6262  case NoLinkage:
6263  case InternalLinkage:
6264  case UniqueExternalLinkage:
6265    return GVA_Internal;
6266
6267  case ExternalLinkage:
6268    switch (FD->getTemplateSpecializationKind()) {
6269    case TSK_Undeclared:
6270    case TSK_ExplicitSpecialization:
6271      External = GVA_StrongExternal;
6272      break;
6273
6274    case TSK_ExplicitInstantiationDefinition:
6275      return GVA_ExplicitTemplateInstantiation;
6276
6277    case TSK_ExplicitInstantiationDeclaration:
6278    case TSK_ImplicitInstantiation:
6279      External = GVA_TemplateInstantiation;
6280      break;
6281    }
6282  }
6283
6284  if (!FD->isInlined())
6285    return External;
6286
6287  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6288    // GNU or C99 inline semantics. Determine whether this symbol should be
6289    // externally visible.
6290    if (FD->isInlineDefinitionExternallyVisible())
6291      return External;
6292
6293    // C99 inline semantics, where the symbol is not externally visible.
6294    return GVA_C99Inline;
6295  }
6296
6297  // C++0x [temp.explicit]p9:
6298  //   [ Note: The intent is that an inline function that is the subject of
6299  //   an explicit instantiation declaration will still be implicitly
6300  //   instantiated when used so that the body can be considered for
6301  //   inlining, but that no out-of-line copy of the inline function would be
6302  //   generated in the translation unit. -- end note ]
6303  if (FD->getTemplateSpecializationKind()
6304                                       == TSK_ExplicitInstantiationDeclaration)
6305    return GVA_C99Inline;
6306
6307  return GVA_CXXInline;
6308}
6309
6310GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6311  // If this is a static data member, compute the kind of template
6312  // specialization. Otherwise, this variable is not part of a
6313  // template.
6314  TemplateSpecializationKind TSK = TSK_Undeclared;
6315  if (VD->isStaticDataMember())
6316    TSK = VD->getTemplateSpecializationKind();
6317
6318  Linkage L = VD->getLinkage();
6319  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6320      VD->getType()->getLinkage() == UniqueExternalLinkage)
6321    L = UniqueExternalLinkage;
6322
6323  switch (L) {
6324  case NoLinkage:
6325  case InternalLinkage:
6326  case UniqueExternalLinkage:
6327    return GVA_Internal;
6328
6329  case ExternalLinkage:
6330    switch (TSK) {
6331    case TSK_Undeclared:
6332    case TSK_ExplicitSpecialization:
6333      return GVA_StrongExternal;
6334
6335    case TSK_ExplicitInstantiationDeclaration:
6336      llvm_unreachable("Variable should not be instantiated");
6337      // Fall through to treat this like any other instantiation.
6338
6339    case TSK_ExplicitInstantiationDefinition:
6340      return GVA_ExplicitTemplateInstantiation;
6341
6342    case TSK_ImplicitInstantiation:
6343      return GVA_TemplateInstantiation;
6344    }
6345  }
6346
6347  return GVA_StrongExternal;
6348}
6349
6350bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6351  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6352    if (!VD->isFileVarDecl())
6353      return false;
6354  } else if (!isa<FunctionDecl>(D))
6355    return false;
6356
6357  // Weak references don't produce any output by themselves.
6358  if (D->hasAttr<WeakRefAttr>())
6359    return false;
6360
6361  // Aliases and used decls are required.
6362  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6363    return true;
6364
6365  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6366    // Forward declarations aren't required.
6367    if (!FD->doesThisDeclarationHaveABody())
6368      return false;
6369
6370    // Constructors and destructors are required.
6371    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6372      return true;
6373
6374    // The key function for a class is required.
6375    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6376      const CXXRecordDecl *RD = MD->getParent();
6377      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6378        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6379        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6380          return true;
6381      }
6382    }
6383
6384    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6385
6386    // static, static inline, always_inline, and extern inline functions can
6387    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6388    // Implicit template instantiations can also be deferred in C++.
6389    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6390        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6391      return false;
6392    return true;
6393  }
6394
6395  const VarDecl *VD = cast<VarDecl>(D);
6396  assert(VD->isFileVarDecl() && "Expected file scoped var");
6397
6398  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6399    return false;
6400
6401  // Structs that have non-trivial constructors or destructors are required.
6402
6403  // FIXME: Handle references.
6404  // FIXME: Be more selective about which constructors we care about.
6405  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6406    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6407      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6408                                   RD->hasTrivialCopyConstructor() &&
6409                                   RD->hasTrivialMoveConstructor() &&
6410                                   RD->hasTrivialDestructor()))
6411        return true;
6412    }
6413  }
6414
6415  GVALinkage L = GetGVALinkageForVariable(VD);
6416  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6417    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6418      return false;
6419  }
6420
6421  return true;
6422}
6423
6424CallingConv ASTContext::getDefaultMethodCallConv() {
6425  // Pass through to the C++ ABI object
6426  return ABI->getDefaultMethodCallConv();
6427}
6428
6429bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6430  // Pass through to the C++ ABI object
6431  return ABI->isNearlyEmpty(RD);
6432}
6433
6434MangleContext *ASTContext::createMangleContext() {
6435  switch (Target.getCXXABI()) {
6436  case CXXABI_ARM:
6437  case CXXABI_Itanium:
6438    return createItaniumMangleContext(*this, getDiagnostics());
6439  case CXXABI_Microsoft:
6440    return createMicrosoftMangleContext(*this, getDiagnostics());
6441  }
6442  assert(0 && "Unsupported ABI");
6443  return 0;
6444}
6445
6446CXXABI::~CXXABI() {}
6447
6448size_t ASTContext::getSideTableAllocatedMemory() const {
6449  size_t bytes = 0;
6450  bytes += ASTRecordLayouts.getMemorySize();
6451  bytes += ObjCLayouts.getMemorySize();
6452  bytes += KeyFunctions.getMemorySize();
6453  bytes += ObjCImpls.getMemorySize();
6454  bytes += BlockVarCopyInits.getMemorySize();
6455  bytes += DeclAttrs.getMemorySize();
6456  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6457  bytes += InstantiatedFromUsingDecl.getMemorySize();
6458  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6459  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6460  return bytes;
6461}
6462
6463