ASTContext.cpp revision 93a49944e0e68e32bc22d45d44ee136b34beffb3
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
82          QualType T = NTTP->getExpansionType(I);
83          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
84        }
85      } else
86        ID.AddBoolean(false);
87      continue;
88    }
89
90    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
91    ID.AddInteger(2);
92    Profile(ID, TTP);
93  }
94}
95
96TemplateTemplateParmDecl *
97ASTContext::getCanonicalTemplateTemplateParmDecl(
98                                          TemplateTemplateParmDecl *TTP) const {
99  // Check if we already have a canonical template template parameter.
100  llvm::FoldingSetNodeID ID;
101  CanonicalTemplateTemplateParm::Profile(ID, TTP);
102  void *InsertPos = 0;
103  CanonicalTemplateTemplateParm *Canonical
104    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
105  if (Canonical)
106    return Canonical->getParam();
107
108  // Build a canonical template parameter list.
109  TemplateParameterList *Params = TTP->getTemplateParameters();
110  SmallVector<NamedDecl *, 4> CanonParams;
111  CanonParams.reserve(Params->size());
112  for (TemplateParameterList::const_iterator P = Params->begin(),
113                                          PEnd = Params->end();
114       P != PEnd; ++P) {
115    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
116      CanonParams.push_back(
117                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
118                                               SourceLocation(),
119                                               SourceLocation(),
120                                               TTP->getDepth(),
121                                               TTP->getIndex(), 0, false,
122                                               TTP->isParameterPack()));
123    else if (NonTypeTemplateParmDecl *NTTP
124             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
125      QualType T = getCanonicalType(NTTP->getType());
126      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
127      NonTypeTemplateParmDecl *Param;
128      if (NTTP->isExpandedParameterPack()) {
129        SmallVector<QualType, 2> ExpandedTypes;
130        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
131        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
132          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
133          ExpandedTInfos.push_back(
134                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
135        }
136
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                SourceLocation(),
140                                                NTTP->getDepth(),
141                                                NTTP->getPosition(), 0,
142                                                T,
143                                                TInfo,
144                                                ExpandedTypes.data(),
145                                                ExpandedTypes.size(),
146                                                ExpandedTInfos.data());
147      } else {
148        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
149                                                SourceLocation(),
150                                                SourceLocation(),
151                                                NTTP->getDepth(),
152                                                NTTP->getPosition(), 0,
153                                                T,
154                                                NTTP->isParameterPack(),
155                                                TInfo);
156      }
157      CanonParams.push_back(Param);
158
159    } else
160      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
161                                           cast<TemplateTemplateParmDecl>(*P)));
162  }
163
164  TemplateTemplateParmDecl *CanonTTP
165    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
166                                       SourceLocation(), TTP->getDepth(),
167                                       TTP->getPosition(),
168                                       TTP->isParameterPack(),
169                                       0,
170                         TemplateParameterList::Create(*this, SourceLocation(),
171                                                       SourceLocation(),
172                                                       CanonParams.data(),
173                                                       CanonParams.size(),
174                                                       SourceLocation()));
175
176  // Get the new insert position for the node we care about.
177  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
178  assert(Canonical == 0 && "Shouldn't be in the map!");
179  (void)Canonical;
180
181  // Create the canonical template template parameter entry.
182  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
183  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
184  return CanonTTP;
185}
186
187CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
188  if (!LangOpts.CPlusPlus) return 0;
189
190  switch (T.getCXXABI()) {
191  case CXXABI_ARM:
192    return CreateARMCXXABI(*this);
193  case CXXABI_Itanium:
194    return CreateItaniumCXXABI(*this);
195  case CXXABI_Microsoft:
196    return CreateMicrosoftCXXABI(*this);
197  }
198  llvm_unreachable("Invalid CXXABI type!");
199}
200
201static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
202                                             const LangOptions &LOpts) {
203  if (LOpts.FakeAddressSpaceMap) {
204    // The fake address space map must have a distinct entry for each
205    // language-specific address space.
206    static const unsigned FakeAddrSpaceMap[] = {
207      1, // opencl_global
208      2, // opencl_local
209      3  // opencl_constant
210    };
211    return &FakeAddrSpaceMap;
212  } else {
213    return &T.getAddressSpaceMap();
214  }
215}
216
217ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
218                       const TargetInfo *t,
219                       IdentifierTable &idents, SelectorTable &sels,
220                       Builtin::Context &builtins,
221                       unsigned size_reserve,
222                       bool DelayInitialization)
223  : FunctionProtoTypes(this_()),
224    TemplateSpecializationTypes(this_()),
225    DependentTemplateSpecializationTypes(this_()),
226    SubstTemplateTemplateParmPacks(this_()),
227    GlobalNestedNameSpecifier(0),
228    Int128Decl(0), UInt128Decl(0),
229    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
230    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
231    FILEDecl(0),
232    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
233    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
234    cudaConfigureCallDecl(0),
235    NullTypeSourceInfo(QualType()),
236    FirstLocalImport(), LastLocalImport(),
237    SourceMgr(SM), LangOpts(LOpts),
238    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
239    Idents(idents), Selectors(sels),
240    BuiltinInfo(builtins),
241    DeclarationNames(*this),
242    ExternalSource(0), Listener(0),
243    LastSDM(0, 0),
244    UniqueBlockByRefTypeID(0)
245{
246  if (size_reserve > 0) Types.reserve(size_reserve);
247  TUDecl = TranslationUnitDecl::Create(*this);
248
249  if (!DelayInitialization) {
250    assert(t && "No target supplied for ASTContext initialization");
251    InitBuiltinTypes(*t);
252  }
253}
254
255ASTContext::~ASTContext() {
256  // Release the DenseMaps associated with DeclContext objects.
257  // FIXME: Is this the ideal solution?
258  ReleaseDeclContextMaps();
259
260  // Call all of the deallocation functions.
261  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
262    Deallocations[I].first(Deallocations[I].second);
263
264  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
265  // because they can contain DenseMaps.
266  for (llvm::DenseMap<const ObjCContainerDecl*,
267       const ASTRecordLayout*>::iterator
268       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
269    // Increment in loop to prevent using deallocated memory.
270    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
271      R->Destroy(*this);
272
273  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
274       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
275    // Increment in loop to prevent using deallocated memory.
276    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
277      R->Destroy(*this);
278  }
279
280  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
281                                                    AEnd = DeclAttrs.end();
282       A != AEnd; ++A)
283    A->second->~AttrVec();
284}
285
286void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
287  Deallocations.push_back(std::make_pair(Callback, Data));
288}
289
290void
291ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
292  ExternalSource.reset(Source.take());
293}
294
295void ASTContext::PrintStats() const {
296  llvm::errs() << "\n*** AST Context Stats:\n";
297  llvm::errs() << "  " << Types.size() << " types total.\n";
298
299  unsigned counts[] = {
300#define TYPE(Name, Parent) 0,
301#define ABSTRACT_TYPE(Name, Parent)
302#include "clang/AST/TypeNodes.def"
303    0 // Extra
304  };
305
306  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
307    Type *T = Types[i];
308    counts[(unsigned)T->getTypeClass()]++;
309  }
310
311  unsigned Idx = 0;
312  unsigned TotalBytes = 0;
313#define TYPE(Name, Parent)                                              \
314  if (counts[Idx])                                                      \
315    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
316                 << " types\n";                                         \
317  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
318  ++Idx;
319#define ABSTRACT_TYPE(Name, Parent)
320#include "clang/AST/TypeNodes.def"
321
322  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
323
324  // Implicit special member functions.
325  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
326               << NumImplicitDefaultConstructors
327               << " implicit default constructors created\n";
328  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
329               << NumImplicitCopyConstructors
330               << " implicit copy constructors created\n";
331  if (getLangOpts().CPlusPlus)
332    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
333                 << NumImplicitMoveConstructors
334                 << " implicit move constructors created\n";
335  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
336               << NumImplicitCopyAssignmentOperators
337               << " implicit copy assignment operators created\n";
338  if (getLangOpts().CPlusPlus)
339    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
340                 << NumImplicitMoveAssignmentOperators
341                 << " implicit move assignment operators created\n";
342  llvm::errs() << NumImplicitDestructorsDeclared << "/"
343               << NumImplicitDestructors
344               << " implicit destructors created\n";
345
346  if (ExternalSource.get()) {
347    llvm::errs() << "\n";
348    ExternalSource->PrintStats();
349  }
350
351  BumpAlloc.PrintStats();
352}
353
354TypedefDecl *ASTContext::getInt128Decl() const {
355  if (!Int128Decl) {
356    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
357    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
358                                     getTranslationUnitDecl(),
359                                     SourceLocation(),
360                                     SourceLocation(),
361                                     &Idents.get("__int128_t"),
362                                     TInfo);
363  }
364
365  return Int128Decl;
366}
367
368TypedefDecl *ASTContext::getUInt128Decl() const {
369  if (!UInt128Decl) {
370    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
371    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
372                                     getTranslationUnitDecl(),
373                                     SourceLocation(),
374                                     SourceLocation(),
375                                     &Idents.get("__uint128_t"),
376                                     TInfo);
377  }
378
379  return UInt128Decl;
380}
381
382void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
383  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
384  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
385  Types.push_back(Ty);
386}
387
388void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
389  assert((!this->Target || this->Target == &Target) &&
390         "Incorrect target reinitialization");
391  assert(VoidTy.isNull() && "Context reinitialized?");
392
393  this->Target = &Target;
394
395  ABI.reset(createCXXABI(Target));
396  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
397
398  // C99 6.2.5p19.
399  InitBuiltinType(VoidTy,              BuiltinType::Void);
400
401  // C99 6.2.5p2.
402  InitBuiltinType(BoolTy,              BuiltinType::Bool);
403  // C99 6.2.5p3.
404  if (LangOpts.CharIsSigned)
405    InitBuiltinType(CharTy,            BuiltinType::Char_S);
406  else
407    InitBuiltinType(CharTy,            BuiltinType::Char_U);
408  // C99 6.2.5p4.
409  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
410  InitBuiltinType(ShortTy,             BuiltinType::Short);
411  InitBuiltinType(IntTy,               BuiltinType::Int);
412  InitBuiltinType(LongTy,              BuiltinType::Long);
413  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
414
415  // C99 6.2.5p6.
416  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
417  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
418  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
419  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
420  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
421
422  // C99 6.2.5p10.
423  InitBuiltinType(FloatTy,             BuiltinType::Float);
424  InitBuiltinType(DoubleTy,            BuiltinType::Double);
425  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
426
427  // GNU extension, 128-bit integers.
428  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
429  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
430
431  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
432    if (TargetInfo::isTypeSigned(Target.getWCharType()))
433      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
434    else  // -fshort-wchar makes wchar_t be unsigned.
435      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
436  } else // C99
437    WCharTy = getFromTargetType(Target.getWCharType());
438
439  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
440    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
441  else // C99
442    Char16Ty = getFromTargetType(Target.getChar16Type());
443
444  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
445    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
446  else // C99
447    Char32Ty = getFromTargetType(Target.getChar32Type());
448
449  // Placeholder type for type-dependent expressions whose type is
450  // completely unknown. No code should ever check a type against
451  // DependentTy and users should never see it; however, it is here to
452  // help diagnose failures to properly check for type-dependent
453  // expressions.
454  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
455
456  // Placeholder type for functions.
457  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
458
459  // Placeholder type for bound members.
460  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
461
462  // Placeholder type for pseudo-objects.
463  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
464
465  // "any" type; useful for debugger-like clients.
466  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
467
468  // Placeholder type for unbridged ARC casts.
469  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
470
471  // C99 6.2.5p11.
472  FloatComplexTy      = getComplexType(FloatTy);
473  DoubleComplexTy     = getComplexType(DoubleTy);
474  LongDoubleComplexTy = getComplexType(LongDoubleTy);
475
476  BuiltinVaListType = QualType();
477
478  // Builtin types for 'id', 'Class', and 'SEL'.
479  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
480  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
481  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
482
483  // Builtin type for __objc_yes and __objc_no
484  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
485                       SignedCharTy : BoolTy);
486
487  ObjCConstantStringType = QualType();
488
489  // void * type
490  VoidPtrTy = getPointerType(VoidTy);
491
492  // nullptr type (C++0x 2.14.7)
493  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
494
495  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
496  InitBuiltinType(HalfTy, BuiltinType::Half);
497}
498
499DiagnosticsEngine &ASTContext::getDiagnostics() const {
500  return SourceMgr.getDiagnostics();
501}
502
503AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
504  AttrVec *&Result = DeclAttrs[D];
505  if (!Result) {
506    void *Mem = Allocate(sizeof(AttrVec));
507    Result = new (Mem) AttrVec;
508  }
509
510  return *Result;
511}
512
513/// \brief Erase the attributes corresponding to the given declaration.
514void ASTContext::eraseDeclAttrs(const Decl *D) {
515  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
516  if (Pos != DeclAttrs.end()) {
517    Pos->second->~AttrVec();
518    DeclAttrs.erase(Pos);
519  }
520}
521
522MemberSpecializationInfo *
523ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
524  assert(Var->isStaticDataMember() && "Not a static data member");
525  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
526    = InstantiatedFromStaticDataMember.find(Var);
527  if (Pos == InstantiatedFromStaticDataMember.end())
528    return 0;
529
530  return Pos->second;
531}
532
533void
534ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
535                                                TemplateSpecializationKind TSK,
536                                          SourceLocation PointOfInstantiation) {
537  assert(Inst->isStaticDataMember() && "Not a static data member");
538  assert(Tmpl->isStaticDataMember() && "Not a static data member");
539  assert(!InstantiatedFromStaticDataMember[Inst] &&
540         "Already noted what static data member was instantiated from");
541  InstantiatedFromStaticDataMember[Inst]
542    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
543}
544
545FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
546                                                     const FunctionDecl *FD){
547  assert(FD && "Specialization is 0");
548  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
549    = ClassScopeSpecializationPattern.find(FD);
550  if (Pos == ClassScopeSpecializationPattern.end())
551    return 0;
552
553  return Pos->second;
554}
555
556void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
557                                        FunctionDecl *Pattern) {
558  assert(FD && "Specialization is 0");
559  assert(Pattern && "Class scope specialization pattern is 0");
560  ClassScopeSpecializationPattern[FD] = Pattern;
561}
562
563NamedDecl *
564ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
565  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
566    = InstantiatedFromUsingDecl.find(UUD);
567  if (Pos == InstantiatedFromUsingDecl.end())
568    return 0;
569
570  return Pos->second;
571}
572
573void
574ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
575  assert((isa<UsingDecl>(Pattern) ||
576          isa<UnresolvedUsingValueDecl>(Pattern) ||
577          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
578         "pattern decl is not a using decl");
579  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
580  InstantiatedFromUsingDecl[Inst] = Pattern;
581}
582
583UsingShadowDecl *
584ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
585  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
586    = InstantiatedFromUsingShadowDecl.find(Inst);
587  if (Pos == InstantiatedFromUsingShadowDecl.end())
588    return 0;
589
590  return Pos->second;
591}
592
593void
594ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
595                                               UsingShadowDecl *Pattern) {
596  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
597  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
598}
599
600FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
601  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
602    = InstantiatedFromUnnamedFieldDecl.find(Field);
603  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
604    return 0;
605
606  return Pos->second;
607}
608
609void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
610                                                     FieldDecl *Tmpl) {
611  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
612  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
613  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
614         "Already noted what unnamed field was instantiated from");
615
616  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
617}
618
619bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
620                                    const FieldDecl *LastFD) const {
621  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
622          FD->getBitWidthValue(*this) == 0);
623}
624
625bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
626                                             const FieldDecl *LastFD) const {
627  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
628          FD->getBitWidthValue(*this) == 0 &&
629          LastFD->getBitWidthValue(*this) != 0);
630}
631
632bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
633                                         const FieldDecl *LastFD) const {
634  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
635          FD->getBitWidthValue(*this) &&
636          LastFD->getBitWidthValue(*this));
637}
638
639bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
640                                         const FieldDecl *LastFD) const {
641  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
642          LastFD->getBitWidthValue(*this));
643}
644
645bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
646                                             const FieldDecl *LastFD) const {
647  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
648          FD->getBitWidthValue(*this));
649}
650
651ASTContext::overridden_cxx_method_iterator
652ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
653  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
654    = OverriddenMethods.find(Method);
655  if (Pos == OverriddenMethods.end())
656    return 0;
657
658  return Pos->second.begin();
659}
660
661ASTContext::overridden_cxx_method_iterator
662ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
663  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
664    = OverriddenMethods.find(Method);
665  if (Pos == OverriddenMethods.end())
666    return 0;
667
668  return Pos->second.end();
669}
670
671unsigned
672ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
673  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
674    = OverriddenMethods.find(Method);
675  if (Pos == OverriddenMethods.end())
676    return 0;
677
678  return Pos->second.size();
679}
680
681void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
682                                     const CXXMethodDecl *Overridden) {
683  OverriddenMethods[Method].push_back(Overridden);
684}
685
686void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
687  assert(!Import->NextLocalImport && "Import declaration already in the chain");
688  assert(!Import->isFromASTFile() && "Non-local import declaration");
689  if (!FirstLocalImport) {
690    FirstLocalImport = Import;
691    LastLocalImport = Import;
692    return;
693  }
694
695  LastLocalImport->NextLocalImport = Import;
696  LastLocalImport = Import;
697}
698
699//===----------------------------------------------------------------------===//
700//                         Type Sizing and Analysis
701//===----------------------------------------------------------------------===//
702
703/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
704/// scalar floating point type.
705const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
706  const BuiltinType *BT = T->getAs<BuiltinType>();
707  assert(BT && "Not a floating point type!");
708  switch (BT->getKind()) {
709  default: llvm_unreachable("Not a floating point type!");
710  case BuiltinType::Half:       return Target->getHalfFormat();
711  case BuiltinType::Float:      return Target->getFloatFormat();
712  case BuiltinType::Double:     return Target->getDoubleFormat();
713  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
714  }
715}
716
717/// getDeclAlign - Return a conservative estimate of the alignment of the
718/// specified decl.  Note that bitfields do not have a valid alignment, so
719/// this method will assert on them.
720/// If @p RefAsPointee, references are treated like their underlying type
721/// (for alignof), else they're treated like pointers (for CodeGen).
722CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
723  unsigned Align = Target->getCharWidth();
724
725  bool UseAlignAttrOnly = false;
726  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
727    Align = AlignFromAttr;
728
729    // __attribute__((aligned)) can increase or decrease alignment
730    // *except* on a struct or struct member, where it only increases
731    // alignment unless 'packed' is also specified.
732    //
733    // It is an error for alignas to decrease alignment, so we can
734    // ignore that possibility;  Sema should diagnose it.
735    if (isa<FieldDecl>(D)) {
736      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
737        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
738    } else {
739      UseAlignAttrOnly = true;
740    }
741  }
742  else if (isa<FieldDecl>(D))
743      UseAlignAttrOnly =
744        D->hasAttr<PackedAttr>() ||
745        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
746
747  // If we're using the align attribute only, just ignore everything
748  // else about the declaration and its type.
749  if (UseAlignAttrOnly) {
750    // do nothing
751
752  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
753    QualType T = VD->getType();
754    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
755      if (RefAsPointee)
756        T = RT->getPointeeType();
757      else
758        T = getPointerType(RT->getPointeeType());
759    }
760    if (!T->isIncompleteType() && !T->isFunctionType()) {
761      // Adjust alignments of declarations with array type by the
762      // large-array alignment on the target.
763      unsigned MinWidth = Target->getLargeArrayMinWidth();
764      const ArrayType *arrayType;
765      if (MinWidth && (arrayType = getAsArrayType(T))) {
766        if (isa<VariableArrayType>(arrayType))
767          Align = std::max(Align, Target->getLargeArrayAlign());
768        else if (isa<ConstantArrayType>(arrayType) &&
769                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
770          Align = std::max(Align, Target->getLargeArrayAlign());
771
772        // Walk through any array types while we're at it.
773        T = getBaseElementType(arrayType);
774      }
775      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
776    }
777
778    // Fields can be subject to extra alignment constraints, like if
779    // the field is packed, the struct is packed, or the struct has a
780    // a max-field-alignment constraint (#pragma pack).  So calculate
781    // the actual alignment of the field within the struct, and then
782    // (as we're expected to) constrain that by the alignment of the type.
783    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
784      // So calculate the alignment of the field.
785      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
786
787      // Start with the record's overall alignment.
788      unsigned fieldAlign = toBits(layout.getAlignment());
789
790      // Use the GCD of that and the offset within the record.
791      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
792      if (offset > 0) {
793        // Alignment is always a power of 2, so the GCD will be a power of 2,
794        // which means we get to do this crazy thing instead of Euclid's.
795        uint64_t lowBitOfOffset = offset & (~offset + 1);
796        if (lowBitOfOffset < fieldAlign)
797          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
798      }
799
800      Align = std::min(Align, fieldAlign);
801    }
802  }
803
804  return toCharUnitsFromBits(Align);
805}
806
807std::pair<CharUnits, CharUnits>
808ASTContext::getTypeInfoInChars(const Type *T) const {
809  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
810  return std::make_pair(toCharUnitsFromBits(Info.first),
811                        toCharUnitsFromBits(Info.second));
812}
813
814std::pair<CharUnits, CharUnits>
815ASTContext::getTypeInfoInChars(QualType T) const {
816  return getTypeInfoInChars(T.getTypePtr());
817}
818
819std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
820  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
821  if (it != MemoizedTypeInfo.end())
822    return it->second;
823
824  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
825  MemoizedTypeInfo.insert(std::make_pair(T, Info));
826  return Info;
827}
828
829/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
830/// method does not work on incomplete types.
831///
832/// FIXME: Pointers into different addr spaces could have different sizes and
833/// alignment requirements: getPointerInfo should take an AddrSpace, this
834/// should take a QualType, &c.
835std::pair<uint64_t, unsigned>
836ASTContext::getTypeInfoImpl(const Type *T) const {
837  uint64_t Width=0;
838  unsigned Align=8;
839  switch (T->getTypeClass()) {
840#define TYPE(Class, Base)
841#define ABSTRACT_TYPE(Class, Base)
842#define NON_CANONICAL_TYPE(Class, Base)
843#define DEPENDENT_TYPE(Class, Base) case Type::Class:
844#include "clang/AST/TypeNodes.def"
845    llvm_unreachable("Should not see dependent types");
846
847  case Type::FunctionNoProto:
848  case Type::FunctionProto:
849    // GCC extension: alignof(function) = 32 bits
850    Width = 0;
851    Align = 32;
852    break;
853
854  case Type::IncompleteArray:
855  case Type::VariableArray:
856    Width = 0;
857    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
858    break;
859
860  case Type::ConstantArray: {
861    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
862
863    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
864    uint64_t Size = CAT->getSize().getZExtValue();
865    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
866           "Overflow in array type bit size evaluation");
867    Width = EltInfo.first*Size;
868    Align = EltInfo.second;
869    Width = llvm::RoundUpToAlignment(Width, Align);
870    break;
871  }
872  case Type::ExtVector:
873  case Type::Vector: {
874    const VectorType *VT = cast<VectorType>(T);
875    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
876    Width = EltInfo.first*VT->getNumElements();
877    Align = Width;
878    // If the alignment is not a power of 2, round up to the next power of 2.
879    // This happens for non-power-of-2 length vectors.
880    if (Align & (Align-1)) {
881      Align = llvm::NextPowerOf2(Align);
882      Width = llvm::RoundUpToAlignment(Width, Align);
883    }
884    break;
885  }
886
887  case Type::Builtin:
888    switch (cast<BuiltinType>(T)->getKind()) {
889    default: llvm_unreachable("Unknown builtin type!");
890    case BuiltinType::Void:
891      // GCC extension: alignof(void) = 8 bits.
892      Width = 0;
893      Align = 8;
894      break;
895
896    case BuiltinType::Bool:
897      Width = Target->getBoolWidth();
898      Align = Target->getBoolAlign();
899      break;
900    case BuiltinType::Char_S:
901    case BuiltinType::Char_U:
902    case BuiltinType::UChar:
903    case BuiltinType::SChar:
904      Width = Target->getCharWidth();
905      Align = Target->getCharAlign();
906      break;
907    case BuiltinType::WChar_S:
908    case BuiltinType::WChar_U:
909      Width = Target->getWCharWidth();
910      Align = Target->getWCharAlign();
911      break;
912    case BuiltinType::Char16:
913      Width = Target->getChar16Width();
914      Align = Target->getChar16Align();
915      break;
916    case BuiltinType::Char32:
917      Width = Target->getChar32Width();
918      Align = Target->getChar32Align();
919      break;
920    case BuiltinType::UShort:
921    case BuiltinType::Short:
922      Width = Target->getShortWidth();
923      Align = Target->getShortAlign();
924      break;
925    case BuiltinType::UInt:
926    case BuiltinType::Int:
927      Width = Target->getIntWidth();
928      Align = Target->getIntAlign();
929      break;
930    case BuiltinType::ULong:
931    case BuiltinType::Long:
932      Width = Target->getLongWidth();
933      Align = Target->getLongAlign();
934      break;
935    case BuiltinType::ULongLong:
936    case BuiltinType::LongLong:
937      Width = Target->getLongLongWidth();
938      Align = Target->getLongLongAlign();
939      break;
940    case BuiltinType::Int128:
941    case BuiltinType::UInt128:
942      Width = 128;
943      Align = 128; // int128_t is 128-bit aligned on all targets.
944      break;
945    case BuiltinType::Half:
946      Width = Target->getHalfWidth();
947      Align = Target->getHalfAlign();
948      break;
949    case BuiltinType::Float:
950      Width = Target->getFloatWidth();
951      Align = Target->getFloatAlign();
952      break;
953    case BuiltinType::Double:
954      Width = Target->getDoubleWidth();
955      Align = Target->getDoubleAlign();
956      break;
957    case BuiltinType::LongDouble:
958      Width = Target->getLongDoubleWidth();
959      Align = Target->getLongDoubleAlign();
960      break;
961    case BuiltinType::NullPtr:
962      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
963      Align = Target->getPointerAlign(0); //   == sizeof(void*)
964      break;
965    case BuiltinType::ObjCId:
966    case BuiltinType::ObjCClass:
967    case BuiltinType::ObjCSel:
968      Width = Target->getPointerWidth(0);
969      Align = Target->getPointerAlign(0);
970      break;
971    }
972    break;
973  case Type::ObjCObjectPointer:
974    Width = Target->getPointerWidth(0);
975    Align = Target->getPointerAlign(0);
976    break;
977  case Type::BlockPointer: {
978    unsigned AS = getTargetAddressSpace(
979        cast<BlockPointerType>(T)->getPointeeType());
980    Width = Target->getPointerWidth(AS);
981    Align = Target->getPointerAlign(AS);
982    break;
983  }
984  case Type::LValueReference:
985  case Type::RValueReference: {
986    // alignof and sizeof should never enter this code path here, so we go
987    // the pointer route.
988    unsigned AS = getTargetAddressSpace(
989        cast<ReferenceType>(T)->getPointeeType());
990    Width = Target->getPointerWidth(AS);
991    Align = Target->getPointerAlign(AS);
992    break;
993  }
994  case Type::Pointer: {
995    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
996    Width = Target->getPointerWidth(AS);
997    Align = Target->getPointerAlign(AS);
998    break;
999  }
1000  case Type::MemberPointer: {
1001    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1002    std::pair<uint64_t, unsigned> PtrDiffInfo =
1003      getTypeInfo(getPointerDiffType());
1004    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1005    Align = PtrDiffInfo.second;
1006    break;
1007  }
1008  case Type::Complex: {
1009    // Complex types have the same alignment as their elements, but twice the
1010    // size.
1011    std::pair<uint64_t, unsigned> EltInfo =
1012      getTypeInfo(cast<ComplexType>(T)->getElementType());
1013    Width = EltInfo.first*2;
1014    Align = EltInfo.second;
1015    break;
1016  }
1017  case Type::ObjCObject:
1018    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1019  case Type::ObjCInterface: {
1020    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1021    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1022    Width = toBits(Layout.getSize());
1023    Align = toBits(Layout.getAlignment());
1024    break;
1025  }
1026  case Type::Record:
1027  case Type::Enum: {
1028    const TagType *TT = cast<TagType>(T);
1029
1030    if (TT->getDecl()->isInvalidDecl()) {
1031      Width = 8;
1032      Align = 8;
1033      break;
1034    }
1035
1036    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1037      return getTypeInfo(ET->getDecl()->getIntegerType());
1038
1039    const RecordType *RT = cast<RecordType>(TT);
1040    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1041    Width = toBits(Layout.getSize());
1042    Align = toBits(Layout.getAlignment());
1043    break;
1044  }
1045
1046  case Type::SubstTemplateTypeParm:
1047    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1048                       getReplacementType().getTypePtr());
1049
1050  case Type::Auto: {
1051    const AutoType *A = cast<AutoType>(T);
1052    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1053    return getTypeInfo(A->getDeducedType().getTypePtr());
1054  }
1055
1056  case Type::Paren:
1057    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1058
1059  case Type::Typedef: {
1060    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1061    std::pair<uint64_t, unsigned> Info
1062      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1063    // If the typedef has an aligned attribute on it, it overrides any computed
1064    // alignment we have.  This violates the GCC documentation (which says that
1065    // attribute(aligned) can only round up) but matches its implementation.
1066    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1067      Align = AttrAlign;
1068    else
1069      Align = Info.second;
1070    Width = Info.first;
1071    break;
1072  }
1073
1074  case Type::TypeOfExpr:
1075    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1076                         .getTypePtr());
1077
1078  case Type::TypeOf:
1079    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1080
1081  case Type::Decltype:
1082    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1083                        .getTypePtr());
1084
1085  case Type::UnaryTransform:
1086    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1087
1088  case Type::Elaborated:
1089    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1090
1091  case Type::Attributed:
1092    return getTypeInfo(
1093                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1094
1095  case Type::TemplateSpecialization: {
1096    assert(getCanonicalType(T) != T &&
1097           "Cannot request the size of a dependent type");
1098    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1099    // A type alias template specialization may refer to a typedef with the
1100    // aligned attribute on it.
1101    if (TST->isTypeAlias())
1102      return getTypeInfo(TST->getAliasedType().getTypePtr());
1103    else
1104      return getTypeInfo(getCanonicalType(T));
1105  }
1106
1107  case Type::Atomic: {
1108    std::pair<uint64_t, unsigned> Info
1109      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1110    Width = Info.first;
1111    Align = Info.second;
1112    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1113        llvm::isPowerOf2_64(Width)) {
1114      // We can potentially perform lock-free atomic operations for this
1115      // type; promote the alignment appropriately.
1116      // FIXME: We could potentially promote the width here as well...
1117      // is that worthwhile?  (Non-struct atomic types generally have
1118      // power-of-two size anyway, but structs might not.  Requires a bit
1119      // of implementation work to make sure we zero out the extra bits.)
1120      Align = static_cast<unsigned>(Width);
1121    }
1122  }
1123
1124  }
1125
1126  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1127  return std::make_pair(Width, Align);
1128}
1129
1130/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1131CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1132  return CharUnits::fromQuantity(BitSize / getCharWidth());
1133}
1134
1135/// toBits - Convert a size in characters to a size in characters.
1136int64_t ASTContext::toBits(CharUnits CharSize) const {
1137  return CharSize.getQuantity() * getCharWidth();
1138}
1139
1140/// getTypeSizeInChars - Return the size of the specified type, in characters.
1141/// This method does not work on incomplete types.
1142CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1143  return toCharUnitsFromBits(getTypeSize(T));
1144}
1145CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1146  return toCharUnitsFromBits(getTypeSize(T));
1147}
1148
1149/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1150/// characters. This method does not work on incomplete types.
1151CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1152  return toCharUnitsFromBits(getTypeAlign(T));
1153}
1154CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1155  return toCharUnitsFromBits(getTypeAlign(T));
1156}
1157
1158/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1159/// type for the current target in bits.  This can be different than the ABI
1160/// alignment in cases where it is beneficial for performance to overalign
1161/// a data type.
1162unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1163  unsigned ABIAlign = getTypeAlign(T);
1164
1165  // Double and long long should be naturally aligned if possible.
1166  if (const ComplexType* CT = T->getAs<ComplexType>())
1167    T = CT->getElementType().getTypePtr();
1168  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1169      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1170      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1171    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1172
1173  return ABIAlign;
1174}
1175
1176/// DeepCollectObjCIvars -
1177/// This routine first collects all declared, but not synthesized, ivars in
1178/// super class and then collects all ivars, including those synthesized for
1179/// current class. This routine is used for implementation of current class
1180/// when all ivars, declared and synthesized are known.
1181///
1182void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1183                                      bool leafClass,
1184                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1185  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1186    DeepCollectObjCIvars(SuperClass, false, Ivars);
1187  if (!leafClass) {
1188    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1189         E = OI->ivar_end(); I != E; ++I)
1190      Ivars.push_back(*I);
1191  } else {
1192    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1193    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1194         Iv= Iv->getNextIvar())
1195      Ivars.push_back(Iv);
1196  }
1197}
1198
1199/// CollectInheritedProtocols - Collect all protocols in current class and
1200/// those inherited by it.
1201void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1202                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1203  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1204    // We can use protocol_iterator here instead of
1205    // all_referenced_protocol_iterator since we are walking all categories.
1206    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1207         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1208      ObjCProtocolDecl *Proto = (*P);
1209      Protocols.insert(Proto->getCanonicalDecl());
1210      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1211           PE = Proto->protocol_end(); P != PE; ++P) {
1212        Protocols.insert((*P)->getCanonicalDecl());
1213        CollectInheritedProtocols(*P, Protocols);
1214      }
1215    }
1216
1217    // Categories of this Interface.
1218    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1219         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1220      CollectInheritedProtocols(CDeclChain, Protocols);
1221    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1222      while (SD) {
1223        CollectInheritedProtocols(SD, Protocols);
1224        SD = SD->getSuperClass();
1225      }
1226  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1227    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1228         PE = OC->protocol_end(); P != PE; ++P) {
1229      ObjCProtocolDecl *Proto = (*P);
1230      Protocols.insert(Proto->getCanonicalDecl());
1231      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1232           PE = Proto->protocol_end(); P != PE; ++P)
1233        CollectInheritedProtocols(*P, Protocols);
1234    }
1235  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1236    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1237         PE = OP->protocol_end(); P != PE; ++P) {
1238      ObjCProtocolDecl *Proto = (*P);
1239      Protocols.insert(Proto->getCanonicalDecl());
1240      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1241           PE = Proto->protocol_end(); P != PE; ++P)
1242        CollectInheritedProtocols(*P, Protocols);
1243    }
1244  }
1245}
1246
1247unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1248  unsigned count = 0;
1249  // Count ivars declared in class extension.
1250  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1251       CDecl = CDecl->getNextClassExtension())
1252    count += CDecl->ivar_size();
1253
1254  // Count ivar defined in this class's implementation.  This
1255  // includes synthesized ivars.
1256  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1257    count += ImplDecl->ivar_size();
1258
1259  return count;
1260}
1261
1262bool ASTContext::isSentinelNullExpr(const Expr *E) {
1263  if (!E)
1264    return false;
1265
1266  // nullptr_t is always treated as null.
1267  if (E->getType()->isNullPtrType()) return true;
1268
1269  if (E->getType()->isAnyPointerType() &&
1270      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1271                                                Expr::NPC_ValueDependentIsNull))
1272    return true;
1273
1274  // Unfortunately, __null has type 'int'.
1275  if (isa<GNUNullExpr>(E)) return true;
1276
1277  return false;
1278}
1279
1280/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1281ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1282  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1283    I = ObjCImpls.find(D);
1284  if (I != ObjCImpls.end())
1285    return cast<ObjCImplementationDecl>(I->second);
1286  return 0;
1287}
1288/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1289ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1290  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1291    I = ObjCImpls.find(D);
1292  if (I != ObjCImpls.end())
1293    return cast<ObjCCategoryImplDecl>(I->second);
1294  return 0;
1295}
1296
1297/// \brief Set the implementation of ObjCInterfaceDecl.
1298void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1299                           ObjCImplementationDecl *ImplD) {
1300  assert(IFaceD && ImplD && "Passed null params");
1301  ObjCImpls[IFaceD] = ImplD;
1302}
1303/// \brief Set the implementation of ObjCCategoryDecl.
1304void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1305                           ObjCCategoryImplDecl *ImplD) {
1306  assert(CatD && ImplD && "Passed null params");
1307  ObjCImpls[CatD] = ImplD;
1308}
1309
1310ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1311  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1312    return ID;
1313  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1314    return CD->getClassInterface();
1315  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1316    return IMD->getClassInterface();
1317
1318  return 0;
1319}
1320
1321/// \brief Get the copy initialization expression of VarDecl,or NULL if
1322/// none exists.
1323Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1324  assert(VD && "Passed null params");
1325  assert(VD->hasAttr<BlocksAttr>() &&
1326         "getBlockVarCopyInits - not __block var");
1327  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1328    I = BlockVarCopyInits.find(VD);
1329  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1330}
1331
1332/// \brief Set the copy inialization expression of a block var decl.
1333void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1334  assert(VD && Init && "Passed null params");
1335  assert(VD->hasAttr<BlocksAttr>() &&
1336         "setBlockVarCopyInits - not __block var");
1337  BlockVarCopyInits[VD] = Init;
1338}
1339
1340/// \brief Allocate an uninitialized TypeSourceInfo.
1341///
1342/// The caller should initialize the memory held by TypeSourceInfo using
1343/// the TypeLoc wrappers.
1344///
1345/// \param T the type that will be the basis for type source info. This type
1346/// should refer to how the declarator was written in source code, not to
1347/// what type semantic analysis resolved the declarator to.
1348TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1349                                                 unsigned DataSize) const {
1350  if (!DataSize)
1351    DataSize = TypeLoc::getFullDataSizeForType(T);
1352  else
1353    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1354           "incorrect data size provided to CreateTypeSourceInfo!");
1355
1356  TypeSourceInfo *TInfo =
1357    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1358  new (TInfo) TypeSourceInfo(T);
1359  return TInfo;
1360}
1361
1362TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1363                                                     SourceLocation L) const {
1364  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1365  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1366  return DI;
1367}
1368
1369const ASTRecordLayout &
1370ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1371  return getObjCLayout(D, 0);
1372}
1373
1374const ASTRecordLayout &
1375ASTContext::getASTObjCImplementationLayout(
1376                                        const ObjCImplementationDecl *D) const {
1377  return getObjCLayout(D->getClassInterface(), D);
1378}
1379
1380//===----------------------------------------------------------------------===//
1381//                   Type creation/memoization methods
1382//===----------------------------------------------------------------------===//
1383
1384QualType
1385ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1386  unsigned fastQuals = quals.getFastQualifiers();
1387  quals.removeFastQualifiers();
1388
1389  // Check if we've already instantiated this type.
1390  llvm::FoldingSetNodeID ID;
1391  ExtQuals::Profile(ID, baseType, quals);
1392  void *insertPos = 0;
1393  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1394    assert(eq->getQualifiers() == quals);
1395    return QualType(eq, fastQuals);
1396  }
1397
1398  // If the base type is not canonical, make the appropriate canonical type.
1399  QualType canon;
1400  if (!baseType->isCanonicalUnqualified()) {
1401    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1402    canonSplit.Quals.addConsistentQualifiers(quals);
1403    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1404
1405    // Re-find the insert position.
1406    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1407  }
1408
1409  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1410  ExtQualNodes.InsertNode(eq, insertPos);
1411  return QualType(eq, fastQuals);
1412}
1413
1414QualType
1415ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1416  QualType CanT = getCanonicalType(T);
1417  if (CanT.getAddressSpace() == AddressSpace)
1418    return T;
1419
1420  // If we are composing extended qualifiers together, merge together
1421  // into one ExtQuals node.
1422  QualifierCollector Quals;
1423  const Type *TypeNode = Quals.strip(T);
1424
1425  // If this type already has an address space specified, it cannot get
1426  // another one.
1427  assert(!Quals.hasAddressSpace() &&
1428         "Type cannot be in multiple addr spaces!");
1429  Quals.addAddressSpace(AddressSpace);
1430
1431  return getExtQualType(TypeNode, Quals);
1432}
1433
1434QualType ASTContext::getObjCGCQualType(QualType T,
1435                                       Qualifiers::GC GCAttr) const {
1436  QualType CanT = getCanonicalType(T);
1437  if (CanT.getObjCGCAttr() == GCAttr)
1438    return T;
1439
1440  if (const PointerType *ptr = T->getAs<PointerType>()) {
1441    QualType Pointee = ptr->getPointeeType();
1442    if (Pointee->isAnyPointerType()) {
1443      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1444      return getPointerType(ResultType);
1445    }
1446  }
1447
1448  // If we are composing extended qualifiers together, merge together
1449  // into one ExtQuals node.
1450  QualifierCollector Quals;
1451  const Type *TypeNode = Quals.strip(T);
1452
1453  // If this type already has an ObjCGC specified, it cannot get
1454  // another one.
1455  assert(!Quals.hasObjCGCAttr() &&
1456         "Type cannot have multiple ObjCGCs!");
1457  Quals.addObjCGCAttr(GCAttr);
1458
1459  return getExtQualType(TypeNode, Quals);
1460}
1461
1462const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1463                                                   FunctionType::ExtInfo Info) {
1464  if (T->getExtInfo() == Info)
1465    return T;
1466
1467  QualType Result;
1468  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1469    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1470  } else {
1471    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1472    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1473    EPI.ExtInfo = Info;
1474    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1475                             FPT->getNumArgs(), EPI);
1476  }
1477
1478  return cast<FunctionType>(Result.getTypePtr());
1479}
1480
1481/// getComplexType - Return the uniqued reference to the type for a complex
1482/// number with the specified element type.
1483QualType ASTContext::getComplexType(QualType T) const {
1484  // Unique pointers, to guarantee there is only one pointer of a particular
1485  // structure.
1486  llvm::FoldingSetNodeID ID;
1487  ComplexType::Profile(ID, T);
1488
1489  void *InsertPos = 0;
1490  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1491    return QualType(CT, 0);
1492
1493  // If the pointee type isn't canonical, this won't be a canonical type either,
1494  // so fill in the canonical type field.
1495  QualType Canonical;
1496  if (!T.isCanonical()) {
1497    Canonical = getComplexType(getCanonicalType(T));
1498
1499    // Get the new insert position for the node we care about.
1500    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1501    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1502  }
1503  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1504  Types.push_back(New);
1505  ComplexTypes.InsertNode(New, InsertPos);
1506  return QualType(New, 0);
1507}
1508
1509/// getPointerType - Return the uniqued reference to the type for a pointer to
1510/// the specified type.
1511QualType ASTContext::getPointerType(QualType T) const {
1512  // Unique pointers, to guarantee there is only one pointer of a particular
1513  // structure.
1514  llvm::FoldingSetNodeID ID;
1515  PointerType::Profile(ID, T);
1516
1517  void *InsertPos = 0;
1518  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1519    return QualType(PT, 0);
1520
1521  // If the pointee type isn't canonical, this won't be a canonical type either,
1522  // so fill in the canonical type field.
1523  QualType Canonical;
1524  if (!T.isCanonical()) {
1525    Canonical = getPointerType(getCanonicalType(T));
1526
1527    // Get the new insert position for the node we care about.
1528    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1529    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1530  }
1531  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1532  Types.push_back(New);
1533  PointerTypes.InsertNode(New, InsertPos);
1534  return QualType(New, 0);
1535}
1536
1537/// getBlockPointerType - Return the uniqued reference to the type for
1538/// a pointer to the specified block.
1539QualType ASTContext::getBlockPointerType(QualType T) const {
1540  assert(T->isFunctionType() && "block of function types only");
1541  // Unique pointers, to guarantee there is only one block of a particular
1542  // structure.
1543  llvm::FoldingSetNodeID ID;
1544  BlockPointerType::Profile(ID, T);
1545
1546  void *InsertPos = 0;
1547  if (BlockPointerType *PT =
1548        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1549    return QualType(PT, 0);
1550
1551  // If the block pointee type isn't canonical, this won't be a canonical
1552  // type either so fill in the canonical type field.
1553  QualType Canonical;
1554  if (!T.isCanonical()) {
1555    Canonical = getBlockPointerType(getCanonicalType(T));
1556
1557    // Get the new insert position for the node we care about.
1558    BlockPointerType *NewIP =
1559      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1560    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1561  }
1562  BlockPointerType *New
1563    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1564  Types.push_back(New);
1565  BlockPointerTypes.InsertNode(New, InsertPos);
1566  return QualType(New, 0);
1567}
1568
1569/// getLValueReferenceType - Return the uniqued reference to the type for an
1570/// lvalue reference to the specified type.
1571QualType
1572ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1573  assert(getCanonicalType(T) != OverloadTy &&
1574         "Unresolved overloaded function type");
1575
1576  // Unique pointers, to guarantee there is only one pointer of a particular
1577  // structure.
1578  llvm::FoldingSetNodeID ID;
1579  ReferenceType::Profile(ID, T, SpelledAsLValue);
1580
1581  void *InsertPos = 0;
1582  if (LValueReferenceType *RT =
1583        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1584    return QualType(RT, 0);
1585
1586  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1587
1588  // If the referencee type isn't canonical, this won't be a canonical type
1589  // either, so fill in the canonical type field.
1590  QualType Canonical;
1591  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1592    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1593    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1594
1595    // Get the new insert position for the node we care about.
1596    LValueReferenceType *NewIP =
1597      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1598    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1599  }
1600
1601  LValueReferenceType *New
1602    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1603                                                     SpelledAsLValue);
1604  Types.push_back(New);
1605  LValueReferenceTypes.InsertNode(New, InsertPos);
1606
1607  return QualType(New, 0);
1608}
1609
1610/// getRValueReferenceType - Return the uniqued reference to the type for an
1611/// rvalue reference to the specified type.
1612QualType ASTContext::getRValueReferenceType(QualType T) const {
1613  // Unique pointers, to guarantee there is only one pointer of a particular
1614  // structure.
1615  llvm::FoldingSetNodeID ID;
1616  ReferenceType::Profile(ID, T, false);
1617
1618  void *InsertPos = 0;
1619  if (RValueReferenceType *RT =
1620        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1621    return QualType(RT, 0);
1622
1623  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1624
1625  // If the referencee type isn't canonical, this won't be a canonical type
1626  // either, so fill in the canonical type field.
1627  QualType Canonical;
1628  if (InnerRef || !T.isCanonical()) {
1629    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1630    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1631
1632    // Get the new insert position for the node we care about.
1633    RValueReferenceType *NewIP =
1634      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1635    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1636  }
1637
1638  RValueReferenceType *New
1639    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1640  Types.push_back(New);
1641  RValueReferenceTypes.InsertNode(New, InsertPos);
1642  return QualType(New, 0);
1643}
1644
1645/// getMemberPointerType - Return the uniqued reference to the type for a
1646/// member pointer to the specified type, in the specified class.
1647QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1648  // Unique pointers, to guarantee there is only one pointer of a particular
1649  // structure.
1650  llvm::FoldingSetNodeID ID;
1651  MemberPointerType::Profile(ID, T, Cls);
1652
1653  void *InsertPos = 0;
1654  if (MemberPointerType *PT =
1655      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1656    return QualType(PT, 0);
1657
1658  // If the pointee or class type isn't canonical, this won't be a canonical
1659  // type either, so fill in the canonical type field.
1660  QualType Canonical;
1661  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1662    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1663
1664    // Get the new insert position for the node we care about.
1665    MemberPointerType *NewIP =
1666      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1667    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1668  }
1669  MemberPointerType *New
1670    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1671  Types.push_back(New);
1672  MemberPointerTypes.InsertNode(New, InsertPos);
1673  return QualType(New, 0);
1674}
1675
1676/// getConstantArrayType - Return the unique reference to the type for an
1677/// array of the specified element type.
1678QualType ASTContext::getConstantArrayType(QualType EltTy,
1679                                          const llvm::APInt &ArySizeIn,
1680                                          ArrayType::ArraySizeModifier ASM,
1681                                          unsigned IndexTypeQuals) const {
1682  assert((EltTy->isDependentType() ||
1683          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1684         "Constant array of VLAs is illegal!");
1685
1686  // Convert the array size into a canonical width matching the pointer size for
1687  // the target.
1688  llvm::APInt ArySize(ArySizeIn);
1689  ArySize =
1690    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1691
1692  llvm::FoldingSetNodeID ID;
1693  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1694
1695  void *InsertPos = 0;
1696  if (ConstantArrayType *ATP =
1697      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1698    return QualType(ATP, 0);
1699
1700  // If the element type isn't canonical or has qualifiers, this won't
1701  // be a canonical type either, so fill in the canonical type field.
1702  QualType Canon;
1703  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1704    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1705    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1706                                 ASM, IndexTypeQuals);
1707    Canon = getQualifiedType(Canon, canonSplit.Quals);
1708
1709    // Get the new insert position for the node we care about.
1710    ConstantArrayType *NewIP =
1711      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1712    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1713  }
1714
1715  ConstantArrayType *New = new(*this,TypeAlignment)
1716    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1717  ConstantArrayTypes.InsertNode(New, InsertPos);
1718  Types.push_back(New);
1719  return QualType(New, 0);
1720}
1721
1722/// getVariableArrayDecayedType - Turns the given type, which may be
1723/// variably-modified, into the corresponding type with all the known
1724/// sizes replaced with [*].
1725QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1726  // Vastly most common case.
1727  if (!type->isVariablyModifiedType()) return type;
1728
1729  QualType result;
1730
1731  SplitQualType split = type.getSplitDesugaredType();
1732  const Type *ty = split.Ty;
1733  switch (ty->getTypeClass()) {
1734#define TYPE(Class, Base)
1735#define ABSTRACT_TYPE(Class, Base)
1736#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1737#include "clang/AST/TypeNodes.def"
1738    llvm_unreachable("didn't desugar past all non-canonical types?");
1739
1740  // These types should never be variably-modified.
1741  case Type::Builtin:
1742  case Type::Complex:
1743  case Type::Vector:
1744  case Type::ExtVector:
1745  case Type::DependentSizedExtVector:
1746  case Type::ObjCObject:
1747  case Type::ObjCInterface:
1748  case Type::ObjCObjectPointer:
1749  case Type::Record:
1750  case Type::Enum:
1751  case Type::UnresolvedUsing:
1752  case Type::TypeOfExpr:
1753  case Type::TypeOf:
1754  case Type::Decltype:
1755  case Type::UnaryTransform:
1756  case Type::DependentName:
1757  case Type::InjectedClassName:
1758  case Type::TemplateSpecialization:
1759  case Type::DependentTemplateSpecialization:
1760  case Type::TemplateTypeParm:
1761  case Type::SubstTemplateTypeParmPack:
1762  case Type::Auto:
1763  case Type::PackExpansion:
1764    llvm_unreachable("type should never be variably-modified");
1765
1766  // These types can be variably-modified but should never need to
1767  // further decay.
1768  case Type::FunctionNoProto:
1769  case Type::FunctionProto:
1770  case Type::BlockPointer:
1771  case Type::MemberPointer:
1772    return type;
1773
1774  // These types can be variably-modified.  All these modifications
1775  // preserve structure except as noted by comments.
1776  // TODO: if we ever care about optimizing VLAs, there are no-op
1777  // optimizations available here.
1778  case Type::Pointer:
1779    result = getPointerType(getVariableArrayDecayedType(
1780                              cast<PointerType>(ty)->getPointeeType()));
1781    break;
1782
1783  case Type::LValueReference: {
1784    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1785    result = getLValueReferenceType(
1786                 getVariableArrayDecayedType(lv->getPointeeType()),
1787                                    lv->isSpelledAsLValue());
1788    break;
1789  }
1790
1791  case Type::RValueReference: {
1792    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1793    result = getRValueReferenceType(
1794                 getVariableArrayDecayedType(lv->getPointeeType()));
1795    break;
1796  }
1797
1798  case Type::Atomic: {
1799    const AtomicType *at = cast<AtomicType>(ty);
1800    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1801    break;
1802  }
1803
1804  case Type::ConstantArray: {
1805    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1806    result = getConstantArrayType(
1807                 getVariableArrayDecayedType(cat->getElementType()),
1808                                  cat->getSize(),
1809                                  cat->getSizeModifier(),
1810                                  cat->getIndexTypeCVRQualifiers());
1811    break;
1812  }
1813
1814  case Type::DependentSizedArray: {
1815    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1816    result = getDependentSizedArrayType(
1817                 getVariableArrayDecayedType(dat->getElementType()),
1818                                        dat->getSizeExpr(),
1819                                        dat->getSizeModifier(),
1820                                        dat->getIndexTypeCVRQualifiers(),
1821                                        dat->getBracketsRange());
1822    break;
1823  }
1824
1825  // Turn incomplete types into [*] types.
1826  case Type::IncompleteArray: {
1827    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1828    result = getVariableArrayType(
1829                 getVariableArrayDecayedType(iat->getElementType()),
1830                                  /*size*/ 0,
1831                                  ArrayType::Normal,
1832                                  iat->getIndexTypeCVRQualifiers(),
1833                                  SourceRange());
1834    break;
1835  }
1836
1837  // Turn VLA types into [*] types.
1838  case Type::VariableArray: {
1839    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1840    result = getVariableArrayType(
1841                 getVariableArrayDecayedType(vat->getElementType()),
1842                                  /*size*/ 0,
1843                                  ArrayType::Star,
1844                                  vat->getIndexTypeCVRQualifiers(),
1845                                  vat->getBracketsRange());
1846    break;
1847  }
1848  }
1849
1850  // Apply the top-level qualifiers from the original.
1851  return getQualifiedType(result, split.Quals);
1852}
1853
1854/// getVariableArrayType - Returns a non-unique reference to the type for a
1855/// variable array of the specified element type.
1856QualType ASTContext::getVariableArrayType(QualType EltTy,
1857                                          Expr *NumElts,
1858                                          ArrayType::ArraySizeModifier ASM,
1859                                          unsigned IndexTypeQuals,
1860                                          SourceRange Brackets) const {
1861  // Since we don't unique expressions, it isn't possible to unique VLA's
1862  // that have an expression provided for their size.
1863  QualType Canon;
1864
1865  // Be sure to pull qualifiers off the element type.
1866  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1867    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1868    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1869                                 IndexTypeQuals, Brackets);
1870    Canon = getQualifiedType(Canon, canonSplit.Quals);
1871  }
1872
1873  VariableArrayType *New = new(*this, TypeAlignment)
1874    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1875
1876  VariableArrayTypes.push_back(New);
1877  Types.push_back(New);
1878  return QualType(New, 0);
1879}
1880
1881/// getDependentSizedArrayType - Returns a non-unique reference to
1882/// the type for a dependently-sized array of the specified element
1883/// type.
1884QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1885                                                Expr *numElements,
1886                                                ArrayType::ArraySizeModifier ASM,
1887                                                unsigned elementTypeQuals,
1888                                                SourceRange brackets) const {
1889  assert((!numElements || numElements->isTypeDependent() ||
1890          numElements->isValueDependent()) &&
1891         "Size must be type- or value-dependent!");
1892
1893  // Dependently-sized array types that do not have a specified number
1894  // of elements will have their sizes deduced from a dependent
1895  // initializer.  We do no canonicalization here at all, which is okay
1896  // because they can't be used in most locations.
1897  if (!numElements) {
1898    DependentSizedArrayType *newType
1899      = new (*this, TypeAlignment)
1900          DependentSizedArrayType(*this, elementType, QualType(),
1901                                  numElements, ASM, elementTypeQuals,
1902                                  brackets);
1903    Types.push_back(newType);
1904    return QualType(newType, 0);
1905  }
1906
1907  // Otherwise, we actually build a new type every time, but we
1908  // also build a canonical type.
1909
1910  SplitQualType canonElementType = getCanonicalType(elementType).split();
1911
1912  void *insertPos = 0;
1913  llvm::FoldingSetNodeID ID;
1914  DependentSizedArrayType::Profile(ID, *this,
1915                                   QualType(canonElementType.Ty, 0),
1916                                   ASM, elementTypeQuals, numElements);
1917
1918  // Look for an existing type with these properties.
1919  DependentSizedArrayType *canonTy =
1920    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1921
1922  // If we don't have one, build one.
1923  if (!canonTy) {
1924    canonTy = new (*this, TypeAlignment)
1925      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
1926                              QualType(), numElements, ASM, elementTypeQuals,
1927                              brackets);
1928    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1929    Types.push_back(canonTy);
1930  }
1931
1932  // Apply qualifiers from the element type to the array.
1933  QualType canon = getQualifiedType(QualType(canonTy,0),
1934                                    canonElementType.Quals);
1935
1936  // If we didn't need extra canonicalization for the element type,
1937  // then just use that as our result.
1938  if (QualType(canonElementType.Ty, 0) == elementType)
1939    return canon;
1940
1941  // Otherwise, we need to build a type which follows the spelling
1942  // of the element type.
1943  DependentSizedArrayType *sugaredType
1944    = new (*this, TypeAlignment)
1945        DependentSizedArrayType(*this, elementType, canon, numElements,
1946                                ASM, elementTypeQuals, brackets);
1947  Types.push_back(sugaredType);
1948  return QualType(sugaredType, 0);
1949}
1950
1951QualType ASTContext::getIncompleteArrayType(QualType elementType,
1952                                            ArrayType::ArraySizeModifier ASM,
1953                                            unsigned elementTypeQuals) const {
1954  llvm::FoldingSetNodeID ID;
1955  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1956
1957  void *insertPos = 0;
1958  if (IncompleteArrayType *iat =
1959       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1960    return QualType(iat, 0);
1961
1962  // If the element type isn't canonical, this won't be a canonical type
1963  // either, so fill in the canonical type field.  We also have to pull
1964  // qualifiers off the element type.
1965  QualType canon;
1966
1967  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1968    SplitQualType canonSplit = getCanonicalType(elementType).split();
1969    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
1970                                   ASM, elementTypeQuals);
1971    canon = getQualifiedType(canon, canonSplit.Quals);
1972
1973    // Get the new insert position for the node we care about.
1974    IncompleteArrayType *existing =
1975      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1976    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1977  }
1978
1979  IncompleteArrayType *newType = new (*this, TypeAlignment)
1980    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1981
1982  IncompleteArrayTypes.InsertNode(newType, insertPos);
1983  Types.push_back(newType);
1984  return QualType(newType, 0);
1985}
1986
1987/// getVectorType - Return the unique reference to a vector type of
1988/// the specified element type and size. VectorType must be a built-in type.
1989QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1990                                   VectorType::VectorKind VecKind) const {
1991  assert(vecType->isBuiltinType());
1992
1993  // Check if we've already instantiated a vector of this type.
1994  llvm::FoldingSetNodeID ID;
1995  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1996
1997  void *InsertPos = 0;
1998  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1999    return QualType(VTP, 0);
2000
2001  // If the element type isn't canonical, this won't be a canonical type either,
2002  // so fill in the canonical type field.
2003  QualType Canonical;
2004  if (!vecType.isCanonical()) {
2005    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2006
2007    // Get the new insert position for the node we care about.
2008    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2009    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2010  }
2011  VectorType *New = new (*this, TypeAlignment)
2012    VectorType(vecType, NumElts, Canonical, VecKind);
2013  VectorTypes.InsertNode(New, InsertPos);
2014  Types.push_back(New);
2015  return QualType(New, 0);
2016}
2017
2018/// getExtVectorType - Return the unique reference to an extended vector type of
2019/// the specified element type and size. VectorType must be a built-in type.
2020QualType
2021ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2022  assert(vecType->isBuiltinType() || vecType->isDependentType());
2023
2024  // Check if we've already instantiated a vector of this type.
2025  llvm::FoldingSetNodeID ID;
2026  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2027                      VectorType::GenericVector);
2028  void *InsertPos = 0;
2029  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2030    return QualType(VTP, 0);
2031
2032  // If the element type isn't canonical, this won't be a canonical type either,
2033  // so fill in the canonical type field.
2034  QualType Canonical;
2035  if (!vecType.isCanonical()) {
2036    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2037
2038    // Get the new insert position for the node we care about.
2039    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2040    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2041  }
2042  ExtVectorType *New = new (*this, TypeAlignment)
2043    ExtVectorType(vecType, NumElts, Canonical);
2044  VectorTypes.InsertNode(New, InsertPos);
2045  Types.push_back(New);
2046  return QualType(New, 0);
2047}
2048
2049QualType
2050ASTContext::getDependentSizedExtVectorType(QualType vecType,
2051                                           Expr *SizeExpr,
2052                                           SourceLocation AttrLoc) const {
2053  llvm::FoldingSetNodeID ID;
2054  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2055                                       SizeExpr);
2056
2057  void *InsertPos = 0;
2058  DependentSizedExtVectorType *Canon
2059    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2060  DependentSizedExtVectorType *New;
2061  if (Canon) {
2062    // We already have a canonical version of this array type; use it as
2063    // the canonical type for a newly-built type.
2064    New = new (*this, TypeAlignment)
2065      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2066                                  SizeExpr, AttrLoc);
2067  } else {
2068    QualType CanonVecTy = getCanonicalType(vecType);
2069    if (CanonVecTy == vecType) {
2070      New = new (*this, TypeAlignment)
2071        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2072                                    AttrLoc);
2073
2074      DependentSizedExtVectorType *CanonCheck
2075        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2076      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2077      (void)CanonCheck;
2078      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2079    } else {
2080      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2081                                                      SourceLocation());
2082      New = new (*this, TypeAlignment)
2083        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2084    }
2085  }
2086
2087  Types.push_back(New);
2088  return QualType(New, 0);
2089}
2090
2091/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2092///
2093QualType
2094ASTContext::getFunctionNoProtoType(QualType ResultTy,
2095                                   const FunctionType::ExtInfo &Info) const {
2096  const CallingConv DefaultCC = Info.getCC();
2097  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2098                               CC_X86StdCall : DefaultCC;
2099  // Unique functions, to guarantee there is only one function of a particular
2100  // structure.
2101  llvm::FoldingSetNodeID ID;
2102  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2103
2104  void *InsertPos = 0;
2105  if (FunctionNoProtoType *FT =
2106        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2107    return QualType(FT, 0);
2108
2109  QualType Canonical;
2110  if (!ResultTy.isCanonical() ||
2111      getCanonicalCallConv(CallConv) != CallConv) {
2112    Canonical =
2113      getFunctionNoProtoType(getCanonicalType(ResultTy),
2114                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2115
2116    // Get the new insert position for the node we care about.
2117    FunctionNoProtoType *NewIP =
2118      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2119    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2120  }
2121
2122  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2123  FunctionNoProtoType *New = new (*this, TypeAlignment)
2124    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2125  Types.push_back(New);
2126  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2127  return QualType(New, 0);
2128}
2129
2130/// getFunctionType - Return a normal function type with a typed argument
2131/// list.  isVariadic indicates whether the argument list includes '...'.
2132QualType
2133ASTContext::getFunctionType(QualType ResultTy,
2134                            const QualType *ArgArray, unsigned NumArgs,
2135                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2136  // Unique functions, to guarantee there is only one function of a particular
2137  // structure.
2138  llvm::FoldingSetNodeID ID;
2139  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2140
2141  void *InsertPos = 0;
2142  if (FunctionProtoType *FTP =
2143        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2144    return QualType(FTP, 0);
2145
2146  // Determine whether the type being created is already canonical or not.
2147  bool isCanonical =
2148    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2149    !EPI.HasTrailingReturn;
2150  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2151    if (!ArgArray[i].isCanonicalAsParam())
2152      isCanonical = false;
2153
2154  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2155  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2156                               CC_X86StdCall : DefaultCC;
2157
2158  // If this type isn't canonical, get the canonical version of it.
2159  // The exception spec is not part of the canonical type.
2160  QualType Canonical;
2161  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2162    SmallVector<QualType, 16> CanonicalArgs;
2163    CanonicalArgs.reserve(NumArgs);
2164    for (unsigned i = 0; i != NumArgs; ++i)
2165      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2166
2167    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2168    CanonicalEPI.HasTrailingReturn = false;
2169    CanonicalEPI.ExceptionSpecType = EST_None;
2170    CanonicalEPI.NumExceptions = 0;
2171    CanonicalEPI.ExtInfo
2172      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2173
2174    Canonical = getFunctionType(getCanonicalType(ResultTy),
2175                                CanonicalArgs.data(), NumArgs,
2176                                CanonicalEPI);
2177
2178    // Get the new insert position for the node we care about.
2179    FunctionProtoType *NewIP =
2180      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2181    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2182  }
2183
2184  // FunctionProtoType objects are allocated with extra bytes after
2185  // them for three variable size arrays at the end:
2186  //  - parameter types
2187  //  - exception types
2188  //  - consumed-arguments flags
2189  // Instead of the exception types, there could be a noexcept
2190  // expression.
2191  size_t Size = sizeof(FunctionProtoType) +
2192                NumArgs * sizeof(QualType);
2193  if (EPI.ExceptionSpecType == EST_Dynamic)
2194    Size += EPI.NumExceptions * sizeof(QualType);
2195  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2196    Size += sizeof(Expr*);
2197  }
2198  if (EPI.ConsumedArguments)
2199    Size += NumArgs * sizeof(bool);
2200
2201  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2202  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2203  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2204  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2205  Types.push_back(FTP);
2206  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2207  return QualType(FTP, 0);
2208}
2209
2210#ifndef NDEBUG
2211static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2212  if (!isa<CXXRecordDecl>(D)) return false;
2213  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2214  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2215    return true;
2216  if (RD->getDescribedClassTemplate() &&
2217      !isa<ClassTemplateSpecializationDecl>(RD))
2218    return true;
2219  return false;
2220}
2221#endif
2222
2223/// getInjectedClassNameType - Return the unique reference to the
2224/// injected class name type for the specified templated declaration.
2225QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2226                                              QualType TST) const {
2227  assert(NeedsInjectedClassNameType(Decl));
2228  if (Decl->TypeForDecl) {
2229    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2230  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2231    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2232    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2233    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2234  } else {
2235    Type *newType =
2236      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2237    Decl->TypeForDecl = newType;
2238    Types.push_back(newType);
2239  }
2240  return QualType(Decl->TypeForDecl, 0);
2241}
2242
2243/// getTypeDeclType - Return the unique reference to the type for the
2244/// specified type declaration.
2245QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2246  assert(Decl && "Passed null for Decl param");
2247  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2248
2249  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2250    return getTypedefType(Typedef);
2251
2252  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2253         "Template type parameter types are always available.");
2254
2255  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2256    assert(!Record->getPreviousDecl() &&
2257           "struct/union has previous declaration");
2258    assert(!NeedsInjectedClassNameType(Record));
2259    return getRecordType(Record);
2260  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2261    assert(!Enum->getPreviousDecl() &&
2262           "enum has previous declaration");
2263    return getEnumType(Enum);
2264  } else if (const UnresolvedUsingTypenameDecl *Using =
2265               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2266    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2267    Decl->TypeForDecl = newType;
2268    Types.push_back(newType);
2269  } else
2270    llvm_unreachable("TypeDecl without a type?");
2271
2272  return QualType(Decl->TypeForDecl, 0);
2273}
2274
2275/// getTypedefType - Return the unique reference to the type for the
2276/// specified typedef name decl.
2277QualType
2278ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2279                           QualType Canonical) const {
2280  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2281
2282  if (Canonical.isNull())
2283    Canonical = getCanonicalType(Decl->getUnderlyingType());
2284  TypedefType *newType = new(*this, TypeAlignment)
2285    TypedefType(Type::Typedef, Decl, Canonical);
2286  Decl->TypeForDecl = newType;
2287  Types.push_back(newType);
2288  return QualType(newType, 0);
2289}
2290
2291QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2292  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2293
2294  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2295    if (PrevDecl->TypeForDecl)
2296      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2297
2298  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2299  Decl->TypeForDecl = newType;
2300  Types.push_back(newType);
2301  return QualType(newType, 0);
2302}
2303
2304QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2305  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2306
2307  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2308    if (PrevDecl->TypeForDecl)
2309      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2310
2311  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2312  Decl->TypeForDecl = newType;
2313  Types.push_back(newType);
2314  return QualType(newType, 0);
2315}
2316
2317QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2318                                       QualType modifiedType,
2319                                       QualType equivalentType) {
2320  llvm::FoldingSetNodeID id;
2321  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2322
2323  void *insertPos = 0;
2324  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2325  if (type) return QualType(type, 0);
2326
2327  QualType canon = getCanonicalType(equivalentType);
2328  type = new (*this, TypeAlignment)
2329           AttributedType(canon, attrKind, modifiedType, equivalentType);
2330
2331  Types.push_back(type);
2332  AttributedTypes.InsertNode(type, insertPos);
2333
2334  return QualType(type, 0);
2335}
2336
2337
2338/// \brief Retrieve a substitution-result type.
2339QualType
2340ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2341                                         QualType Replacement) const {
2342  assert(Replacement.isCanonical()
2343         && "replacement types must always be canonical");
2344
2345  llvm::FoldingSetNodeID ID;
2346  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2347  void *InsertPos = 0;
2348  SubstTemplateTypeParmType *SubstParm
2349    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2350
2351  if (!SubstParm) {
2352    SubstParm = new (*this, TypeAlignment)
2353      SubstTemplateTypeParmType(Parm, Replacement);
2354    Types.push_back(SubstParm);
2355    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2356  }
2357
2358  return QualType(SubstParm, 0);
2359}
2360
2361/// \brief Retrieve a
2362QualType ASTContext::getSubstTemplateTypeParmPackType(
2363                                          const TemplateTypeParmType *Parm,
2364                                              const TemplateArgument &ArgPack) {
2365#ifndef NDEBUG
2366  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2367                                    PEnd = ArgPack.pack_end();
2368       P != PEnd; ++P) {
2369    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2370    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2371  }
2372#endif
2373
2374  llvm::FoldingSetNodeID ID;
2375  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2376  void *InsertPos = 0;
2377  if (SubstTemplateTypeParmPackType *SubstParm
2378        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2379    return QualType(SubstParm, 0);
2380
2381  QualType Canon;
2382  if (!Parm->isCanonicalUnqualified()) {
2383    Canon = getCanonicalType(QualType(Parm, 0));
2384    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2385                                             ArgPack);
2386    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2387  }
2388
2389  SubstTemplateTypeParmPackType *SubstParm
2390    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2391                                                               ArgPack);
2392  Types.push_back(SubstParm);
2393  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2394  return QualType(SubstParm, 0);
2395}
2396
2397/// \brief Retrieve the template type parameter type for a template
2398/// parameter or parameter pack with the given depth, index, and (optionally)
2399/// name.
2400QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2401                                             bool ParameterPack,
2402                                             TemplateTypeParmDecl *TTPDecl) const {
2403  llvm::FoldingSetNodeID ID;
2404  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2405  void *InsertPos = 0;
2406  TemplateTypeParmType *TypeParm
2407    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2408
2409  if (TypeParm)
2410    return QualType(TypeParm, 0);
2411
2412  if (TTPDecl) {
2413    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2414    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2415
2416    TemplateTypeParmType *TypeCheck
2417      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2418    assert(!TypeCheck && "Template type parameter canonical type broken");
2419    (void)TypeCheck;
2420  } else
2421    TypeParm = new (*this, TypeAlignment)
2422      TemplateTypeParmType(Depth, Index, ParameterPack);
2423
2424  Types.push_back(TypeParm);
2425  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2426
2427  return QualType(TypeParm, 0);
2428}
2429
2430TypeSourceInfo *
2431ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2432                                              SourceLocation NameLoc,
2433                                        const TemplateArgumentListInfo &Args,
2434                                              QualType Underlying) const {
2435  assert(!Name.getAsDependentTemplateName() &&
2436         "No dependent template names here!");
2437  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2438
2439  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2440  TemplateSpecializationTypeLoc TL
2441    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2442  TL.setTemplateKeywordLoc(SourceLocation());
2443  TL.setTemplateNameLoc(NameLoc);
2444  TL.setLAngleLoc(Args.getLAngleLoc());
2445  TL.setRAngleLoc(Args.getRAngleLoc());
2446  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2447    TL.setArgLocInfo(i, Args[i].getLocInfo());
2448  return DI;
2449}
2450
2451QualType
2452ASTContext::getTemplateSpecializationType(TemplateName Template,
2453                                          const TemplateArgumentListInfo &Args,
2454                                          QualType Underlying) const {
2455  assert(!Template.getAsDependentTemplateName() &&
2456         "No dependent template names here!");
2457
2458  unsigned NumArgs = Args.size();
2459
2460  SmallVector<TemplateArgument, 4> ArgVec;
2461  ArgVec.reserve(NumArgs);
2462  for (unsigned i = 0; i != NumArgs; ++i)
2463    ArgVec.push_back(Args[i].getArgument());
2464
2465  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2466                                       Underlying);
2467}
2468
2469#ifndef NDEBUG
2470static bool hasAnyPackExpansions(const TemplateArgument *Args,
2471                                 unsigned NumArgs) {
2472  for (unsigned I = 0; I != NumArgs; ++I)
2473    if (Args[I].isPackExpansion())
2474      return true;
2475
2476  return true;
2477}
2478#endif
2479
2480QualType
2481ASTContext::getTemplateSpecializationType(TemplateName Template,
2482                                          const TemplateArgument *Args,
2483                                          unsigned NumArgs,
2484                                          QualType Underlying) const {
2485  assert(!Template.getAsDependentTemplateName() &&
2486         "No dependent template names here!");
2487  // Look through qualified template names.
2488  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2489    Template = TemplateName(QTN->getTemplateDecl());
2490
2491  bool IsTypeAlias =
2492    Template.getAsTemplateDecl() &&
2493    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2494  QualType CanonType;
2495  if (!Underlying.isNull())
2496    CanonType = getCanonicalType(Underlying);
2497  else {
2498    // We can get here with an alias template when the specialization contains
2499    // a pack expansion that does not match up with a parameter pack.
2500    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2501           "Caller must compute aliased type");
2502    IsTypeAlias = false;
2503    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2504                                                       NumArgs);
2505  }
2506
2507  // Allocate the (non-canonical) template specialization type, but don't
2508  // try to unique it: these types typically have location information that
2509  // we don't unique and don't want to lose.
2510  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2511                       sizeof(TemplateArgument) * NumArgs +
2512                       (IsTypeAlias? sizeof(QualType) : 0),
2513                       TypeAlignment);
2514  TemplateSpecializationType *Spec
2515    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2516                                         IsTypeAlias ? Underlying : QualType());
2517
2518  Types.push_back(Spec);
2519  return QualType(Spec, 0);
2520}
2521
2522QualType
2523ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2524                                                   const TemplateArgument *Args,
2525                                                   unsigned NumArgs) const {
2526  assert(!Template.getAsDependentTemplateName() &&
2527         "No dependent template names here!");
2528
2529  // Look through qualified template names.
2530  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2531    Template = TemplateName(QTN->getTemplateDecl());
2532
2533  // Build the canonical template specialization type.
2534  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2535  SmallVector<TemplateArgument, 4> CanonArgs;
2536  CanonArgs.reserve(NumArgs);
2537  for (unsigned I = 0; I != NumArgs; ++I)
2538    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2539
2540  // Determine whether this canonical template specialization type already
2541  // exists.
2542  llvm::FoldingSetNodeID ID;
2543  TemplateSpecializationType::Profile(ID, CanonTemplate,
2544                                      CanonArgs.data(), NumArgs, *this);
2545
2546  void *InsertPos = 0;
2547  TemplateSpecializationType *Spec
2548    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2549
2550  if (!Spec) {
2551    // Allocate a new canonical template specialization type.
2552    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2553                          sizeof(TemplateArgument) * NumArgs),
2554                         TypeAlignment);
2555    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2556                                                CanonArgs.data(), NumArgs,
2557                                                QualType(), QualType());
2558    Types.push_back(Spec);
2559    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2560  }
2561
2562  assert(Spec->isDependentType() &&
2563         "Non-dependent template-id type must have a canonical type");
2564  return QualType(Spec, 0);
2565}
2566
2567QualType
2568ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2569                              NestedNameSpecifier *NNS,
2570                              QualType NamedType) const {
2571  llvm::FoldingSetNodeID ID;
2572  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2573
2574  void *InsertPos = 0;
2575  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2576  if (T)
2577    return QualType(T, 0);
2578
2579  QualType Canon = NamedType;
2580  if (!Canon.isCanonical()) {
2581    Canon = getCanonicalType(NamedType);
2582    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2583    assert(!CheckT && "Elaborated canonical type broken");
2584    (void)CheckT;
2585  }
2586
2587  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2588  Types.push_back(T);
2589  ElaboratedTypes.InsertNode(T, InsertPos);
2590  return QualType(T, 0);
2591}
2592
2593QualType
2594ASTContext::getParenType(QualType InnerType) const {
2595  llvm::FoldingSetNodeID ID;
2596  ParenType::Profile(ID, InnerType);
2597
2598  void *InsertPos = 0;
2599  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2600  if (T)
2601    return QualType(T, 0);
2602
2603  QualType Canon = InnerType;
2604  if (!Canon.isCanonical()) {
2605    Canon = getCanonicalType(InnerType);
2606    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2607    assert(!CheckT && "Paren canonical type broken");
2608    (void)CheckT;
2609  }
2610
2611  T = new (*this) ParenType(InnerType, Canon);
2612  Types.push_back(T);
2613  ParenTypes.InsertNode(T, InsertPos);
2614  return QualType(T, 0);
2615}
2616
2617QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2618                                          NestedNameSpecifier *NNS,
2619                                          const IdentifierInfo *Name,
2620                                          QualType Canon) const {
2621  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2622
2623  if (Canon.isNull()) {
2624    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2625    ElaboratedTypeKeyword CanonKeyword = Keyword;
2626    if (Keyword == ETK_None)
2627      CanonKeyword = ETK_Typename;
2628
2629    if (CanonNNS != NNS || CanonKeyword != Keyword)
2630      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2631  }
2632
2633  llvm::FoldingSetNodeID ID;
2634  DependentNameType::Profile(ID, Keyword, NNS, Name);
2635
2636  void *InsertPos = 0;
2637  DependentNameType *T
2638    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2639  if (T)
2640    return QualType(T, 0);
2641
2642  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2643  Types.push_back(T);
2644  DependentNameTypes.InsertNode(T, InsertPos);
2645  return QualType(T, 0);
2646}
2647
2648QualType
2649ASTContext::getDependentTemplateSpecializationType(
2650                                 ElaboratedTypeKeyword Keyword,
2651                                 NestedNameSpecifier *NNS,
2652                                 const IdentifierInfo *Name,
2653                                 const TemplateArgumentListInfo &Args) const {
2654  // TODO: avoid this copy
2655  SmallVector<TemplateArgument, 16> ArgCopy;
2656  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2657    ArgCopy.push_back(Args[I].getArgument());
2658  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2659                                                ArgCopy.size(),
2660                                                ArgCopy.data());
2661}
2662
2663QualType
2664ASTContext::getDependentTemplateSpecializationType(
2665                                 ElaboratedTypeKeyword Keyword,
2666                                 NestedNameSpecifier *NNS,
2667                                 const IdentifierInfo *Name,
2668                                 unsigned NumArgs,
2669                                 const TemplateArgument *Args) const {
2670  assert((!NNS || NNS->isDependent()) &&
2671         "nested-name-specifier must be dependent");
2672
2673  llvm::FoldingSetNodeID ID;
2674  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2675                                               Name, NumArgs, Args);
2676
2677  void *InsertPos = 0;
2678  DependentTemplateSpecializationType *T
2679    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2680  if (T)
2681    return QualType(T, 0);
2682
2683  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2684
2685  ElaboratedTypeKeyword CanonKeyword = Keyword;
2686  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2687
2688  bool AnyNonCanonArgs = false;
2689  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2690  for (unsigned I = 0; I != NumArgs; ++I) {
2691    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2692    if (!CanonArgs[I].structurallyEquals(Args[I]))
2693      AnyNonCanonArgs = true;
2694  }
2695
2696  QualType Canon;
2697  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2698    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2699                                                   Name, NumArgs,
2700                                                   CanonArgs.data());
2701
2702    // Find the insert position again.
2703    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2704  }
2705
2706  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2707                        sizeof(TemplateArgument) * NumArgs),
2708                       TypeAlignment);
2709  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2710                                                    Name, NumArgs, Args, Canon);
2711  Types.push_back(T);
2712  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2713  return QualType(T, 0);
2714}
2715
2716QualType ASTContext::getPackExpansionType(QualType Pattern,
2717                                      llvm::Optional<unsigned> NumExpansions) {
2718  llvm::FoldingSetNodeID ID;
2719  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2720
2721  assert(Pattern->containsUnexpandedParameterPack() &&
2722         "Pack expansions must expand one or more parameter packs");
2723  void *InsertPos = 0;
2724  PackExpansionType *T
2725    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2726  if (T)
2727    return QualType(T, 0);
2728
2729  QualType Canon;
2730  if (!Pattern.isCanonical()) {
2731    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2732
2733    // Find the insert position again.
2734    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2735  }
2736
2737  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2738  Types.push_back(T);
2739  PackExpansionTypes.InsertNode(T, InsertPos);
2740  return QualType(T, 0);
2741}
2742
2743/// CmpProtocolNames - Comparison predicate for sorting protocols
2744/// alphabetically.
2745static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2746                            const ObjCProtocolDecl *RHS) {
2747  return LHS->getDeclName() < RHS->getDeclName();
2748}
2749
2750static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2751                                unsigned NumProtocols) {
2752  if (NumProtocols == 0) return true;
2753
2754  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2755    return false;
2756
2757  for (unsigned i = 1; i != NumProtocols; ++i)
2758    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2759        Protocols[i]->getCanonicalDecl() != Protocols[i])
2760      return false;
2761  return true;
2762}
2763
2764static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2765                                   unsigned &NumProtocols) {
2766  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2767
2768  // Sort protocols, keyed by name.
2769  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2770
2771  // Canonicalize.
2772  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2773    Protocols[I] = Protocols[I]->getCanonicalDecl();
2774
2775  // Remove duplicates.
2776  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2777  NumProtocols = ProtocolsEnd-Protocols;
2778}
2779
2780QualType ASTContext::getObjCObjectType(QualType BaseType,
2781                                       ObjCProtocolDecl * const *Protocols,
2782                                       unsigned NumProtocols) const {
2783  // If the base type is an interface and there aren't any protocols
2784  // to add, then the interface type will do just fine.
2785  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2786    return BaseType;
2787
2788  // Look in the folding set for an existing type.
2789  llvm::FoldingSetNodeID ID;
2790  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2791  void *InsertPos = 0;
2792  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2793    return QualType(QT, 0);
2794
2795  // Build the canonical type, which has the canonical base type and
2796  // a sorted-and-uniqued list of protocols.
2797  QualType Canonical;
2798  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2799  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2800    if (!ProtocolsSorted) {
2801      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2802                                                     Protocols + NumProtocols);
2803      unsigned UniqueCount = NumProtocols;
2804
2805      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2806      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2807                                    &Sorted[0], UniqueCount);
2808    } else {
2809      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2810                                    Protocols, NumProtocols);
2811    }
2812
2813    // Regenerate InsertPos.
2814    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2815  }
2816
2817  unsigned Size = sizeof(ObjCObjectTypeImpl);
2818  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2819  void *Mem = Allocate(Size, TypeAlignment);
2820  ObjCObjectTypeImpl *T =
2821    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2822
2823  Types.push_back(T);
2824  ObjCObjectTypes.InsertNode(T, InsertPos);
2825  return QualType(T, 0);
2826}
2827
2828/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2829/// the given object type.
2830QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2831  llvm::FoldingSetNodeID ID;
2832  ObjCObjectPointerType::Profile(ID, ObjectT);
2833
2834  void *InsertPos = 0;
2835  if (ObjCObjectPointerType *QT =
2836              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2837    return QualType(QT, 0);
2838
2839  // Find the canonical object type.
2840  QualType Canonical;
2841  if (!ObjectT.isCanonical()) {
2842    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2843
2844    // Regenerate InsertPos.
2845    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2846  }
2847
2848  // No match.
2849  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2850  ObjCObjectPointerType *QType =
2851    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2852
2853  Types.push_back(QType);
2854  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2855  return QualType(QType, 0);
2856}
2857
2858/// getObjCInterfaceType - Return the unique reference to the type for the
2859/// specified ObjC interface decl. The list of protocols is optional.
2860QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2861                                          ObjCInterfaceDecl *PrevDecl) const {
2862  if (Decl->TypeForDecl)
2863    return QualType(Decl->TypeForDecl, 0);
2864
2865  if (PrevDecl) {
2866    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2867    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2868    return QualType(PrevDecl->TypeForDecl, 0);
2869  }
2870
2871  // Prefer the definition, if there is one.
2872  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2873    Decl = Def;
2874
2875  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2876  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2877  Decl->TypeForDecl = T;
2878  Types.push_back(T);
2879  return QualType(T, 0);
2880}
2881
2882/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2883/// TypeOfExprType AST's (since expression's are never shared). For example,
2884/// multiple declarations that refer to "typeof(x)" all contain different
2885/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2886/// on canonical type's (which are always unique).
2887QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2888  TypeOfExprType *toe;
2889  if (tofExpr->isTypeDependent()) {
2890    llvm::FoldingSetNodeID ID;
2891    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2892
2893    void *InsertPos = 0;
2894    DependentTypeOfExprType *Canon
2895      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2896    if (Canon) {
2897      // We already have a "canonical" version of an identical, dependent
2898      // typeof(expr) type. Use that as our canonical type.
2899      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2900                                          QualType((TypeOfExprType*)Canon, 0));
2901    } else {
2902      // Build a new, canonical typeof(expr) type.
2903      Canon
2904        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2905      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2906      toe = Canon;
2907    }
2908  } else {
2909    QualType Canonical = getCanonicalType(tofExpr->getType());
2910    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2911  }
2912  Types.push_back(toe);
2913  return QualType(toe, 0);
2914}
2915
2916/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2917/// TypeOfType AST's. The only motivation to unique these nodes would be
2918/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2919/// an issue. This doesn't effect the type checker, since it operates
2920/// on canonical type's (which are always unique).
2921QualType ASTContext::getTypeOfType(QualType tofType) const {
2922  QualType Canonical = getCanonicalType(tofType);
2923  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2924  Types.push_back(tot);
2925  return QualType(tot, 0);
2926}
2927
2928
2929/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2930/// DecltypeType AST's. The only motivation to unique these nodes would be
2931/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2932/// an issue. This doesn't effect the type checker, since it operates
2933/// on canonical types (which are always unique).
2934QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
2935  DecltypeType *dt;
2936
2937  // C++0x [temp.type]p2:
2938  //   If an expression e involves a template parameter, decltype(e) denotes a
2939  //   unique dependent type. Two such decltype-specifiers refer to the same
2940  //   type only if their expressions are equivalent (14.5.6.1).
2941  if (e->isInstantiationDependent()) {
2942    llvm::FoldingSetNodeID ID;
2943    DependentDecltypeType::Profile(ID, *this, e);
2944
2945    void *InsertPos = 0;
2946    DependentDecltypeType *Canon
2947      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2948    if (Canon) {
2949      // We already have a "canonical" version of an equivalent, dependent
2950      // decltype type. Use that as our canonical type.
2951      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2952                                       QualType((DecltypeType*)Canon, 0));
2953    } else {
2954      // Build a new, canonical typeof(expr) type.
2955      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2956      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2957      dt = Canon;
2958    }
2959  } else {
2960    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
2961                                      getCanonicalType(UnderlyingType));
2962  }
2963  Types.push_back(dt);
2964  return QualType(dt, 0);
2965}
2966
2967/// getUnaryTransformationType - We don't unique these, since the memory
2968/// savings are minimal and these are rare.
2969QualType ASTContext::getUnaryTransformType(QualType BaseType,
2970                                           QualType UnderlyingType,
2971                                           UnaryTransformType::UTTKind Kind)
2972    const {
2973  UnaryTransformType *Ty =
2974    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2975                                                   Kind,
2976                                 UnderlyingType->isDependentType() ?
2977                                 QualType() : getCanonicalType(UnderlyingType));
2978  Types.push_back(Ty);
2979  return QualType(Ty, 0);
2980}
2981
2982/// getAutoType - We only unique auto types after they've been deduced.
2983QualType ASTContext::getAutoType(QualType DeducedType) const {
2984  void *InsertPos = 0;
2985  if (!DeducedType.isNull()) {
2986    // Look in the folding set for an existing type.
2987    llvm::FoldingSetNodeID ID;
2988    AutoType::Profile(ID, DeducedType);
2989    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2990      return QualType(AT, 0);
2991  }
2992
2993  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2994  Types.push_back(AT);
2995  if (InsertPos)
2996    AutoTypes.InsertNode(AT, InsertPos);
2997  return QualType(AT, 0);
2998}
2999
3000/// getAtomicType - Return the uniqued reference to the atomic type for
3001/// the given value type.
3002QualType ASTContext::getAtomicType(QualType T) const {
3003  // Unique pointers, to guarantee there is only one pointer of a particular
3004  // structure.
3005  llvm::FoldingSetNodeID ID;
3006  AtomicType::Profile(ID, T);
3007
3008  void *InsertPos = 0;
3009  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3010    return QualType(AT, 0);
3011
3012  // If the atomic value type isn't canonical, this won't be a canonical type
3013  // either, so fill in the canonical type field.
3014  QualType Canonical;
3015  if (!T.isCanonical()) {
3016    Canonical = getAtomicType(getCanonicalType(T));
3017
3018    // Get the new insert position for the node we care about.
3019    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3020    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3021  }
3022  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3023  Types.push_back(New);
3024  AtomicTypes.InsertNode(New, InsertPos);
3025  return QualType(New, 0);
3026}
3027
3028/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3029QualType ASTContext::getAutoDeductType() const {
3030  if (AutoDeductTy.isNull())
3031    AutoDeductTy = getAutoType(QualType());
3032  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3033  return AutoDeductTy;
3034}
3035
3036/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3037QualType ASTContext::getAutoRRefDeductType() const {
3038  if (AutoRRefDeductTy.isNull())
3039    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3040  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3041  return AutoRRefDeductTy;
3042}
3043
3044/// getTagDeclType - Return the unique reference to the type for the
3045/// specified TagDecl (struct/union/class/enum) decl.
3046QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3047  assert (Decl);
3048  // FIXME: What is the design on getTagDeclType when it requires casting
3049  // away const?  mutable?
3050  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3051}
3052
3053/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3054/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3055/// needs to agree with the definition in <stddef.h>.
3056CanQualType ASTContext::getSizeType() const {
3057  return getFromTargetType(Target->getSizeType());
3058}
3059
3060/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3061CanQualType ASTContext::getIntMaxType() const {
3062  return getFromTargetType(Target->getIntMaxType());
3063}
3064
3065/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3066CanQualType ASTContext::getUIntMaxType() const {
3067  return getFromTargetType(Target->getUIntMaxType());
3068}
3069
3070/// getSignedWCharType - Return the type of "signed wchar_t".
3071/// Used when in C++, as a GCC extension.
3072QualType ASTContext::getSignedWCharType() const {
3073  // FIXME: derive from "Target" ?
3074  return WCharTy;
3075}
3076
3077/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3078/// Used when in C++, as a GCC extension.
3079QualType ASTContext::getUnsignedWCharType() const {
3080  // FIXME: derive from "Target" ?
3081  return UnsignedIntTy;
3082}
3083
3084/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3085/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3086QualType ASTContext::getPointerDiffType() const {
3087  return getFromTargetType(Target->getPtrDiffType(0));
3088}
3089
3090//===----------------------------------------------------------------------===//
3091//                              Type Operators
3092//===----------------------------------------------------------------------===//
3093
3094CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3095  // Push qualifiers into arrays, and then discard any remaining
3096  // qualifiers.
3097  T = getCanonicalType(T);
3098  T = getVariableArrayDecayedType(T);
3099  const Type *Ty = T.getTypePtr();
3100  QualType Result;
3101  if (isa<ArrayType>(Ty)) {
3102    Result = getArrayDecayedType(QualType(Ty,0));
3103  } else if (isa<FunctionType>(Ty)) {
3104    Result = getPointerType(QualType(Ty, 0));
3105  } else {
3106    Result = QualType(Ty, 0);
3107  }
3108
3109  return CanQualType::CreateUnsafe(Result);
3110}
3111
3112QualType ASTContext::getUnqualifiedArrayType(QualType type,
3113                                             Qualifiers &quals) {
3114  SplitQualType splitType = type.getSplitUnqualifiedType();
3115
3116  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3117  // the unqualified desugared type and then drops it on the floor.
3118  // We then have to strip that sugar back off with
3119  // getUnqualifiedDesugaredType(), which is silly.
3120  const ArrayType *AT =
3121    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3122
3123  // If we don't have an array, just use the results in splitType.
3124  if (!AT) {
3125    quals = splitType.Quals;
3126    return QualType(splitType.Ty, 0);
3127  }
3128
3129  // Otherwise, recurse on the array's element type.
3130  QualType elementType = AT->getElementType();
3131  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3132
3133  // If that didn't change the element type, AT has no qualifiers, so we
3134  // can just use the results in splitType.
3135  if (elementType == unqualElementType) {
3136    assert(quals.empty()); // from the recursive call
3137    quals = splitType.Quals;
3138    return QualType(splitType.Ty, 0);
3139  }
3140
3141  // Otherwise, add in the qualifiers from the outermost type, then
3142  // build the type back up.
3143  quals.addConsistentQualifiers(splitType.Quals);
3144
3145  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3146    return getConstantArrayType(unqualElementType, CAT->getSize(),
3147                                CAT->getSizeModifier(), 0);
3148  }
3149
3150  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3151    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3152  }
3153
3154  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3155    return getVariableArrayType(unqualElementType,
3156                                VAT->getSizeExpr(),
3157                                VAT->getSizeModifier(),
3158                                VAT->getIndexTypeCVRQualifiers(),
3159                                VAT->getBracketsRange());
3160  }
3161
3162  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3163  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3164                                    DSAT->getSizeModifier(), 0,
3165                                    SourceRange());
3166}
3167
3168/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3169/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3170/// they point to and return true. If T1 and T2 aren't pointer types
3171/// or pointer-to-member types, or if they are not similar at this
3172/// level, returns false and leaves T1 and T2 unchanged. Top-level
3173/// qualifiers on T1 and T2 are ignored. This function will typically
3174/// be called in a loop that successively "unwraps" pointer and
3175/// pointer-to-member types to compare them at each level.
3176bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3177  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3178                    *T2PtrType = T2->getAs<PointerType>();
3179  if (T1PtrType && T2PtrType) {
3180    T1 = T1PtrType->getPointeeType();
3181    T2 = T2PtrType->getPointeeType();
3182    return true;
3183  }
3184
3185  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3186                          *T2MPType = T2->getAs<MemberPointerType>();
3187  if (T1MPType && T2MPType &&
3188      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3189                             QualType(T2MPType->getClass(), 0))) {
3190    T1 = T1MPType->getPointeeType();
3191    T2 = T2MPType->getPointeeType();
3192    return true;
3193  }
3194
3195  if (getLangOpts().ObjC1) {
3196    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3197                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3198    if (T1OPType && T2OPType) {
3199      T1 = T1OPType->getPointeeType();
3200      T2 = T2OPType->getPointeeType();
3201      return true;
3202    }
3203  }
3204
3205  // FIXME: Block pointers, too?
3206
3207  return false;
3208}
3209
3210DeclarationNameInfo
3211ASTContext::getNameForTemplate(TemplateName Name,
3212                               SourceLocation NameLoc) const {
3213  switch (Name.getKind()) {
3214  case TemplateName::QualifiedTemplate:
3215  case TemplateName::Template:
3216    // DNInfo work in progress: CHECKME: what about DNLoc?
3217    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3218                               NameLoc);
3219
3220  case TemplateName::OverloadedTemplate: {
3221    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3222    // DNInfo work in progress: CHECKME: what about DNLoc?
3223    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3224  }
3225
3226  case TemplateName::DependentTemplate: {
3227    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3228    DeclarationName DName;
3229    if (DTN->isIdentifier()) {
3230      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3231      return DeclarationNameInfo(DName, NameLoc);
3232    } else {
3233      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3234      // DNInfo work in progress: FIXME: source locations?
3235      DeclarationNameLoc DNLoc;
3236      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3237      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3238      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3239    }
3240  }
3241
3242  case TemplateName::SubstTemplateTemplateParm: {
3243    SubstTemplateTemplateParmStorage *subst
3244      = Name.getAsSubstTemplateTemplateParm();
3245    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3246                               NameLoc);
3247  }
3248
3249  case TemplateName::SubstTemplateTemplateParmPack: {
3250    SubstTemplateTemplateParmPackStorage *subst
3251      = Name.getAsSubstTemplateTemplateParmPack();
3252    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3253                               NameLoc);
3254  }
3255  }
3256
3257  llvm_unreachable("bad template name kind!");
3258}
3259
3260TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3261  switch (Name.getKind()) {
3262  case TemplateName::QualifiedTemplate:
3263  case TemplateName::Template: {
3264    TemplateDecl *Template = Name.getAsTemplateDecl();
3265    if (TemplateTemplateParmDecl *TTP
3266          = dyn_cast<TemplateTemplateParmDecl>(Template))
3267      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3268
3269    // The canonical template name is the canonical template declaration.
3270    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3271  }
3272
3273  case TemplateName::OverloadedTemplate:
3274    llvm_unreachable("cannot canonicalize overloaded template");
3275
3276  case TemplateName::DependentTemplate: {
3277    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3278    assert(DTN && "Non-dependent template names must refer to template decls.");
3279    return DTN->CanonicalTemplateName;
3280  }
3281
3282  case TemplateName::SubstTemplateTemplateParm: {
3283    SubstTemplateTemplateParmStorage *subst
3284      = Name.getAsSubstTemplateTemplateParm();
3285    return getCanonicalTemplateName(subst->getReplacement());
3286  }
3287
3288  case TemplateName::SubstTemplateTemplateParmPack: {
3289    SubstTemplateTemplateParmPackStorage *subst
3290                                  = Name.getAsSubstTemplateTemplateParmPack();
3291    TemplateTemplateParmDecl *canonParameter
3292      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3293    TemplateArgument canonArgPack
3294      = getCanonicalTemplateArgument(subst->getArgumentPack());
3295    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3296  }
3297  }
3298
3299  llvm_unreachable("bad template name!");
3300}
3301
3302bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3303  X = getCanonicalTemplateName(X);
3304  Y = getCanonicalTemplateName(Y);
3305  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3306}
3307
3308TemplateArgument
3309ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3310  switch (Arg.getKind()) {
3311    case TemplateArgument::Null:
3312      return Arg;
3313
3314    case TemplateArgument::Expression:
3315      return Arg;
3316
3317    case TemplateArgument::Declaration: {
3318      if (Decl *D = Arg.getAsDecl())
3319          return TemplateArgument(D->getCanonicalDecl());
3320      return TemplateArgument((Decl*)0);
3321    }
3322
3323    case TemplateArgument::Template:
3324      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3325
3326    case TemplateArgument::TemplateExpansion:
3327      return TemplateArgument(getCanonicalTemplateName(
3328                                         Arg.getAsTemplateOrTemplatePattern()),
3329                              Arg.getNumTemplateExpansions());
3330
3331    case TemplateArgument::Integral:
3332      return TemplateArgument(*Arg.getAsIntegral(),
3333                              getCanonicalType(Arg.getIntegralType()));
3334
3335    case TemplateArgument::Type:
3336      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3337
3338    case TemplateArgument::Pack: {
3339      if (Arg.pack_size() == 0)
3340        return Arg;
3341
3342      TemplateArgument *CanonArgs
3343        = new (*this) TemplateArgument[Arg.pack_size()];
3344      unsigned Idx = 0;
3345      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3346                                        AEnd = Arg.pack_end();
3347           A != AEnd; (void)++A, ++Idx)
3348        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3349
3350      return TemplateArgument(CanonArgs, Arg.pack_size());
3351    }
3352  }
3353
3354  // Silence GCC warning
3355  llvm_unreachable("Unhandled template argument kind");
3356}
3357
3358NestedNameSpecifier *
3359ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3360  if (!NNS)
3361    return 0;
3362
3363  switch (NNS->getKind()) {
3364  case NestedNameSpecifier::Identifier:
3365    // Canonicalize the prefix but keep the identifier the same.
3366    return NestedNameSpecifier::Create(*this,
3367                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3368                                       NNS->getAsIdentifier());
3369
3370  case NestedNameSpecifier::Namespace:
3371    // A namespace is canonical; build a nested-name-specifier with
3372    // this namespace and no prefix.
3373    return NestedNameSpecifier::Create(*this, 0,
3374                                 NNS->getAsNamespace()->getOriginalNamespace());
3375
3376  case NestedNameSpecifier::NamespaceAlias:
3377    // A namespace is canonical; build a nested-name-specifier with
3378    // this namespace and no prefix.
3379    return NestedNameSpecifier::Create(*this, 0,
3380                                    NNS->getAsNamespaceAlias()->getNamespace()
3381                                                      ->getOriginalNamespace());
3382
3383  case NestedNameSpecifier::TypeSpec:
3384  case NestedNameSpecifier::TypeSpecWithTemplate: {
3385    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3386
3387    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3388    // break it apart into its prefix and identifier, then reconsititute those
3389    // as the canonical nested-name-specifier. This is required to canonicalize
3390    // a dependent nested-name-specifier involving typedefs of dependent-name
3391    // types, e.g.,
3392    //   typedef typename T::type T1;
3393    //   typedef typename T1::type T2;
3394    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3395      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3396                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3397
3398    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3399    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3400    // first place?
3401    return NestedNameSpecifier::Create(*this, 0, false,
3402                                       const_cast<Type*>(T.getTypePtr()));
3403  }
3404
3405  case NestedNameSpecifier::Global:
3406    // The global specifier is canonical and unique.
3407    return NNS;
3408  }
3409
3410  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3411}
3412
3413
3414const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3415  // Handle the non-qualified case efficiently.
3416  if (!T.hasLocalQualifiers()) {
3417    // Handle the common positive case fast.
3418    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3419      return AT;
3420  }
3421
3422  // Handle the common negative case fast.
3423  if (!isa<ArrayType>(T.getCanonicalType()))
3424    return 0;
3425
3426  // Apply any qualifiers from the array type to the element type.  This
3427  // implements C99 6.7.3p8: "If the specification of an array type includes
3428  // any type qualifiers, the element type is so qualified, not the array type."
3429
3430  // If we get here, we either have type qualifiers on the type, or we have
3431  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3432  // we must propagate them down into the element type.
3433
3434  SplitQualType split = T.getSplitDesugaredType();
3435  Qualifiers qs = split.Quals;
3436
3437  // If we have a simple case, just return now.
3438  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3439  if (ATy == 0 || qs.empty())
3440    return ATy;
3441
3442  // Otherwise, we have an array and we have qualifiers on it.  Push the
3443  // qualifiers into the array element type and return a new array type.
3444  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3445
3446  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3447    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3448                                                CAT->getSizeModifier(),
3449                                           CAT->getIndexTypeCVRQualifiers()));
3450  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3451    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3452                                                  IAT->getSizeModifier(),
3453                                           IAT->getIndexTypeCVRQualifiers()));
3454
3455  if (const DependentSizedArrayType *DSAT
3456        = dyn_cast<DependentSizedArrayType>(ATy))
3457    return cast<ArrayType>(
3458                     getDependentSizedArrayType(NewEltTy,
3459                                                DSAT->getSizeExpr(),
3460                                                DSAT->getSizeModifier(),
3461                                              DSAT->getIndexTypeCVRQualifiers(),
3462                                                DSAT->getBracketsRange()));
3463
3464  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3465  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3466                                              VAT->getSizeExpr(),
3467                                              VAT->getSizeModifier(),
3468                                              VAT->getIndexTypeCVRQualifiers(),
3469                                              VAT->getBracketsRange()));
3470}
3471
3472QualType ASTContext::getAdjustedParameterType(QualType T) {
3473  // C99 6.7.5.3p7:
3474  //   A declaration of a parameter as "array of type" shall be
3475  //   adjusted to "qualified pointer to type", where the type
3476  //   qualifiers (if any) are those specified within the [ and ] of
3477  //   the array type derivation.
3478  if (T->isArrayType())
3479    return getArrayDecayedType(T);
3480
3481  // C99 6.7.5.3p8:
3482  //   A declaration of a parameter as "function returning type"
3483  //   shall be adjusted to "pointer to function returning type", as
3484  //   in 6.3.2.1.
3485  if (T->isFunctionType())
3486    return getPointerType(T);
3487
3488  return T;
3489}
3490
3491QualType ASTContext::getSignatureParameterType(QualType T) {
3492  T = getVariableArrayDecayedType(T);
3493  T = getAdjustedParameterType(T);
3494  return T.getUnqualifiedType();
3495}
3496
3497/// getArrayDecayedType - Return the properly qualified result of decaying the
3498/// specified array type to a pointer.  This operation is non-trivial when
3499/// handling typedefs etc.  The canonical type of "T" must be an array type,
3500/// this returns a pointer to a properly qualified element of the array.
3501///
3502/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3503QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3504  // Get the element type with 'getAsArrayType' so that we don't lose any
3505  // typedefs in the element type of the array.  This also handles propagation
3506  // of type qualifiers from the array type into the element type if present
3507  // (C99 6.7.3p8).
3508  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3509  assert(PrettyArrayType && "Not an array type!");
3510
3511  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3512
3513  // int x[restrict 4] ->  int *restrict
3514  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3515}
3516
3517QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3518  return getBaseElementType(array->getElementType());
3519}
3520
3521QualType ASTContext::getBaseElementType(QualType type) const {
3522  Qualifiers qs;
3523  while (true) {
3524    SplitQualType split = type.getSplitDesugaredType();
3525    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3526    if (!array) break;
3527
3528    type = array->getElementType();
3529    qs.addConsistentQualifiers(split.Quals);
3530  }
3531
3532  return getQualifiedType(type, qs);
3533}
3534
3535/// getConstantArrayElementCount - Returns number of constant array elements.
3536uint64_t
3537ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3538  uint64_t ElementCount = 1;
3539  do {
3540    ElementCount *= CA->getSize().getZExtValue();
3541    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3542  } while (CA);
3543  return ElementCount;
3544}
3545
3546/// getFloatingRank - Return a relative rank for floating point types.
3547/// This routine will assert if passed a built-in type that isn't a float.
3548static FloatingRank getFloatingRank(QualType T) {
3549  if (const ComplexType *CT = T->getAs<ComplexType>())
3550    return getFloatingRank(CT->getElementType());
3551
3552  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3553  switch (T->getAs<BuiltinType>()->getKind()) {
3554  default: llvm_unreachable("getFloatingRank(): not a floating type");
3555  case BuiltinType::Half:       return HalfRank;
3556  case BuiltinType::Float:      return FloatRank;
3557  case BuiltinType::Double:     return DoubleRank;
3558  case BuiltinType::LongDouble: return LongDoubleRank;
3559  }
3560}
3561
3562/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3563/// point or a complex type (based on typeDomain/typeSize).
3564/// 'typeDomain' is a real floating point or complex type.
3565/// 'typeSize' is a real floating point or complex type.
3566QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3567                                                       QualType Domain) const {
3568  FloatingRank EltRank = getFloatingRank(Size);
3569  if (Domain->isComplexType()) {
3570    switch (EltRank) {
3571    case HalfRank: llvm_unreachable("Complex half is not supported");
3572    case FloatRank:      return FloatComplexTy;
3573    case DoubleRank:     return DoubleComplexTy;
3574    case LongDoubleRank: return LongDoubleComplexTy;
3575    }
3576  }
3577
3578  assert(Domain->isRealFloatingType() && "Unknown domain!");
3579  switch (EltRank) {
3580  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3581  case FloatRank:      return FloatTy;
3582  case DoubleRank:     return DoubleTy;
3583  case LongDoubleRank: return LongDoubleTy;
3584  }
3585  llvm_unreachable("getFloatingRank(): illegal value for rank");
3586}
3587
3588/// getFloatingTypeOrder - Compare the rank of the two specified floating
3589/// point types, ignoring the domain of the type (i.e. 'double' ==
3590/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3591/// LHS < RHS, return -1.
3592int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3593  FloatingRank LHSR = getFloatingRank(LHS);
3594  FloatingRank RHSR = getFloatingRank(RHS);
3595
3596  if (LHSR == RHSR)
3597    return 0;
3598  if (LHSR > RHSR)
3599    return 1;
3600  return -1;
3601}
3602
3603/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3604/// routine will assert if passed a built-in type that isn't an integer or enum,
3605/// or if it is not canonicalized.
3606unsigned ASTContext::getIntegerRank(const Type *T) const {
3607  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3608
3609  switch (cast<BuiltinType>(T)->getKind()) {
3610  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3611  case BuiltinType::Bool:
3612    return 1 + (getIntWidth(BoolTy) << 3);
3613  case BuiltinType::Char_S:
3614  case BuiltinType::Char_U:
3615  case BuiltinType::SChar:
3616  case BuiltinType::UChar:
3617    return 2 + (getIntWidth(CharTy) << 3);
3618  case BuiltinType::Short:
3619  case BuiltinType::UShort:
3620    return 3 + (getIntWidth(ShortTy) << 3);
3621  case BuiltinType::Int:
3622  case BuiltinType::UInt:
3623    return 4 + (getIntWidth(IntTy) << 3);
3624  case BuiltinType::Long:
3625  case BuiltinType::ULong:
3626    return 5 + (getIntWidth(LongTy) << 3);
3627  case BuiltinType::LongLong:
3628  case BuiltinType::ULongLong:
3629    return 6 + (getIntWidth(LongLongTy) << 3);
3630  case BuiltinType::Int128:
3631  case BuiltinType::UInt128:
3632    return 7 + (getIntWidth(Int128Ty) << 3);
3633  }
3634}
3635
3636/// \brief Whether this is a promotable bitfield reference according
3637/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3638///
3639/// \returns the type this bit-field will promote to, or NULL if no
3640/// promotion occurs.
3641QualType ASTContext::isPromotableBitField(Expr *E) const {
3642  if (E->isTypeDependent() || E->isValueDependent())
3643    return QualType();
3644
3645  FieldDecl *Field = E->getBitField();
3646  if (!Field)
3647    return QualType();
3648
3649  QualType FT = Field->getType();
3650
3651  uint64_t BitWidth = Field->getBitWidthValue(*this);
3652  uint64_t IntSize = getTypeSize(IntTy);
3653  // GCC extension compatibility: if the bit-field size is less than or equal
3654  // to the size of int, it gets promoted no matter what its type is.
3655  // For instance, unsigned long bf : 4 gets promoted to signed int.
3656  if (BitWidth < IntSize)
3657    return IntTy;
3658
3659  if (BitWidth == IntSize)
3660    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3661
3662  // Types bigger than int are not subject to promotions, and therefore act
3663  // like the base type.
3664  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3665  // is ridiculous.
3666  return QualType();
3667}
3668
3669/// getPromotedIntegerType - Returns the type that Promotable will
3670/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3671/// integer type.
3672QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3673  assert(!Promotable.isNull());
3674  assert(Promotable->isPromotableIntegerType());
3675  if (const EnumType *ET = Promotable->getAs<EnumType>())
3676    return ET->getDecl()->getPromotionType();
3677
3678  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3679    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3680    // (3.9.1) can be converted to a prvalue of the first of the following
3681    // types that can represent all the values of its underlying type:
3682    // int, unsigned int, long int, unsigned long int, long long int, or
3683    // unsigned long long int [...]
3684    // FIXME: Is there some better way to compute this?
3685    if (BT->getKind() == BuiltinType::WChar_S ||
3686        BT->getKind() == BuiltinType::WChar_U ||
3687        BT->getKind() == BuiltinType::Char16 ||
3688        BT->getKind() == BuiltinType::Char32) {
3689      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3690      uint64_t FromSize = getTypeSize(BT);
3691      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3692                                  LongLongTy, UnsignedLongLongTy };
3693      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3694        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3695        if (FromSize < ToSize ||
3696            (FromSize == ToSize &&
3697             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3698          return PromoteTypes[Idx];
3699      }
3700      llvm_unreachable("char type should fit into long long");
3701    }
3702  }
3703
3704  // At this point, we should have a signed or unsigned integer type.
3705  if (Promotable->isSignedIntegerType())
3706    return IntTy;
3707  uint64_t PromotableSize = getTypeSize(Promotable);
3708  uint64_t IntSize = getTypeSize(IntTy);
3709  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3710  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3711}
3712
3713/// \brief Recurses in pointer/array types until it finds an objc retainable
3714/// type and returns its ownership.
3715Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3716  while (!T.isNull()) {
3717    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3718      return T.getObjCLifetime();
3719    if (T->isArrayType())
3720      T = getBaseElementType(T);
3721    else if (const PointerType *PT = T->getAs<PointerType>())
3722      T = PT->getPointeeType();
3723    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3724      T = RT->getPointeeType();
3725    else
3726      break;
3727  }
3728
3729  return Qualifiers::OCL_None;
3730}
3731
3732/// getIntegerTypeOrder - Returns the highest ranked integer type:
3733/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3734/// LHS < RHS, return -1.
3735int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3736  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3737  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3738  if (LHSC == RHSC) return 0;
3739
3740  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3741  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3742
3743  unsigned LHSRank = getIntegerRank(LHSC);
3744  unsigned RHSRank = getIntegerRank(RHSC);
3745
3746  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3747    if (LHSRank == RHSRank) return 0;
3748    return LHSRank > RHSRank ? 1 : -1;
3749  }
3750
3751  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3752  if (LHSUnsigned) {
3753    // If the unsigned [LHS] type is larger, return it.
3754    if (LHSRank >= RHSRank)
3755      return 1;
3756
3757    // If the signed type can represent all values of the unsigned type, it
3758    // wins.  Because we are dealing with 2's complement and types that are
3759    // powers of two larger than each other, this is always safe.
3760    return -1;
3761  }
3762
3763  // If the unsigned [RHS] type is larger, return it.
3764  if (RHSRank >= LHSRank)
3765    return -1;
3766
3767  // If the signed type can represent all values of the unsigned type, it
3768  // wins.  Because we are dealing with 2's complement and types that are
3769  // powers of two larger than each other, this is always safe.
3770  return 1;
3771}
3772
3773static RecordDecl *
3774CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3775                 DeclContext *DC, IdentifierInfo *Id) {
3776  SourceLocation Loc;
3777  if (Ctx.getLangOpts().CPlusPlus)
3778    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3779  else
3780    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3781}
3782
3783// getCFConstantStringType - Return the type used for constant CFStrings.
3784QualType ASTContext::getCFConstantStringType() const {
3785  if (!CFConstantStringTypeDecl) {
3786    CFConstantStringTypeDecl =
3787      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3788                       &Idents.get("NSConstantString"));
3789    CFConstantStringTypeDecl->startDefinition();
3790
3791    QualType FieldTypes[4];
3792
3793    // const int *isa;
3794    FieldTypes[0] = getPointerType(IntTy.withConst());
3795    // int flags;
3796    FieldTypes[1] = IntTy;
3797    // const char *str;
3798    FieldTypes[2] = getPointerType(CharTy.withConst());
3799    // long length;
3800    FieldTypes[3] = LongTy;
3801
3802    // Create fields
3803    for (unsigned i = 0; i < 4; ++i) {
3804      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3805                                           SourceLocation(),
3806                                           SourceLocation(), 0,
3807                                           FieldTypes[i], /*TInfo=*/0,
3808                                           /*BitWidth=*/0,
3809                                           /*Mutable=*/false,
3810                                           /*HasInit=*/false);
3811      Field->setAccess(AS_public);
3812      CFConstantStringTypeDecl->addDecl(Field);
3813    }
3814
3815    CFConstantStringTypeDecl->completeDefinition();
3816  }
3817
3818  return getTagDeclType(CFConstantStringTypeDecl);
3819}
3820
3821void ASTContext::setCFConstantStringType(QualType T) {
3822  const RecordType *Rec = T->getAs<RecordType>();
3823  assert(Rec && "Invalid CFConstantStringType");
3824  CFConstantStringTypeDecl = Rec->getDecl();
3825}
3826
3827QualType ASTContext::getBlockDescriptorType() const {
3828  if (BlockDescriptorType)
3829    return getTagDeclType(BlockDescriptorType);
3830
3831  RecordDecl *T;
3832  // FIXME: Needs the FlagAppleBlock bit.
3833  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3834                       &Idents.get("__block_descriptor"));
3835  T->startDefinition();
3836
3837  QualType FieldTypes[] = {
3838    UnsignedLongTy,
3839    UnsignedLongTy,
3840  };
3841
3842  const char *FieldNames[] = {
3843    "reserved",
3844    "Size"
3845  };
3846
3847  for (size_t i = 0; i < 2; ++i) {
3848    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3849                                         SourceLocation(),
3850                                         &Idents.get(FieldNames[i]),
3851                                         FieldTypes[i], /*TInfo=*/0,
3852                                         /*BitWidth=*/0,
3853                                         /*Mutable=*/false,
3854                                         /*HasInit=*/false);
3855    Field->setAccess(AS_public);
3856    T->addDecl(Field);
3857  }
3858
3859  T->completeDefinition();
3860
3861  BlockDescriptorType = T;
3862
3863  return getTagDeclType(BlockDescriptorType);
3864}
3865
3866QualType ASTContext::getBlockDescriptorExtendedType() const {
3867  if (BlockDescriptorExtendedType)
3868    return getTagDeclType(BlockDescriptorExtendedType);
3869
3870  RecordDecl *T;
3871  // FIXME: Needs the FlagAppleBlock bit.
3872  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3873                       &Idents.get("__block_descriptor_withcopydispose"));
3874  T->startDefinition();
3875
3876  QualType FieldTypes[] = {
3877    UnsignedLongTy,
3878    UnsignedLongTy,
3879    getPointerType(VoidPtrTy),
3880    getPointerType(VoidPtrTy)
3881  };
3882
3883  const char *FieldNames[] = {
3884    "reserved",
3885    "Size",
3886    "CopyFuncPtr",
3887    "DestroyFuncPtr"
3888  };
3889
3890  for (size_t i = 0; i < 4; ++i) {
3891    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3892                                         SourceLocation(),
3893                                         &Idents.get(FieldNames[i]),
3894                                         FieldTypes[i], /*TInfo=*/0,
3895                                         /*BitWidth=*/0,
3896                                         /*Mutable=*/false,
3897                                         /*HasInit=*/false);
3898    Field->setAccess(AS_public);
3899    T->addDecl(Field);
3900  }
3901
3902  T->completeDefinition();
3903
3904  BlockDescriptorExtendedType = T;
3905
3906  return getTagDeclType(BlockDescriptorExtendedType);
3907}
3908
3909bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3910  if (Ty->isObjCRetainableType())
3911    return true;
3912  if (getLangOpts().CPlusPlus) {
3913    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3914      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3915      return RD->hasConstCopyConstructor();
3916
3917    }
3918  }
3919  return false;
3920}
3921
3922QualType
3923ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3924  //  type = struct __Block_byref_1_X {
3925  //    void *__isa;
3926  //    struct __Block_byref_1_X *__forwarding;
3927  //    unsigned int __flags;
3928  //    unsigned int __size;
3929  //    void *__copy_helper;            // as needed
3930  //    void *__destroy_help            // as needed
3931  //    int X;
3932  //  } *
3933
3934  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3935
3936  // FIXME: Move up
3937  SmallString<36> Name;
3938  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3939                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3940  RecordDecl *T;
3941  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3942  T->startDefinition();
3943  QualType Int32Ty = IntTy;
3944  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3945  QualType FieldTypes[] = {
3946    getPointerType(VoidPtrTy),
3947    getPointerType(getTagDeclType(T)),
3948    Int32Ty,
3949    Int32Ty,
3950    getPointerType(VoidPtrTy),
3951    getPointerType(VoidPtrTy),
3952    Ty
3953  };
3954
3955  StringRef FieldNames[] = {
3956    "__isa",
3957    "__forwarding",
3958    "__flags",
3959    "__size",
3960    "__copy_helper",
3961    "__destroy_helper",
3962    DeclName,
3963  };
3964
3965  for (size_t i = 0; i < 7; ++i) {
3966    if (!HasCopyAndDispose && i >=4 && i <= 5)
3967      continue;
3968    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3969                                         SourceLocation(),
3970                                         &Idents.get(FieldNames[i]),
3971                                         FieldTypes[i], /*TInfo=*/0,
3972                                         /*BitWidth=*/0, /*Mutable=*/false,
3973                                         /*HasInit=*/false);
3974    Field->setAccess(AS_public);
3975    T->addDecl(Field);
3976  }
3977
3978  T->completeDefinition();
3979
3980  return getPointerType(getTagDeclType(T));
3981}
3982
3983TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3984  if (!ObjCInstanceTypeDecl)
3985    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3986                                               getTranslationUnitDecl(),
3987                                               SourceLocation(),
3988                                               SourceLocation(),
3989                                               &Idents.get("instancetype"),
3990                                     getTrivialTypeSourceInfo(getObjCIdType()));
3991  return ObjCInstanceTypeDecl;
3992}
3993
3994// This returns true if a type has been typedefed to BOOL:
3995// typedef <type> BOOL;
3996static bool isTypeTypedefedAsBOOL(QualType T) {
3997  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3998    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3999      return II->isStr("BOOL");
4000
4001  return false;
4002}
4003
4004/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4005/// purpose.
4006CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4007  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4008    return CharUnits::Zero();
4009
4010  CharUnits sz = getTypeSizeInChars(type);
4011
4012  // Make all integer and enum types at least as large as an int
4013  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4014    sz = std::max(sz, getTypeSizeInChars(IntTy));
4015  // Treat arrays as pointers, since that's how they're passed in.
4016  else if (type->isArrayType())
4017    sz = getTypeSizeInChars(VoidPtrTy);
4018  return sz;
4019}
4020
4021static inline
4022std::string charUnitsToString(const CharUnits &CU) {
4023  return llvm::itostr(CU.getQuantity());
4024}
4025
4026/// getObjCEncodingForBlock - Return the encoded type for this block
4027/// declaration.
4028std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4029  std::string S;
4030
4031  const BlockDecl *Decl = Expr->getBlockDecl();
4032  QualType BlockTy =
4033      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4034  // Encode result type.
4035  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4036  // Compute size of all parameters.
4037  // Start with computing size of a pointer in number of bytes.
4038  // FIXME: There might(should) be a better way of doing this computation!
4039  SourceLocation Loc;
4040  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4041  CharUnits ParmOffset = PtrSize;
4042  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4043       E = Decl->param_end(); PI != E; ++PI) {
4044    QualType PType = (*PI)->getType();
4045    CharUnits sz = getObjCEncodingTypeSize(PType);
4046    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4047    ParmOffset += sz;
4048  }
4049  // Size of the argument frame
4050  S += charUnitsToString(ParmOffset);
4051  // Block pointer and offset.
4052  S += "@?0";
4053
4054  // Argument types.
4055  ParmOffset = PtrSize;
4056  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4057       Decl->param_end(); PI != E; ++PI) {
4058    ParmVarDecl *PVDecl = *PI;
4059    QualType PType = PVDecl->getOriginalType();
4060    if (const ArrayType *AT =
4061          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4062      // Use array's original type only if it has known number of
4063      // elements.
4064      if (!isa<ConstantArrayType>(AT))
4065        PType = PVDecl->getType();
4066    } else if (PType->isFunctionType())
4067      PType = PVDecl->getType();
4068    getObjCEncodingForType(PType, S);
4069    S += charUnitsToString(ParmOffset);
4070    ParmOffset += getObjCEncodingTypeSize(PType);
4071  }
4072
4073  return S;
4074}
4075
4076bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4077                                                std::string& S) {
4078  // Encode result type.
4079  getObjCEncodingForType(Decl->getResultType(), S);
4080  CharUnits ParmOffset;
4081  // Compute size of all parameters.
4082  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4083       E = Decl->param_end(); PI != E; ++PI) {
4084    QualType PType = (*PI)->getType();
4085    CharUnits sz = getObjCEncodingTypeSize(PType);
4086    if (sz.isZero())
4087      return true;
4088
4089    assert (sz.isPositive() &&
4090        "getObjCEncodingForFunctionDecl - Incomplete param type");
4091    ParmOffset += sz;
4092  }
4093  S += charUnitsToString(ParmOffset);
4094  ParmOffset = CharUnits::Zero();
4095
4096  // Argument types.
4097  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4098       E = Decl->param_end(); PI != E; ++PI) {
4099    ParmVarDecl *PVDecl = *PI;
4100    QualType PType = PVDecl->getOriginalType();
4101    if (const ArrayType *AT =
4102          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4103      // Use array's original type only if it has known number of
4104      // elements.
4105      if (!isa<ConstantArrayType>(AT))
4106        PType = PVDecl->getType();
4107    } else if (PType->isFunctionType())
4108      PType = PVDecl->getType();
4109    getObjCEncodingForType(PType, S);
4110    S += charUnitsToString(ParmOffset);
4111    ParmOffset += getObjCEncodingTypeSize(PType);
4112  }
4113
4114  return false;
4115}
4116
4117/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4118/// method parameter or return type. If Extended, include class names and
4119/// block object types.
4120void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4121                                                   QualType T, std::string& S,
4122                                                   bool Extended) const {
4123  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4124  getObjCEncodingForTypeQualifier(QT, S);
4125  // Encode parameter type.
4126  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4127                             true     /*OutermostType*/,
4128                             false    /*EncodingProperty*/,
4129                             false    /*StructField*/,
4130                             Extended /*EncodeBlockParameters*/,
4131                             Extended /*EncodeClassNames*/);
4132}
4133
4134/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4135/// declaration.
4136bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4137                                              std::string& S,
4138                                              bool Extended) const {
4139  // FIXME: This is not very efficient.
4140  // Encode return type.
4141  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4142                                    Decl->getResultType(), S, Extended);
4143  // Compute size of all parameters.
4144  // Start with computing size of a pointer in number of bytes.
4145  // FIXME: There might(should) be a better way of doing this computation!
4146  SourceLocation Loc;
4147  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4148  // The first two arguments (self and _cmd) are pointers; account for
4149  // their size.
4150  CharUnits ParmOffset = 2 * PtrSize;
4151  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4152       E = Decl->sel_param_end(); PI != E; ++PI) {
4153    QualType PType = (*PI)->getType();
4154    CharUnits sz = getObjCEncodingTypeSize(PType);
4155    if (sz.isZero())
4156      return true;
4157
4158    assert (sz.isPositive() &&
4159        "getObjCEncodingForMethodDecl - Incomplete param type");
4160    ParmOffset += sz;
4161  }
4162  S += charUnitsToString(ParmOffset);
4163  S += "@0:";
4164  S += charUnitsToString(PtrSize);
4165
4166  // Argument types.
4167  ParmOffset = 2 * PtrSize;
4168  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4169       E = Decl->sel_param_end(); PI != E; ++PI) {
4170    const ParmVarDecl *PVDecl = *PI;
4171    QualType PType = PVDecl->getOriginalType();
4172    if (const ArrayType *AT =
4173          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4174      // Use array's original type only if it has known number of
4175      // elements.
4176      if (!isa<ConstantArrayType>(AT))
4177        PType = PVDecl->getType();
4178    } else if (PType->isFunctionType())
4179      PType = PVDecl->getType();
4180    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4181                                      PType, S, Extended);
4182    S += charUnitsToString(ParmOffset);
4183    ParmOffset += getObjCEncodingTypeSize(PType);
4184  }
4185
4186  return false;
4187}
4188
4189/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4190/// property declaration. If non-NULL, Container must be either an
4191/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4192/// NULL when getting encodings for protocol properties.
4193/// Property attributes are stored as a comma-delimited C string. The simple
4194/// attributes readonly and bycopy are encoded as single characters. The
4195/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4196/// encoded as single characters, followed by an identifier. Property types
4197/// are also encoded as a parametrized attribute. The characters used to encode
4198/// these attributes are defined by the following enumeration:
4199/// @code
4200/// enum PropertyAttributes {
4201/// kPropertyReadOnly = 'R',   // property is read-only.
4202/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4203/// kPropertyByref = '&',  // property is a reference to the value last assigned
4204/// kPropertyDynamic = 'D',    // property is dynamic
4205/// kPropertyGetter = 'G',     // followed by getter selector name
4206/// kPropertySetter = 'S',     // followed by setter selector name
4207/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4208/// kPropertyType = 'T'              // followed by old-style type encoding.
4209/// kPropertyWeak = 'W'              // 'weak' property
4210/// kPropertyStrong = 'P'            // property GC'able
4211/// kPropertyNonAtomic = 'N'         // property non-atomic
4212/// };
4213/// @endcode
4214void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4215                                                const Decl *Container,
4216                                                std::string& S) const {
4217  // Collect information from the property implementation decl(s).
4218  bool Dynamic = false;
4219  ObjCPropertyImplDecl *SynthesizePID = 0;
4220
4221  // FIXME: Duplicated code due to poor abstraction.
4222  if (Container) {
4223    if (const ObjCCategoryImplDecl *CID =
4224        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4225      for (ObjCCategoryImplDecl::propimpl_iterator
4226             i = CID->propimpl_begin(), e = CID->propimpl_end();
4227           i != e; ++i) {
4228        ObjCPropertyImplDecl *PID = *i;
4229        if (PID->getPropertyDecl() == PD) {
4230          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4231            Dynamic = true;
4232          } else {
4233            SynthesizePID = PID;
4234          }
4235        }
4236      }
4237    } else {
4238      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4239      for (ObjCCategoryImplDecl::propimpl_iterator
4240             i = OID->propimpl_begin(), e = OID->propimpl_end();
4241           i != e; ++i) {
4242        ObjCPropertyImplDecl *PID = *i;
4243        if (PID->getPropertyDecl() == PD) {
4244          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4245            Dynamic = true;
4246          } else {
4247            SynthesizePID = PID;
4248          }
4249        }
4250      }
4251    }
4252  }
4253
4254  // FIXME: This is not very efficient.
4255  S = "T";
4256
4257  // Encode result type.
4258  // GCC has some special rules regarding encoding of properties which
4259  // closely resembles encoding of ivars.
4260  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4261                             true /* outermost type */,
4262                             true /* encoding for property */);
4263
4264  if (PD->isReadOnly()) {
4265    S += ",R";
4266  } else {
4267    switch (PD->getSetterKind()) {
4268    case ObjCPropertyDecl::Assign: break;
4269    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4270    case ObjCPropertyDecl::Retain: S += ",&"; break;
4271    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4272    }
4273  }
4274
4275  // It really isn't clear at all what this means, since properties
4276  // are "dynamic by default".
4277  if (Dynamic)
4278    S += ",D";
4279
4280  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4281    S += ",N";
4282
4283  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4284    S += ",G";
4285    S += PD->getGetterName().getAsString();
4286  }
4287
4288  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4289    S += ",S";
4290    S += PD->getSetterName().getAsString();
4291  }
4292
4293  if (SynthesizePID) {
4294    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4295    S += ",V";
4296    S += OID->getNameAsString();
4297  }
4298
4299  // FIXME: OBJCGC: weak & strong
4300}
4301
4302/// getLegacyIntegralTypeEncoding -
4303/// Another legacy compatibility encoding: 32-bit longs are encoded as
4304/// 'l' or 'L' , but not always.  For typedefs, we need to use
4305/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4306///
4307void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4308  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4309    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4310      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4311        PointeeTy = UnsignedIntTy;
4312      else
4313        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4314          PointeeTy = IntTy;
4315    }
4316  }
4317}
4318
4319void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4320                                        const FieldDecl *Field) const {
4321  // We follow the behavior of gcc, expanding structures which are
4322  // directly pointed to, and expanding embedded structures. Note that
4323  // these rules are sufficient to prevent recursive encoding of the
4324  // same type.
4325  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4326                             true /* outermost type */);
4327}
4328
4329static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4330    switch (T->getAs<BuiltinType>()->getKind()) {
4331    default: llvm_unreachable("Unhandled builtin type kind");
4332    case BuiltinType::Void:       return 'v';
4333    case BuiltinType::Bool:       return 'B';
4334    case BuiltinType::Char_U:
4335    case BuiltinType::UChar:      return 'C';
4336    case BuiltinType::UShort:     return 'S';
4337    case BuiltinType::UInt:       return 'I';
4338    case BuiltinType::ULong:
4339        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4340    case BuiltinType::UInt128:    return 'T';
4341    case BuiltinType::ULongLong:  return 'Q';
4342    case BuiltinType::Char_S:
4343    case BuiltinType::SChar:      return 'c';
4344    case BuiltinType::Short:      return 's';
4345    case BuiltinType::WChar_S:
4346    case BuiltinType::WChar_U:
4347    case BuiltinType::Int:        return 'i';
4348    case BuiltinType::Long:
4349      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4350    case BuiltinType::LongLong:   return 'q';
4351    case BuiltinType::Int128:     return 't';
4352    case BuiltinType::Float:      return 'f';
4353    case BuiltinType::Double:     return 'd';
4354    case BuiltinType::LongDouble: return 'D';
4355    }
4356}
4357
4358static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4359  EnumDecl *Enum = ET->getDecl();
4360
4361  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4362  if (!Enum->isFixed())
4363    return 'i';
4364
4365  // The encoding of a fixed enum type matches its fixed underlying type.
4366  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4367}
4368
4369static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4370                           QualType T, const FieldDecl *FD) {
4371  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4372  S += 'b';
4373  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4374  // The GNU runtime requires more information; bitfields are encoded as b,
4375  // then the offset (in bits) of the first element, then the type of the
4376  // bitfield, then the size in bits.  For example, in this structure:
4377  //
4378  // struct
4379  // {
4380  //    int integer;
4381  //    int flags:2;
4382  // };
4383  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4384  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4385  // information is not especially sensible, but we're stuck with it for
4386  // compatibility with GCC, although providing it breaks anything that
4387  // actually uses runtime introspection and wants to work on both runtimes...
4388  if (!Ctx->getLangOpts().NeXTRuntime) {
4389    const RecordDecl *RD = FD->getParent();
4390    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4391    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4392    if (const EnumType *ET = T->getAs<EnumType>())
4393      S += ObjCEncodingForEnumType(Ctx, ET);
4394    else
4395      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4396  }
4397  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4398}
4399
4400// FIXME: Use SmallString for accumulating string.
4401void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4402                                            bool ExpandPointedToStructures,
4403                                            bool ExpandStructures,
4404                                            const FieldDecl *FD,
4405                                            bool OutermostType,
4406                                            bool EncodingProperty,
4407                                            bool StructField,
4408                                            bool EncodeBlockParameters,
4409                                            bool EncodeClassNames) const {
4410  if (T->getAs<BuiltinType>()) {
4411    if (FD && FD->isBitField())
4412      return EncodeBitField(this, S, T, FD);
4413    S += ObjCEncodingForPrimitiveKind(this, T);
4414    return;
4415  }
4416
4417  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4418    S += 'j';
4419    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4420                               false);
4421    return;
4422  }
4423
4424  // encoding for pointer or r3eference types.
4425  QualType PointeeTy;
4426  if (const PointerType *PT = T->getAs<PointerType>()) {
4427    if (PT->isObjCSelType()) {
4428      S += ':';
4429      return;
4430    }
4431    PointeeTy = PT->getPointeeType();
4432  }
4433  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4434    PointeeTy = RT->getPointeeType();
4435  if (!PointeeTy.isNull()) {
4436    bool isReadOnly = false;
4437    // For historical/compatibility reasons, the read-only qualifier of the
4438    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4439    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4440    // Also, do not emit the 'r' for anything but the outermost type!
4441    if (isa<TypedefType>(T.getTypePtr())) {
4442      if (OutermostType && T.isConstQualified()) {
4443        isReadOnly = true;
4444        S += 'r';
4445      }
4446    } else if (OutermostType) {
4447      QualType P = PointeeTy;
4448      while (P->getAs<PointerType>())
4449        P = P->getAs<PointerType>()->getPointeeType();
4450      if (P.isConstQualified()) {
4451        isReadOnly = true;
4452        S += 'r';
4453      }
4454    }
4455    if (isReadOnly) {
4456      // Another legacy compatibility encoding. Some ObjC qualifier and type
4457      // combinations need to be rearranged.
4458      // Rewrite "in const" from "nr" to "rn"
4459      if (StringRef(S).endswith("nr"))
4460        S.replace(S.end()-2, S.end(), "rn");
4461    }
4462
4463    if (PointeeTy->isCharType()) {
4464      // char pointer types should be encoded as '*' unless it is a
4465      // type that has been typedef'd to 'BOOL'.
4466      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4467        S += '*';
4468        return;
4469      }
4470    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4471      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4472      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4473        S += '#';
4474        return;
4475      }
4476      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4477      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4478        S += '@';
4479        return;
4480      }
4481      // fall through...
4482    }
4483    S += '^';
4484    getLegacyIntegralTypeEncoding(PointeeTy);
4485
4486    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4487                               NULL);
4488    return;
4489  }
4490
4491  if (const ArrayType *AT =
4492      // Ignore type qualifiers etc.
4493        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4494    if (isa<IncompleteArrayType>(AT) && !StructField) {
4495      // Incomplete arrays are encoded as a pointer to the array element.
4496      S += '^';
4497
4498      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4499                                 false, ExpandStructures, FD);
4500    } else {
4501      S += '[';
4502
4503      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4504        if (getTypeSize(CAT->getElementType()) == 0)
4505          S += '0';
4506        else
4507          S += llvm::utostr(CAT->getSize().getZExtValue());
4508      } else {
4509        //Variable length arrays are encoded as a regular array with 0 elements.
4510        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4511               "Unknown array type!");
4512        S += '0';
4513      }
4514
4515      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4516                                 false, ExpandStructures, FD);
4517      S += ']';
4518    }
4519    return;
4520  }
4521
4522  if (T->getAs<FunctionType>()) {
4523    S += '?';
4524    return;
4525  }
4526
4527  if (const RecordType *RTy = T->getAs<RecordType>()) {
4528    RecordDecl *RDecl = RTy->getDecl();
4529    S += RDecl->isUnion() ? '(' : '{';
4530    // Anonymous structures print as '?'
4531    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4532      S += II->getName();
4533      if (ClassTemplateSpecializationDecl *Spec
4534          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4535        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4536        std::string TemplateArgsStr
4537          = TemplateSpecializationType::PrintTemplateArgumentList(
4538                                            TemplateArgs.data(),
4539                                            TemplateArgs.size(),
4540                                            (*this).getPrintingPolicy());
4541
4542        S += TemplateArgsStr;
4543      }
4544    } else {
4545      S += '?';
4546    }
4547    if (ExpandStructures) {
4548      S += '=';
4549      if (!RDecl->isUnion()) {
4550        getObjCEncodingForStructureImpl(RDecl, S, FD);
4551      } else {
4552        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4553                                     FieldEnd = RDecl->field_end();
4554             Field != FieldEnd; ++Field) {
4555          if (FD) {
4556            S += '"';
4557            S += Field->getNameAsString();
4558            S += '"';
4559          }
4560
4561          // Special case bit-fields.
4562          if (Field->isBitField()) {
4563            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4564                                       (*Field));
4565          } else {
4566            QualType qt = Field->getType();
4567            getLegacyIntegralTypeEncoding(qt);
4568            getObjCEncodingForTypeImpl(qt, S, false, true,
4569                                       FD, /*OutermostType*/false,
4570                                       /*EncodingProperty*/false,
4571                                       /*StructField*/true);
4572          }
4573        }
4574      }
4575    }
4576    S += RDecl->isUnion() ? ')' : '}';
4577    return;
4578  }
4579
4580  if (const EnumType *ET = T->getAs<EnumType>()) {
4581    if (FD && FD->isBitField())
4582      EncodeBitField(this, S, T, FD);
4583    else
4584      S += ObjCEncodingForEnumType(this, ET);
4585    return;
4586  }
4587
4588  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4589    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4590    if (EncodeBlockParameters) {
4591      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4592
4593      S += '<';
4594      // Block return type
4595      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4596                                 ExpandPointedToStructures, ExpandStructures,
4597                                 FD,
4598                                 false /* OutermostType */,
4599                                 EncodingProperty,
4600                                 false /* StructField */,
4601                                 EncodeBlockParameters,
4602                                 EncodeClassNames);
4603      // Block self
4604      S += "@?";
4605      // Block parameters
4606      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4607        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4608               E = FPT->arg_type_end(); I && (I != E); ++I) {
4609          getObjCEncodingForTypeImpl(*I, S,
4610                                     ExpandPointedToStructures,
4611                                     ExpandStructures,
4612                                     FD,
4613                                     false /* OutermostType */,
4614                                     EncodingProperty,
4615                                     false /* StructField */,
4616                                     EncodeBlockParameters,
4617                                     EncodeClassNames);
4618        }
4619      }
4620      S += '>';
4621    }
4622    return;
4623  }
4624
4625  // Ignore protocol qualifiers when mangling at this level.
4626  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4627    T = OT->getBaseType();
4628
4629  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4630    // @encode(class_name)
4631    ObjCInterfaceDecl *OI = OIT->getDecl();
4632    S += '{';
4633    const IdentifierInfo *II = OI->getIdentifier();
4634    S += II->getName();
4635    S += '=';
4636    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4637    DeepCollectObjCIvars(OI, true, Ivars);
4638    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4639      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4640      if (Field->isBitField())
4641        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4642      else
4643        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4644    }
4645    S += '}';
4646    return;
4647  }
4648
4649  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4650    if (OPT->isObjCIdType()) {
4651      S += '@';
4652      return;
4653    }
4654
4655    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4656      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4657      // Since this is a binary compatibility issue, need to consult with runtime
4658      // folks. Fortunately, this is a *very* obsure construct.
4659      S += '#';
4660      return;
4661    }
4662
4663    if (OPT->isObjCQualifiedIdType()) {
4664      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4665                                 ExpandPointedToStructures,
4666                                 ExpandStructures, FD);
4667      if (FD || EncodingProperty || EncodeClassNames) {
4668        // Note that we do extended encoding of protocol qualifer list
4669        // Only when doing ivar or property encoding.
4670        S += '"';
4671        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4672             E = OPT->qual_end(); I != E; ++I) {
4673          S += '<';
4674          S += (*I)->getNameAsString();
4675          S += '>';
4676        }
4677        S += '"';
4678      }
4679      return;
4680    }
4681
4682    QualType PointeeTy = OPT->getPointeeType();
4683    if (!EncodingProperty &&
4684        isa<TypedefType>(PointeeTy.getTypePtr())) {
4685      // Another historical/compatibility reason.
4686      // We encode the underlying type which comes out as
4687      // {...};
4688      S += '^';
4689      getObjCEncodingForTypeImpl(PointeeTy, S,
4690                                 false, ExpandPointedToStructures,
4691                                 NULL);
4692      return;
4693    }
4694
4695    S += '@';
4696    if (OPT->getInterfaceDecl() &&
4697        (FD || EncodingProperty || EncodeClassNames)) {
4698      S += '"';
4699      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4700      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4701           E = OPT->qual_end(); I != E; ++I) {
4702        S += '<';
4703        S += (*I)->getNameAsString();
4704        S += '>';
4705      }
4706      S += '"';
4707    }
4708    return;
4709  }
4710
4711  // gcc just blithely ignores member pointers.
4712  // TODO: maybe there should be a mangling for these
4713  if (T->getAs<MemberPointerType>())
4714    return;
4715
4716  if (T->isVectorType()) {
4717    // This matches gcc's encoding, even though technically it is
4718    // insufficient.
4719    // FIXME. We should do a better job than gcc.
4720    return;
4721  }
4722
4723  llvm_unreachable("@encode for type not implemented!");
4724}
4725
4726void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4727                                                 std::string &S,
4728                                                 const FieldDecl *FD,
4729                                                 bool includeVBases) const {
4730  assert(RDecl && "Expected non-null RecordDecl");
4731  assert(!RDecl->isUnion() && "Should not be called for unions");
4732  if (!RDecl->getDefinition())
4733    return;
4734
4735  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4736  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4737  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4738
4739  if (CXXRec) {
4740    for (CXXRecordDecl::base_class_iterator
4741           BI = CXXRec->bases_begin(),
4742           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4743      if (!BI->isVirtual()) {
4744        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4745        if (base->isEmpty())
4746          continue;
4747        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4748        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4749                                  std::make_pair(offs, base));
4750      }
4751    }
4752  }
4753
4754  unsigned i = 0;
4755  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4756                               FieldEnd = RDecl->field_end();
4757       Field != FieldEnd; ++Field, ++i) {
4758    uint64_t offs = layout.getFieldOffset(i);
4759    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4760                              std::make_pair(offs, *Field));
4761  }
4762
4763  if (CXXRec && includeVBases) {
4764    for (CXXRecordDecl::base_class_iterator
4765           BI = CXXRec->vbases_begin(),
4766           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4767      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4768      if (base->isEmpty())
4769        continue;
4770      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4771      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4772        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4773                                  std::make_pair(offs, base));
4774    }
4775  }
4776
4777  CharUnits size;
4778  if (CXXRec) {
4779    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4780  } else {
4781    size = layout.getSize();
4782  }
4783
4784  uint64_t CurOffs = 0;
4785  std::multimap<uint64_t, NamedDecl *>::iterator
4786    CurLayObj = FieldOrBaseOffsets.begin();
4787
4788  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4789      (CurLayObj == FieldOrBaseOffsets.end() &&
4790         CXXRec && CXXRec->isDynamicClass())) {
4791    assert(CXXRec && CXXRec->isDynamicClass() &&
4792           "Offset 0 was empty but no VTable ?");
4793    if (FD) {
4794      S += "\"_vptr$";
4795      std::string recname = CXXRec->getNameAsString();
4796      if (recname.empty()) recname = "?";
4797      S += recname;
4798      S += '"';
4799    }
4800    S += "^^?";
4801    CurOffs += getTypeSize(VoidPtrTy);
4802  }
4803
4804  if (!RDecl->hasFlexibleArrayMember()) {
4805    // Mark the end of the structure.
4806    uint64_t offs = toBits(size);
4807    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4808                              std::make_pair(offs, (NamedDecl*)0));
4809  }
4810
4811  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4812    assert(CurOffs <= CurLayObj->first);
4813
4814    if (CurOffs < CurLayObj->first) {
4815      uint64_t padding = CurLayObj->first - CurOffs;
4816      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4817      // packing/alignment of members is different that normal, in which case
4818      // the encoding will be out-of-sync with the real layout.
4819      // If the runtime switches to just consider the size of types without
4820      // taking into account alignment, we could make padding explicit in the
4821      // encoding (e.g. using arrays of chars). The encoding strings would be
4822      // longer then though.
4823      CurOffs += padding;
4824    }
4825
4826    NamedDecl *dcl = CurLayObj->second;
4827    if (dcl == 0)
4828      break; // reached end of structure.
4829
4830    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4831      // We expand the bases without their virtual bases since those are going
4832      // in the initial structure. Note that this differs from gcc which
4833      // expands virtual bases each time one is encountered in the hierarchy,
4834      // making the encoding type bigger than it really is.
4835      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4836      assert(!base->isEmpty());
4837      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4838    } else {
4839      FieldDecl *field = cast<FieldDecl>(dcl);
4840      if (FD) {
4841        S += '"';
4842        S += field->getNameAsString();
4843        S += '"';
4844      }
4845
4846      if (field->isBitField()) {
4847        EncodeBitField(this, S, field->getType(), field);
4848        CurOffs += field->getBitWidthValue(*this);
4849      } else {
4850        QualType qt = field->getType();
4851        getLegacyIntegralTypeEncoding(qt);
4852        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4853                                   /*OutermostType*/false,
4854                                   /*EncodingProperty*/false,
4855                                   /*StructField*/true);
4856        CurOffs += getTypeSize(field->getType());
4857      }
4858    }
4859  }
4860}
4861
4862void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4863                                                 std::string& S) const {
4864  if (QT & Decl::OBJC_TQ_In)
4865    S += 'n';
4866  if (QT & Decl::OBJC_TQ_Inout)
4867    S += 'N';
4868  if (QT & Decl::OBJC_TQ_Out)
4869    S += 'o';
4870  if (QT & Decl::OBJC_TQ_Bycopy)
4871    S += 'O';
4872  if (QT & Decl::OBJC_TQ_Byref)
4873    S += 'R';
4874  if (QT & Decl::OBJC_TQ_Oneway)
4875    S += 'V';
4876}
4877
4878void ASTContext::setBuiltinVaListType(QualType T) {
4879  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4880
4881  BuiltinVaListType = T;
4882}
4883
4884TypedefDecl *ASTContext::getObjCIdDecl() const {
4885  if (!ObjCIdDecl) {
4886    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4887    T = getObjCObjectPointerType(T);
4888    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4889    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4890                                     getTranslationUnitDecl(),
4891                                     SourceLocation(), SourceLocation(),
4892                                     &Idents.get("id"), IdInfo);
4893  }
4894
4895  return ObjCIdDecl;
4896}
4897
4898TypedefDecl *ASTContext::getObjCSelDecl() const {
4899  if (!ObjCSelDecl) {
4900    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4901    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4902    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4903                                      getTranslationUnitDecl(),
4904                                      SourceLocation(), SourceLocation(),
4905                                      &Idents.get("SEL"), SelInfo);
4906  }
4907  return ObjCSelDecl;
4908}
4909
4910TypedefDecl *ASTContext::getObjCClassDecl() const {
4911  if (!ObjCClassDecl) {
4912    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4913    T = getObjCObjectPointerType(T);
4914    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4915    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4916                                        getTranslationUnitDecl(),
4917                                        SourceLocation(), SourceLocation(),
4918                                        &Idents.get("Class"), ClassInfo);
4919  }
4920
4921  return ObjCClassDecl;
4922}
4923
4924ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4925  if (!ObjCProtocolClassDecl) {
4926    ObjCProtocolClassDecl
4927      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4928                                  SourceLocation(),
4929                                  &Idents.get("Protocol"),
4930                                  /*PrevDecl=*/0,
4931                                  SourceLocation(), true);
4932  }
4933
4934  return ObjCProtocolClassDecl;
4935}
4936
4937void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4938  assert(ObjCConstantStringType.isNull() &&
4939         "'NSConstantString' type already set!");
4940
4941  ObjCConstantStringType = getObjCInterfaceType(Decl);
4942}
4943
4944/// \brief Retrieve the template name that corresponds to a non-empty
4945/// lookup.
4946TemplateName
4947ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4948                                      UnresolvedSetIterator End) const {
4949  unsigned size = End - Begin;
4950  assert(size > 1 && "set is not overloaded!");
4951
4952  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4953                          size * sizeof(FunctionTemplateDecl*));
4954  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4955
4956  NamedDecl **Storage = OT->getStorage();
4957  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4958    NamedDecl *D = *I;
4959    assert(isa<FunctionTemplateDecl>(D) ||
4960           (isa<UsingShadowDecl>(D) &&
4961            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4962    *Storage++ = D;
4963  }
4964
4965  return TemplateName(OT);
4966}
4967
4968/// \brief Retrieve the template name that represents a qualified
4969/// template name such as \c std::vector.
4970TemplateName
4971ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4972                                     bool TemplateKeyword,
4973                                     TemplateDecl *Template) const {
4974  assert(NNS && "Missing nested-name-specifier in qualified template name");
4975
4976  // FIXME: Canonicalization?
4977  llvm::FoldingSetNodeID ID;
4978  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4979
4980  void *InsertPos = 0;
4981  QualifiedTemplateName *QTN =
4982    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4983  if (!QTN) {
4984    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4985    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4986  }
4987
4988  return TemplateName(QTN);
4989}
4990
4991/// \brief Retrieve the template name that represents a dependent
4992/// template name such as \c MetaFun::template apply.
4993TemplateName
4994ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4995                                     const IdentifierInfo *Name) const {
4996  assert((!NNS || NNS->isDependent()) &&
4997         "Nested name specifier must be dependent");
4998
4999  llvm::FoldingSetNodeID ID;
5000  DependentTemplateName::Profile(ID, NNS, Name);
5001
5002  void *InsertPos = 0;
5003  DependentTemplateName *QTN =
5004    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5005
5006  if (QTN)
5007    return TemplateName(QTN);
5008
5009  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5010  if (CanonNNS == NNS) {
5011    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5012  } else {
5013    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5014    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5015    DependentTemplateName *CheckQTN =
5016      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5017    assert(!CheckQTN && "Dependent type name canonicalization broken");
5018    (void)CheckQTN;
5019  }
5020
5021  DependentTemplateNames.InsertNode(QTN, InsertPos);
5022  return TemplateName(QTN);
5023}
5024
5025/// \brief Retrieve the template name that represents a dependent
5026/// template name such as \c MetaFun::template operator+.
5027TemplateName
5028ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5029                                     OverloadedOperatorKind Operator) const {
5030  assert((!NNS || NNS->isDependent()) &&
5031         "Nested name specifier must be dependent");
5032
5033  llvm::FoldingSetNodeID ID;
5034  DependentTemplateName::Profile(ID, NNS, Operator);
5035
5036  void *InsertPos = 0;
5037  DependentTemplateName *QTN
5038    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5039
5040  if (QTN)
5041    return TemplateName(QTN);
5042
5043  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5044  if (CanonNNS == NNS) {
5045    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5046  } else {
5047    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5048    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5049
5050    DependentTemplateName *CheckQTN
5051      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5052    assert(!CheckQTN && "Dependent template name canonicalization broken");
5053    (void)CheckQTN;
5054  }
5055
5056  DependentTemplateNames.InsertNode(QTN, InsertPos);
5057  return TemplateName(QTN);
5058}
5059
5060TemplateName
5061ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5062                                         TemplateName replacement) const {
5063  llvm::FoldingSetNodeID ID;
5064  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5065
5066  void *insertPos = 0;
5067  SubstTemplateTemplateParmStorage *subst
5068    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5069
5070  if (!subst) {
5071    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5072    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5073  }
5074
5075  return TemplateName(subst);
5076}
5077
5078TemplateName
5079ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5080                                       const TemplateArgument &ArgPack) const {
5081  ASTContext &Self = const_cast<ASTContext &>(*this);
5082  llvm::FoldingSetNodeID ID;
5083  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5084
5085  void *InsertPos = 0;
5086  SubstTemplateTemplateParmPackStorage *Subst
5087    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5088
5089  if (!Subst) {
5090    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5091                                                           ArgPack.pack_size(),
5092                                                         ArgPack.pack_begin());
5093    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5094  }
5095
5096  return TemplateName(Subst);
5097}
5098
5099/// getFromTargetType - Given one of the integer types provided by
5100/// TargetInfo, produce the corresponding type. The unsigned @p Type
5101/// is actually a value of type @c TargetInfo::IntType.
5102CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5103  switch (Type) {
5104  case TargetInfo::NoInt: return CanQualType();
5105  case TargetInfo::SignedShort: return ShortTy;
5106  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5107  case TargetInfo::SignedInt: return IntTy;
5108  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5109  case TargetInfo::SignedLong: return LongTy;
5110  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5111  case TargetInfo::SignedLongLong: return LongLongTy;
5112  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5113  }
5114
5115  llvm_unreachable("Unhandled TargetInfo::IntType value");
5116}
5117
5118//===----------------------------------------------------------------------===//
5119//                        Type Predicates.
5120//===----------------------------------------------------------------------===//
5121
5122/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5123/// garbage collection attribute.
5124///
5125Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5126  if (getLangOpts().getGC() == LangOptions::NonGC)
5127    return Qualifiers::GCNone;
5128
5129  assert(getLangOpts().ObjC1);
5130  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5131
5132  // Default behaviour under objective-C's gc is for ObjC pointers
5133  // (or pointers to them) be treated as though they were declared
5134  // as __strong.
5135  if (GCAttrs == Qualifiers::GCNone) {
5136    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5137      return Qualifiers::Strong;
5138    else if (Ty->isPointerType())
5139      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5140  } else {
5141    // It's not valid to set GC attributes on anything that isn't a
5142    // pointer.
5143#ifndef NDEBUG
5144    QualType CT = Ty->getCanonicalTypeInternal();
5145    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5146      CT = AT->getElementType();
5147    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5148#endif
5149  }
5150  return GCAttrs;
5151}
5152
5153//===----------------------------------------------------------------------===//
5154//                        Type Compatibility Testing
5155//===----------------------------------------------------------------------===//
5156
5157/// areCompatVectorTypes - Return true if the two specified vector types are
5158/// compatible.
5159static bool areCompatVectorTypes(const VectorType *LHS,
5160                                 const VectorType *RHS) {
5161  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5162  return LHS->getElementType() == RHS->getElementType() &&
5163         LHS->getNumElements() == RHS->getNumElements();
5164}
5165
5166bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5167                                          QualType SecondVec) {
5168  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5169  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5170
5171  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5172    return true;
5173
5174  // Treat Neon vector types and most AltiVec vector types as if they are the
5175  // equivalent GCC vector types.
5176  const VectorType *First = FirstVec->getAs<VectorType>();
5177  const VectorType *Second = SecondVec->getAs<VectorType>();
5178  if (First->getNumElements() == Second->getNumElements() &&
5179      hasSameType(First->getElementType(), Second->getElementType()) &&
5180      First->getVectorKind() != VectorType::AltiVecPixel &&
5181      First->getVectorKind() != VectorType::AltiVecBool &&
5182      Second->getVectorKind() != VectorType::AltiVecPixel &&
5183      Second->getVectorKind() != VectorType::AltiVecBool)
5184    return true;
5185
5186  return false;
5187}
5188
5189//===----------------------------------------------------------------------===//
5190// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5191//===----------------------------------------------------------------------===//
5192
5193/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5194/// inheritance hierarchy of 'rProto'.
5195bool
5196ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5197                                           ObjCProtocolDecl *rProto) const {
5198  if (declaresSameEntity(lProto, rProto))
5199    return true;
5200  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5201       E = rProto->protocol_end(); PI != E; ++PI)
5202    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5203      return true;
5204  return false;
5205}
5206
5207/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5208/// return true if lhs's protocols conform to rhs's protocol; false
5209/// otherwise.
5210bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5211  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5212    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5213  return false;
5214}
5215
5216/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5217/// Class<p1, ...>.
5218bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5219                                                      QualType rhs) {
5220  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5221  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5222  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5223
5224  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5225       E = lhsQID->qual_end(); I != E; ++I) {
5226    bool match = false;
5227    ObjCProtocolDecl *lhsProto = *I;
5228    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5229         E = rhsOPT->qual_end(); J != E; ++J) {
5230      ObjCProtocolDecl *rhsProto = *J;
5231      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5232        match = true;
5233        break;
5234      }
5235    }
5236    if (!match)
5237      return false;
5238  }
5239  return true;
5240}
5241
5242/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5243/// ObjCQualifiedIDType.
5244bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5245                                                   bool compare) {
5246  // Allow id<P..> and an 'id' or void* type in all cases.
5247  if (lhs->isVoidPointerType() ||
5248      lhs->isObjCIdType() || lhs->isObjCClassType())
5249    return true;
5250  else if (rhs->isVoidPointerType() ||
5251           rhs->isObjCIdType() || rhs->isObjCClassType())
5252    return true;
5253
5254  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5255    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5256
5257    if (!rhsOPT) return false;
5258
5259    if (rhsOPT->qual_empty()) {
5260      // If the RHS is a unqualified interface pointer "NSString*",
5261      // make sure we check the class hierarchy.
5262      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5263        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5264             E = lhsQID->qual_end(); I != E; ++I) {
5265          // when comparing an id<P> on lhs with a static type on rhs,
5266          // see if static class implements all of id's protocols, directly or
5267          // through its super class and categories.
5268          if (!rhsID->ClassImplementsProtocol(*I, true))
5269            return false;
5270        }
5271      }
5272      // If there are no qualifiers and no interface, we have an 'id'.
5273      return true;
5274    }
5275    // Both the right and left sides have qualifiers.
5276    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5277         E = lhsQID->qual_end(); I != E; ++I) {
5278      ObjCProtocolDecl *lhsProto = *I;
5279      bool match = false;
5280
5281      // when comparing an id<P> on lhs with a static type on rhs,
5282      // see if static class implements all of id's protocols, directly or
5283      // through its super class and categories.
5284      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5285           E = rhsOPT->qual_end(); J != E; ++J) {
5286        ObjCProtocolDecl *rhsProto = *J;
5287        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5288            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5289          match = true;
5290          break;
5291        }
5292      }
5293      // If the RHS is a qualified interface pointer "NSString<P>*",
5294      // make sure we check the class hierarchy.
5295      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5296        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5297             E = lhsQID->qual_end(); I != E; ++I) {
5298          // when comparing an id<P> on lhs with a static type on rhs,
5299          // see if static class implements all of id's protocols, directly or
5300          // through its super class and categories.
5301          if (rhsID->ClassImplementsProtocol(*I, true)) {
5302            match = true;
5303            break;
5304          }
5305        }
5306      }
5307      if (!match)
5308        return false;
5309    }
5310
5311    return true;
5312  }
5313
5314  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5315  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5316
5317  if (const ObjCObjectPointerType *lhsOPT =
5318        lhs->getAsObjCInterfacePointerType()) {
5319    // If both the right and left sides have qualifiers.
5320    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5321         E = lhsOPT->qual_end(); I != E; ++I) {
5322      ObjCProtocolDecl *lhsProto = *I;
5323      bool match = false;
5324
5325      // when comparing an id<P> on rhs with a static type on lhs,
5326      // see if static class implements all of id's protocols, directly or
5327      // through its super class and categories.
5328      // First, lhs protocols in the qualifier list must be found, direct
5329      // or indirect in rhs's qualifier list or it is a mismatch.
5330      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5331           E = rhsQID->qual_end(); J != E; ++J) {
5332        ObjCProtocolDecl *rhsProto = *J;
5333        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5334            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5335          match = true;
5336          break;
5337        }
5338      }
5339      if (!match)
5340        return false;
5341    }
5342
5343    // Static class's protocols, or its super class or category protocols
5344    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5345    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5346      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5347      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5348      // This is rather dubious but matches gcc's behavior. If lhs has
5349      // no type qualifier and its class has no static protocol(s)
5350      // assume that it is mismatch.
5351      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5352        return false;
5353      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5354           LHSInheritedProtocols.begin(),
5355           E = LHSInheritedProtocols.end(); I != E; ++I) {
5356        bool match = false;
5357        ObjCProtocolDecl *lhsProto = (*I);
5358        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5359             E = rhsQID->qual_end(); J != E; ++J) {
5360          ObjCProtocolDecl *rhsProto = *J;
5361          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5362              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5363            match = true;
5364            break;
5365          }
5366        }
5367        if (!match)
5368          return false;
5369      }
5370    }
5371    return true;
5372  }
5373  return false;
5374}
5375
5376/// canAssignObjCInterfaces - Return true if the two interface types are
5377/// compatible for assignment from RHS to LHS.  This handles validation of any
5378/// protocol qualifiers on the LHS or RHS.
5379///
5380bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5381                                         const ObjCObjectPointerType *RHSOPT) {
5382  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5383  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5384
5385  // If either type represents the built-in 'id' or 'Class' types, return true.
5386  if (LHS->isObjCUnqualifiedIdOrClass() ||
5387      RHS->isObjCUnqualifiedIdOrClass())
5388    return true;
5389
5390  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5391    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5392                                             QualType(RHSOPT,0),
5393                                             false);
5394
5395  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5396    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5397                                                QualType(RHSOPT,0));
5398
5399  // If we have 2 user-defined types, fall into that path.
5400  if (LHS->getInterface() && RHS->getInterface())
5401    return canAssignObjCInterfaces(LHS, RHS);
5402
5403  return false;
5404}
5405
5406/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5407/// for providing type-safety for objective-c pointers used to pass/return
5408/// arguments in block literals. When passed as arguments, passing 'A*' where
5409/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5410/// not OK. For the return type, the opposite is not OK.
5411bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5412                                         const ObjCObjectPointerType *LHSOPT,
5413                                         const ObjCObjectPointerType *RHSOPT,
5414                                         bool BlockReturnType) {
5415  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5416    return true;
5417
5418  if (LHSOPT->isObjCBuiltinType()) {
5419    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5420  }
5421
5422  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5423    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5424                                             QualType(RHSOPT,0),
5425                                             false);
5426
5427  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5428  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5429  if (LHS && RHS)  { // We have 2 user-defined types.
5430    if (LHS != RHS) {
5431      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5432        return BlockReturnType;
5433      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5434        return !BlockReturnType;
5435    }
5436    else
5437      return true;
5438  }
5439  return false;
5440}
5441
5442/// getIntersectionOfProtocols - This routine finds the intersection of set
5443/// of protocols inherited from two distinct objective-c pointer objects.
5444/// It is used to build composite qualifier list of the composite type of
5445/// the conditional expression involving two objective-c pointer objects.
5446static
5447void getIntersectionOfProtocols(ASTContext &Context,
5448                                const ObjCObjectPointerType *LHSOPT,
5449                                const ObjCObjectPointerType *RHSOPT,
5450      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5451
5452  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5453  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5454  assert(LHS->getInterface() && "LHS must have an interface base");
5455  assert(RHS->getInterface() && "RHS must have an interface base");
5456
5457  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5458  unsigned LHSNumProtocols = LHS->getNumProtocols();
5459  if (LHSNumProtocols > 0)
5460    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5461  else {
5462    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5463    Context.CollectInheritedProtocols(LHS->getInterface(),
5464                                      LHSInheritedProtocols);
5465    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5466                                LHSInheritedProtocols.end());
5467  }
5468
5469  unsigned RHSNumProtocols = RHS->getNumProtocols();
5470  if (RHSNumProtocols > 0) {
5471    ObjCProtocolDecl **RHSProtocols =
5472      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5473    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5474      if (InheritedProtocolSet.count(RHSProtocols[i]))
5475        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5476  } else {
5477    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5478    Context.CollectInheritedProtocols(RHS->getInterface(),
5479                                      RHSInheritedProtocols);
5480    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5481         RHSInheritedProtocols.begin(),
5482         E = RHSInheritedProtocols.end(); I != E; ++I)
5483      if (InheritedProtocolSet.count((*I)))
5484        IntersectionOfProtocols.push_back((*I));
5485  }
5486}
5487
5488/// areCommonBaseCompatible - Returns common base class of the two classes if
5489/// one found. Note that this is O'2 algorithm. But it will be called as the
5490/// last type comparison in a ?-exp of ObjC pointer types before a
5491/// warning is issued. So, its invokation is extremely rare.
5492QualType ASTContext::areCommonBaseCompatible(
5493                                          const ObjCObjectPointerType *Lptr,
5494                                          const ObjCObjectPointerType *Rptr) {
5495  const ObjCObjectType *LHS = Lptr->getObjectType();
5496  const ObjCObjectType *RHS = Rptr->getObjectType();
5497  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5498  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5499  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5500    return QualType();
5501
5502  do {
5503    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5504    if (canAssignObjCInterfaces(LHS, RHS)) {
5505      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5506      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5507
5508      QualType Result = QualType(LHS, 0);
5509      if (!Protocols.empty())
5510        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5511      Result = getObjCObjectPointerType(Result);
5512      return Result;
5513    }
5514  } while ((LDecl = LDecl->getSuperClass()));
5515
5516  return QualType();
5517}
5518
5519bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5520                                         const ObjCObjectType *RHS) {
5521  assert(LHS->getInterface() && "LHS is not an interface type");
5522  assert(RHS->getInterface() && "RHS is not an interface type");
5523
5524  // Verify that the base decls are compatible: the RHS must be a subclass of
5525  // the LHS.
5526  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5527    return false;
5528
5529  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5530  // protocol qualified at all, then we are good.
5531  if (LHS->getNumProtocols() == 0)
5532    return true;
5533
5534  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5535  // more detailed analysis is required.
5536  if (RHS->getNumProtocols() == 0) {
5537    // OK, if LHS is a superclass of RHS *and*
5538    // this superclass is assignment compatible with LHS.
5539    // false otherwise.
5540    bool IsSuperClass =
5541      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5542    if (IsSuperClass) {
5543      // OK if conversion of LHS to SuperClass results in narrowing of types
5544      // ; i.e., SuperClass may implement at least one of the protocols
5545      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5546      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5547      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5548      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5549      // If super class has no protocols, it is not a match.
5550      if (SuperClassInheritedProtocols.empty())
5551        return false;
5552
5553      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5554           LHSPE = LHS->qual_end();
5555           LHSPI != LHSPE; LHSPI++) {
5556        bool SuperImplementsProtocol = false;
5557        ObjCProtocolDecl *LHSProto = (*LHSPI);
5558
5559        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5560             SuperClassInheritedProtocols.begin(),
5561             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5562          ObjCProtocolDecl *SuperClassProto = (*I);
5563          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5564            SuperImplementsProtocol = true;
5565            break;
5566          }
5567        }
5568        if (!SuperImplementsProtocol)
5569          return false;
5570      }
5571      return true;
5572    }
5573    return false;
5574  }
5575
5576  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5577                                     LHSPE = LHS->qual_end();
5578       LHSPI != LHSPE; LHSPI++) {
5579    bool RHSImplementsProtocol = false;
5580
5581    // If the RHS doesn't implement the protocol on the left, the types
5582    // are incompatible.
5583    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5584                                       RHSPE = RHS->qual_end();
5585         RHSPI != RHSPE; RHSPI++) {
5586      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5587        RHSImplementsProtocol = true;
5588        break;
5589      }
5590    }
5591    // FIXME: For better diagnostics, consider passing back the protocol name.
5592    if (!RHSImplementsProtocol)
5593      return false;
5594  }
5595  // The RHS implements all protocols listed on the LHS.
5596  return true;
5597}
5598
5599bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5600  // get the "pointed to" types
5601  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5602  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5603
5604  if (!LHSOPT || !RHSOPT)
5605    return false;
5606
5607  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5608         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5609}
5610
5611bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5612  return canAssignObjCInterfaces(
5613                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5614                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5615}
5616
5617/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5618/// both shall have the identically qualified version of a compatible type.
5619/// C99 6.2.7p1: Two types have compatible types if their types are the
5620/// same. See 6.7.[2,3,5] for additional rules.
5621bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5622                                    bool CompareUnqualified) {
5623  if (getLangOpts().CPlusPlus)
5624    return hasSameType(LHS, RHS);
5625
5626  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5627}
5628
5629bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5630  return typesAreCompatible(LHS, RHS);
5631}
5632
5633bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5634  return !mergeTypes(LHS, RHS, true).isNull();
5635}
5636
5637/// mergeTransparentUnionType - if T is a transparent union type and a member
5638/// of T is compatible with SubType, return the merged type, else return
5639/// QualType()
5640QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5641                                               bool OfBlockPointer,
5642                                               bool Unqualified) {
5643  if (const RecordType *UT = T->getAsUnionType()) {
5644    RecordDecl *UD = UT->getDecl();
5645    if (UD->hasAttr<TransparentUnionAttr>()) {
5646      for (RecordDecl::field_iterator it = UD->field_begin(),
5647           itend = UD->field_end(); it != itend; ++it) {
5648        QualType ET = it->getType().getUnqualifiedType();
5649        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5650        if (!MT.isNull())
5651          return MT;
5652      }
5653    }
5654  }
5655
5656  return QualType();
5657}
5658
5659/// mergeFunctionArgumentTypes - merge two types which appear as function
5660/// argument types
5661QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5662                                                bool OfBlockPointer,
5663                                                bool Unqualified) {
5664  // GNU extension: two types are compatible if they appear as a function
5665  // argument, one of the types is a transparent union type and the other
5666  // type is compatible with a union member
5667  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5668                                              Unqualified);
5669  if (!lmerge.isNull())
5670    return lmerge;
5671
5672  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5673                                              Unqualified);
5674  if (!rmerge.isNull())
5675    return rmerge;
5676
5677  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5678}
5679
5680QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5681                                        bool OfBlockPointer,
5682                                        bool Unqualified) {
5683  const FunctionType *lbase = lhs->getAs<FunctionType>();
5684  const FunctionType *rbase = rhs->getAs<FunctionType>();
5685  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5686  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5687  bool allLTypes = true;
5688  bool allRTypes = true;
5689
5690  // Check return type
5691  QualType retType;
5692  if (OfBlockPointer) {
5693    QualType RHS = rbase->getResultType();
5694    QualType LHS = lbase->getResultType();
5695    bool UnqualifiedResult = Unqualified;
5696    if (!UnqualifiedResult)
5697      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5698    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5699  }
5700  else
5701    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5702                         Unqualified);
5703  if (retType.isNull()) return QualType();
5704
5705  if (Unqualified)
5706    retType = retType.getUnqualifiedType();
5707
5708  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5709  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5710  if (Unqualified) {
5711    LRetType = LRetType.getUnqualifiedType();
5712    RRetType = RRetType.getUnqualifiedType();
5713  }
5714
5715  if (getCanonicalType(retType) != LRetType)
5716    allLTypes = false;
5717  if (getCanonicalType(retType) != RRetType)
5718    allRTypes = false;
5719
5720  // FIXME: double check this
5721  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5722  //                           rbase->getRegParmAttr() != 0 &&
5723  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5724  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5725  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5726
5727  // Compatible functions must have compatible calling conventions
5728  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5729    return QualType();
5730
5731  // Regparm is part of the calling convention.
5732  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5733    return QualType();
5734  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5735    return QualType();
5736
5737  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5738    return QualType();
5739
5740  // functypes which return are preferred over those that do not.
5741  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5742    allLTypes = false;
5743  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5744    allRTypes = false;
5745  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5746  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5747
5748  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5749
5750  if (lproto && rproto) { // two C99 style function prototypes
5751    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5752           "C++ shouldn't be here");
5753    unsigned lproto_nargs = lproto->getNumArgs();
5754    unsigned rproto_nargs = rproto->getNumArgs();
5755
5756    // Compatible functions must have the same number of arguments
5757    if (lproto_nargs != rproto_nargs)
5758      return QualType();
5759
5760    // Variadic and non-variadic functions aren't compatible
5761    if (lproto->isVariadic() != rproto->isVariadic())
5762      return QualType();
5763
5764    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5765      return QualType();
5766
5767    if (LangOpts.ObjCAutoRefCount &&
5768        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5769      return QualType();
5770
5771    // Check argument compatibility
5772    SmallVector<QualType, 10> types;
5773    for (unsigned i = 0; i < lproto_nargs; i++) {
5774      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5775      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5776      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5777                                                    OfBlockPointer,
5778                                                    Unqualified);
5779      if (argtype.isNull()) return QualType();
5780
5781      if (Unqualified)
5782        argtype = argtype.getUnqualifiedType();
5783
5784      types.push_back(argtype);
5785      if (Unqualified) {
5786        largtype = largtype.getUnqualifiedType();
5787        rargtype = rargtype.getUnqualifiedType();
5788      }
5789
5790      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5791        allLTypes = false;
5792      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5793        allRTypes = false;
5794    }
5795
5796    if (allLTypes) return lhs;
5797    if (allRTypes) return rhs;
5798
5799    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5800    EPI.ExtInfo = einfo;
5801    return getFunctionType(retType, types.begin(), types.size(), EPI);
5802  }
5803
5804  if (lproto) allRTypes = false;
5805  if (rproto) allLTypes = false;
5806
5807  const FunctionProtoType *proto = lproto ? lproto : rproto;
5808  if (proto) {
5809    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5810    if (proto->isVariadic()) return QualType();
5811    // Check that the types are compatible with the types that
5812    // would result from default argument promotions (C99 6.7.5.3p15).
5813    // The only types actually affected are promotable integer
5814    // types and floats, which would be passed as a different
5815    // type depending on whether the prototype is visible.
5816    unsigned proto_nargs = proto->getNumArgs();
5817    for (unsigned i = 0; i < proto_nargs; ++i) {
5818      QualType argTy = proto->getArgType(i);
5819
5820      // Look at the promotion type of enum types, since that is the type used
5821      // to pass enum values.
5822      if (const EnumType *Enum = argTy->getAs<EnumType>())
5823        argTy = Enum->getDecl()->getPromotionType();
5824
5825      if (argTy->isPromotableIntegerType() ||
5826          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5827        return QualType();
5828    }
5829
5830    if (allLTypes) return lhs;
5831    if (allRTypes) return rhs;
5832
5833    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5834    EPI.ExtInfo = einfo;
5835    return getFunctionType(retType, proto->arg_type_begin(),
5836                           proto->getNumArgs(), EPI);
5837  }
5838
5839  if (allLTypes) return lhs;
5840  if (allRTypes) return rhs;
5841  return getFunctionNoProtoType(retType, einfo);
5842}
5843
5844QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5845                                bool OfBlockPointer,
5846                                bool Unqualified, bool BlockReturnType) {
5847  // C++ [expr]: If an expression initially has the type "reference to T", the
5848  // type is adjusted to "T" prior to any further analysis, the expression
5849  // designates the object or function denoted by the reference, and the
5850  // expression is an lvalue unless the reference is an rvalue reference and
5851  // the expression is a function call (possibly inside parentheses).
5852  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5853  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5854
5855  if (Unqualified) {
5856    LHS = LHS.getUnqualifiedType();
5857    RHS = RHS.getUnqualifiedType();
5858  }
5859
5860  QualType LHSCan = getCanonicalType(LHS),
5861           RHSCan = getCanonicalType(RHS);
5862
5863  // If two types are identical, they are compatible.
5864  if (LHSCan == RHSCan)
5865    return LHS;
5866
5867  // If the qualifiers are different, the types aren't compatible... mostly.
5868  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5869  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5870  if (LQuals != RQuals) {
5871    // If any of these qualifiers are different, we have a type
5872    // mismatch.
5873    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5874        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5875        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5876      return QualType();
5877
5878    // Exactly one GC qualifier difference is allowed: __strong is
5879    // okay if the other type has no GC qualifier but is an Objective
5880    // C object pointer (i.e. implicitly strong by default).  We fix
5881    // this by pretending that the unqualified type was actually
5882    // qualified __strong.
5883    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5884    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5885    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5886
5887    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5888      return QualType();
5889
5890    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5891      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5892    }
5893    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5894      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5895    }
5896    return QualType();
5897  }
5898
5899  // Okay, qualifiers are equal.
5900
5901  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5902  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5903
5904  // We want to consider the two function types to be the same for these
5905  // comparisons, just force one to the other.
5906  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5907  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5908
5909  // Same as above for arrays
5910  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5911    LHSClass = Type::ConstantArray;
5912  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5913    RHSClass = Type::ConstantArray;
5914
5915  // ObjCInterfaces are just specialized ObjCObjects.
5916  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5917  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5918
5919  // Canonicalize ExtVector -> Vector.
5920  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5921  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5922
5923  // If the canonical type classes don't match.
5924  if (LHSClass != RHSClass) {
5925    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5926    // a signed integer type, or an unsigned integer type.
5927    // Compatibility is based on the underlying type, not the promotion
5928    // type.
5929    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5930      QualType TINT = ETy->getDecl()->getIntegerType();
5931      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
5932        return RHS;
5933    }
5934    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5935      QualType TINT = ETy->getDecl()->getIntegerType();
5936      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
5937        return LHS;
5938    }
5939    // allow block pointer type to match an 'id' type.
5940    if (OfBlockPointer && !BlockReturnType) {
5941       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
5942         return LHS;
5943      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
5944        return RHS;
5945    }
5946
5947    return QualType();
5948  }
5949
5950  // The canonical type classes match.
5951  switch (LHSClass) {
5952#define TYPE(Class, Base)
5953#define ABSTRACT_TYPE(Class, Base)
5954#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5955#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5956#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5957#include "clang/AST/TypeNodes.def"
5958    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5959
5960  case Type::LValueReference:
5961  case Type::RValueReference:
5962  case Type::MemberPointer:
5963    llvm_unreachable("C++ should never be in mergeTypes");
5964
5965  case Type::ObjCInterface:
5966  case Type::IncompleteArray:
5967  case Type::VariableArray:
5968  case Type::FunctionProto:
5969  case Type::ExtVector:
5970    llvm_unreachable("Types are eliminated above");
5971
5972  case Type::Pointer:
5973  {
5974    // Merge two pointer types, while trying to preserve typedef info
5975    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5976    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5977    if (Unqualified) {
5978      LHSPointee = LHSPointee.getUnqualifiedType();
5979      RHSPointee = RHSPointee.getUnqualifiedType();
5980    }
5981    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5982                                     Unqualified);
5983    if (ResultType.isNull()) return QualType();
5984    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5985      return LHS;
5986    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5987      return RHS;
5988    return getPointerType(ResultType);
5989  }
5990  case Type::BlockPointer:
5991  {
5992    // Merge two block pointer types, while trying to preserve typedef info
5993    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5994    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5995    if (Unqualified) {
5996      LHSPointee = LHSPointee.getUnqualifiedType();
5997      RHSPointee = RHSPointee.getUnqualifiedType();
5998    }
5999    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6000                                     Unqualified);
6001    if (ResultType.isNull()) return QualType();
6002    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6003      return LHS;
6004    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6005      return RHS;
6006    return getBlockPointerType(ResultType);
6007  }
6008  case Type::Atomic:
6009  {
6010    // Merge two pointer types, while trying to preserve typedef info
6011    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6012    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6013    if (Unqualified) {
6014      LHSValue = LHSValue.getUnqualifiedType();
6015      RHSValue = RHSValue.getUnqualifiedType();
6016    }
6017    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6018                                     Unqualified);
6019    if (ResultType.isNull()) return QualType();
6020    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6021      return LHS;
6022    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6023      return RHS;
6024    return getAtomicType(ResultType);
6025  }
6026  case Type::ConstantArray:
6027  {
6028    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6029    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6030    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6031      return QualType();
6032
6033    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6034    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6035    if (Unqualified) {
6036      LHSElem = LHSElem.getUnqualifiedType();
6037      RHSElem = RHSElem.getUnqualifiedType();
6038    }
6039
6040    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6041    if (ResultType.isNull()) return QualType();
6042    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6043      return LHS;
6044    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6045      return RHS;
6046    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6047                                          ArrayType::ArraySizeModifier(), 0);
6048    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6049                                          ArrayType::ArraySizeModifier(), 0);
6050    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6051    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6052    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6053      return LHS;
6054    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6055      return RHS;
6056    if (LVAT) {
6057      // FIXME: This isn't correct! But tricky to implement because
6058      // the array's size has to be the size of LHS, but the type
6059      // has to be different.
6060      return LHS;
6061    }
6062    if (RVAT) {
6063      // FIXME: This isn't correct! But tricky to implement because
6064      // the array's size has to be the size of RHS, but the type
6065      // has to be different.
6066      return RHS;
6067    }
6068    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6069    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6070    return getIncompleteArrayType(ResultType,
6071                                  ArrayType::ArraySizeModifier(), 0);
6072  }
6073  case Type::FunctionNoProto:
6074    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6075  case Type::Record:
6076  case Type::Enum:
6077    return QualType();
6078  case Type::Builtin:
6079    // Only exactly equal builtin types are compatible, which is tested above.
6080    return QualType();
6081  case Type::Complex:
6082    // Distinct complex types are incompatible.
6083    return QualType();
6084  case Type::Vector:
6085    // FIXME: The merged type should be an ExtVector!
6086    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6087                             RHSCan->getAs<VectorType>()))
6088      return LHS;
6089    return QualType();
6090  case Type::ObjCObject: {
6091    // Check if the types are assignment compatible.
6092    // FIXME: This should be type compatibility, e.g. whether
6093    // "LHS x; RHS x;" at global scope is legal.
6094    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6095    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6096    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6097      return LHS;
6098
6099    return QualType();
6100  }
6101  case Type::ObjCObjectPointer: {
6102    if (OfBlockPointer) {
6103      if (canAssignObjCInterfacesInBlockPointer(
6104                                          LHS->getAs<ObjCObjectPointerType>(),
6105                                          RHS->getAs<ObjCObjectPointerType>(),
6106                                          BlockReturnType))
6107        return LHS;
6108      return QualType();
6109    }
6110    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6111                                RHS->getAs<ObjCObjectPointerType>()))
6112      return LHS;
6113
6114    return QualType();
6115  }
6116  }
6117
6118  llvm_unreachable("Invalid Type::Class!");
6119}
6120
6121bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6122                   const FunctionProtoType *FromFunctionType,
6123                   const FunctionProtoType *ToFunctionType) {
6124  if (FromFunctionType->hasAnyConsumedArgs() !=
6125      ToFunctionType->hasAnyConsumedArgs())
6126    return false;
6127  FunctionProtoType::ExtProtoInfo FromEPI =
6128    FromFunctionType->getExtProtoInfo();
6129  FunctionProtoType::ExtProtoInfo ToEPI =
6130    ToFunctionType->getExtProtoInfo();
6131  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6132    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6133         ArgIdx != NumArgs; ++ArgIdx)  {
6134      if (FromEPI.ConsumedArguments[ArgIdx] !=
6135          ToEPI.ConsumedArguments[ArgIdx])
6136        return false;
6137    }
6138  return true;
6139}
6140
6141/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6142/// 'RHS' attributes and returns the merged version; including for function
6143/// return types.
6144QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6145  QualType LHSCan = getCanonicalType(LHS),
6146  RHSCan = getCanonicalType(RHS);
6147  // If two types are identical, they are compatible.
6148  if (LHSCan == RHSCan)
6149    return LHS;
6150  if (RHSCan->isFunctionType()) {
6151    if (!LHSCan->isFunctionType())
6152      return QualType();
6153    QualType OldReturnType =
6154      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6155    QualType NewReturnType =
6156      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6157    QualType ResReturnType =
6158      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6159    if (ResReturnType.isNull())
6160      return QualType();
6161    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6162      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6163      // In either case, use OldReturnType to build the new function type.
6164      const FunctionType *F = LHS->getAs<FunctionType>();
6165      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6166        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6167        EPI.ExtInfo = getFunctionExtInfo(LHS);
6168        QualType ResultType
6169          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6170                            FPT->getNumArgs(), EPI);
6171        return ResultType;
6172      }
6173    }
6174    return QualType();
6175  }
6176
6177  // If the qualifiers are different, the types can still be merged.
6178  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6179  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6180  if (LQuals != RQuals) {
6181    // If any of these qualifiers are different, we have a type mismatch.
6182    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6183        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6184      return QualType();
6185
6186    // Exactly one GC qualifier difference is allowed: __strong is
6187    // okay if the other type has no GC qualifier but is an Objective
6188    // C object pointer (i.e. implicitly strong by default).  We fix
6189    // this by pretending that the unqualified type was actually
6190    // qualified __strong.
6191    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6192    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6193    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6194
6195    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6196      return QualType();
6197
6198    if (GC_L == Qualifiers::Strong)
6199      return LHS;
6200    if (GC_R == Qualifiers::Strong)
6201      return RHS;
6202    return QualType();
6203  }
6204
6205  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6206    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6207    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6208    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6209    if (ResQT == LHSBaseQT)
6210      return LHS;
6211    if (ResQT == RHSBaseQT)
6212      return RHS;
6213  }
6214  return QualType();
6215}
6216
6217//===----------------------------------------------------------------------===//
6218//                         Integer Predicates
6219//===----------------------------------------------------------------------===//
6220
6221unsigned ASTContext::getIntWidth(QualType T) const {
6222  if (const EnumType *ET = dyn_cast<EnumType>(T))
6223    T = ET->getDecl()->getIntegerType();
6224  if (T->isBooleanType())
6225    return 1;
6226  // For builtin types, just use the standard type sizing method
6227  return (unsigned)getTypeSize(T);
6228}
6229
6230QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6231  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6232
6233  // Turn <4 x signed int> -> <4 x unsigned int>
6234  if (const VectorType *VTy = T->getAs<VectorType>())
6235    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6236                         VTy->getNumElements(), VTy->getVectorKind());
6237
6238  // For enums, we return the unsigned version of the base type.
6239  if (const EnumType *ETy = T->getAs<EnumType>())
6240    T = ETy->getDecl()->getIntegerType();
6241
6242  const BuiltinType *BTy = T->getAs<BuiltinType>();
6243  assert(BTy && "Unexpected signed integer type");
6244  switch (BTy->getKind()) {
6245  case BuiltinType::Char_S:
6246  case BuiltinType::SChar:
6247    return UnsignedCharTy;
6248  case BuiltinType::Short:
6249    return UnsignedShortTy;
6250  case BuiltinType::Int:
6251    return UnsignedIntTy;
6252  case BuiltinType::Long:
6253    return UnsignedLongTy;
6254  case BuiltinType::LongLong:
6255    return UnsignedLongLongTy;
6256  case BuiltinType::Int128:
6257    return UnsignedInt128Ty;
6258  default:
6259    llvm_unreachable("Unexpected signed integer type");
6260  }
6261}
6262
6263ASTMutationListener::~ASTMutationListener() { }
6264
6265
6266//===----------------------------------------------------------------------===//
6267//                          Builtin Type Computation
6268//===----------------------------------------------------------------------===//
6269
6270/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6271/// pointer over the consumed characters.  This returns the resultant type.  If
6272/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6273/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6274/// a vector of "i*".
6275///
6276/// RequiresICE is filled in on return to indicate whether the value is required
6277/// to be an Integer Constant Expression.
6278static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6279                                  ASTContext::GetBuiltinTypeError &Error,
6280                                  bool &RequiresICE,
6281                                  bool AllowTypeModifiers) {
6282  // Modifiers.
6283  int HowLong = 0;
6284  bool Signed = false, Unsigned = false;
6285  RequiresICE = false;
6286
6287  // Read the prefixed modifiers first.
6288  bool Done = false;
6289  while (!Done) {
6290    switch (*Str++) {
6291    default: Done = true; --Str; break;
6292    case 'I':
6293      RequiresICE = true;
6294      break;
6295    case 'S':
6296      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6297      assert(!Signed && "Can't use 'S' modifier multiple times!");
6298      Signed = true;
6299      break;
6300    case 'U':
6301      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6302      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6303      Unsigned = true;
6304      break;
6305    case 'L':
6306      assert(HowLong <= 2 && "Can't have LLLL modifier");
6307      ++HowLong;
6308      break;
6309    }
6310  }
6311
6312  QualType Type;
6313
6314  // Read the base type.
6315  switch (*Str++) {
6316  default: llvm_unreachable("Unknown builtin type letter!");
6317  case 'v':
6318    assert(HowLong == 0 && !Signed && !Unsigned &&
6319           "Bad modifiers used with 'v'!");
6320    Type = Context.VoidTy;
6321    break;
6322  case 'f':
6323    assert(HowLong == 0 && !Signed && !Unsigned &&
6324           "Bad modifiers used with 'f'!");
6325    Type = Context.FloatTy;
6326    break;
6327  case 'd':
6328    assert(HowLong < 2 && !Signed && !Unsigned &&
6329           "Bad modifiers used with 'd'!");
6330    if (HowLong)
6331      Type = Context.LongDoubleTy;
6332    else
6333      Type = Context.DoubleTy;
6334    break;
6335  case 's':
6336    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6337    if (Unsigned)
6338      Type = Context.UnsignedShortTy;
6339    else
6340      Type = Context.ShortTy;
6341    break;
6342  case 'i':
6343    if (HowLong == 3)
6344      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6345    else if (HowLong == 2)
6346      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6347    else if (HowLong == 1)
6348      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6349    else
6350      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6351    break;
6352  case 'c':
6353    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6354    if (Signed)
6355      Type = Context.SignedCharTy;
6356    else if (Unsigned)
6357      Type = Context.UnsignedCharTy;
6358    else
6359      Type = Context.CharTy;
6360    break;
6361  case 'b': // boolean
6362    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6363    Type = Context.BoolTy;
6364    break;
6365  case 'z':  // size_t.
6366    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6367    Type = Context.getSizeType();
6368    break;
6369  case 'F':
6370    Type = Context.getCFConstantStringType();
6371    break;
6372  case 'G':
6373    Type = Context.getObjCIdType();
6374    break;
6375  case 'H':
6376    Type = Context.getObjCSelType();
6377    break;
6378  case 'a':
6379    Type = Context.getBuiltinVaListType();
6380    assert(!Type.isNull() && "builtin va list type not initialized!");
6381    break;
6382  case 'A':
6383    // This is a "reference" to a va_list; however, what exactly
6384    // this means depends on how va_list is defined. There are two
6385    // different kinds of va_list: ones passed by value, and ones
6386    // passed by reference.  An example of a by-value va_list is
6387    // x86, where va_list is a char*. An example of by-ref va_list
6388    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6389    // we want this argument to be a char*&; for x86-64, we want
6390    // it to be a __va_list_tag*.
6391    Type = Context.getBuiltinVaListType();
6392    assert(!Type.isNull() && "builtin va list type not initialized!");
6393    if (Type->isArrayType())
6394      Type = Context.getArrayDecayedType(Type);
6395    else
6396      Type = Context.getLValueReferenceType(Type);
6397    break;
6398  case 'V': {
6399    char *End;
6400    unsigned NumElements = strtoul(Str, &End, 10);
6401    assert(End != Str && "Missing vector size");
6402    Str = End;
6403
6404    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6405                                             RequiresICE, false);
6406    assert(!RequiresICE && "Can't require vector ICE");
6407
6408    // TODO: No way to make AltiVec vectors in builtins yet.
6409    Type = Context.getVectorType(ElementType, NumElements,
6410                                 VectorType::GenericVector);
6411    break;
6412  }
6413  case 'X': {
6414    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6415                                             false);
6416    assert(!RequiresICE && "Can't require complex ICE");
6417    Type = Context.getComplexType(ElementType);
6418    break;
6419  }
6420  case 'Y' : {
6421    Type = Context.getPointerDiffType();
6422    break;
6423  }
6424  case 'P':
6425    Type = Context.getFILEType();
6426    if (Type.isNull()) {
6427      Error = ASTContext::GE_Missing_stdio;
6428      return QualType();
6429    }
6430    break;
6431  case 'J':
6432    if (Signed)
6433      Type = Context.getsigjmp_bufType();
6434    else
6435      Type = Context.getjmp_bufType();
6436
6437    if (Type.isNull()) {
6438      Error = ASTContext::GE_Missing_setjmp;
6439      return QualType();
6440    }
6441    break;
6442  case 'K':
6443    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6444    Type = Context.getucontext_tType();
6445
6446    if (Type.isNull()) {
6447      Error = ASTContext::GE_Missing_ucontext;
6448      return QualType();
6449    }
6450    break;
6451  }
6452
6453  // If there are modifiers and if we're allowed to parse them, go for it.
6454  Done = !AllowTypeModifiers;
6455  while (!Done) {
6456    switch (char c = *Str++) {
6457    default: Done = true; --Str; break;
6458    case '*':
6459    case '&': {
6460      // Both pointers and references can have their pointee types
6461      // qualified with an address space.
6462      char *End;
6463      unsigned AddrSpace = strtoul(Str, &End, 10);
6464      if (End != Str && AddrSpace != 0) {
6465        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6466        Str = End;
6467      }
6468      if (c == '*')
6469        Type = Context.getPointerType(Type);
6470      else
6471        Type = Context.getLValueReferenceType(Type);
6472      break;
6473    }
6474    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6475    case 'C':
6476      Type = Type.withConst();
6477      break;
6478    case 'D':
6479      Type = Context.getVolatileType(Type);
6480      break;
6481    case 'R':
6482      Type = Type.withRestrict();
6483      break;
6484    }
6485  }
6486
6487  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6488         "Integer constant 'I' type must be an integer");
6489
6490  return Type;
6491}
6492
6493/// GetBuiltinType - Return the type for the specified builtin.
6494QualType ASTContext::GetBuiltinType(unsigned Id,
6495                                    GetBuiltinTypeError &Error,
6496                                    unsigned *IntegerConstantArgs) const {
6497  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6498
6499  SmallVector<QualType, 8> ArgTypes;
6500
6501  bool RequiresICE = false;
6502  Error = GE_None;
6503  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6504                                       RequiresICE, true);
6505  if (Error != GE_None)
6506    return QualType();
6507
6508  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6509
6510  while (TypeStr[0] && TypeStr[0] != '.') {
6511    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6512    if (Error != GE_None)
6513      return QualType();
6514
6515    // If this argument is required to be an IntegerConstantExpression and the
6516    // caller cares, fill in the bitmask we return.
6517    if (RequiresICE && IntegerConstantArgs)
6518      *IntegerConstantArgs |= 1 << ArgTypes.size();
6519
6520    // Do array -> pointer decay.  The builtin should use the decayed type.
6521    if (Ty->isArrayType())
6522      Ty = getArrayDecayedType(Ty);
6523
6524    ArgTypes.push_back(Ty);
6525  }
6526
6527  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6528         "'.' should only occur at end of builtin type list!");
6529
6530  FunctionType::ExtInfo EI;
6531  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6532
6533  bool Variadic = (TypeStr[0] == '.');
6534
6535  // We really shouldn't be making a no-proto type here, especially in C++.
6536  if (ArgTypes.empty() && Variadic)
6537    return getFunctionNoProtoType(ResType, EI);
6538
6539  FunctionProtoType::ExtProtoInfo EPI;
6540  EPI.ExtInfo = EI;
6541  EPI.Variadic = Variadic;
6542
6543  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6544}
6545
6546GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6547  GVALinkage External = GVA_StrongExternal;
6548
6549  Linkage L = FD->getLinkage();
6550  switch (L) {
6551  case NoLinkage:
6552  case InternalLinkage:
6553  case UniqueExternalLinkage:
6554    return GVA_Internal;
6555
6556  case ExternalLinkage:
6557    switch (FD->getTemplateSpecializationKind()) {
6558    case TSK_Undeclared:
6559    case TSK_ExplicitSpecialization:
6560      External = GVA_StrongExternal;
6561      break;
6562
6563    case TSK_ExplicitInstantiationDefinition:
6564      return GVA_ExplicitTemplateInstantiation;
6565
6566    case TSK_ExplicitInstantiationDeclaration:
6567    case TSK_ImplicitInstantiation:
6568      External = GVA_TemplateInstantiation;
6569      break;
6570    }
6571  }
6572
6573  if (!FD->isInlined())
6574    return External;
6575
6576  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6577    // GNU or C99 inline semantics. Determine whether this symbol should be
6578    // externally visible.
6579    if (FD->isInlineDefinitionExternallyVisible())
6580      return External;
6581
6582    // C99 inline semantics, where the symbol is not externally visible.
6583    return GVA_C99Inline;
6584  }
6585
6586  // C++0x [temp.explicit]p9:
6587  //   [ Note: The intent is that an inline function that is the subject of
6588  //   an explicit instantiation declaration will still be implicitly
6589  //   instantiated when used so that the body can be considered for
6590  //   inlining, but that no out-of-line copy of the inline function would be
6591  //   generated in the translation unit. -- end note ]
6592  if (FD->getTemplateSpecializationKind()
6593                                       == TSK_ExplicitInstantiationDeclaration)
6594    return GVA_C99Inline;
6595
6596  return GVA_CXXInline;
6597}
6598
6599GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6600  // If this is a static data member, compute the kind of template
6601  // specialization. Otherwise, this variable is not part of a
6602  // template.
6603  TemplateSpecializationKind TSK = TSK_Undeclared;
6604  if (VD->isStaticDataMember())
6605    TSK = VD->getTemplateSpecializationKind();
6606
6607  Linkage L = VD->getLinkage();
6608  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6609      VD->getType()->getLinkage() == UniqueExternalLinkage)
6610    L = UniqueExternalLinkage;
6611
6612  switch (L) {
6613  case NoLinkage:
6614  case InternalLinkage:
6615  case UniqueExternalLinkage:
6616    return GVA_Internal;
6617
6618  case ExternalLinkage:
6619    switch (TSK) {
6620    case TSK_Undeclared:
6621    case TSK_ExplicitSpecialization:
6622      return GVA_StrongExternal;
6623
6624    case TSK_ExplicitInstantiationDeclaration:
6625      llvm_unreachable("Variable should not be instantiated");
6626      // Fall through to treat this like any other instantiation.
6627
6628    case TSK_ExplicitInstantiationDefinition:
6629      return GVA_ExplicitTemplateInstantiation;
6630
6631    case TSK_ImplicitInstantiation:
6632      return GVA_TemplateInstantiation;
6633    }
6634  }
6635
6636  llvm_unreachable("Invalid Linkage!");
6637}
6638
6639bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6640  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6641    if (!VD->isFileVarDecl())
6642      return false;
6643  } else if (!isa<FunctionDecl>(D))
6644    return false;
6645
6646  // Weak references don't produce any output by themselves.
6647  if (D->hasAttr<WeakRefAttr>())
6648    return false;
6649
6650  // Aliases and used decls are required.
6651  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6652    return true;
6653
6654  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6655    // Forward declarations aren't required.
6656    if (!FD->doesThisDeclarationHaveABody())
6657      return FD->doesDeclarationForceExternallyVisibleDefinition();
6658
6659    // Constructors and destructors are required.
6660    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6661      return true;
6662
6663    // The key function for a class is required.
6664    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6665      const CXXRecordDecl *RD = MD->getParent();
6666      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6667        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6668        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6669          return true;
6670      }
6671    }
6672
6673    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6674
6675    // static, static inline, always_inline, and extern inline functions can
6676    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6677    // Implicit template instantiations can also be deferred in C++.
6678    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6679        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6680      return false;
6681    return true;
6682  }
6683
6684  const VarDecl *VD = cast<VarDecl>(D);
6685  assert(VD->isFileVarDecl() && "Expected file scoped var");
6686
6687  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6688    return false;
6689
6690  // Structs that have non-trivial constructors or destructors are required.
6691
6692  // FIXME: Handle references.
6693  // FIXME: Be more selective about which constructors we care about.
6694  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6695    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6696      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6697                                   RD->hasTrivialCopyConstructor() &&
6698                                   RD->hasTrivialMoveConstructor() &&
6699                                   RD->hasTrivialDestructor()))
6700        return true;
6701    }
6702  }
6703
6704  GVALinkage L = GetGVALinkageForVariable(VD);
6705  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6706    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6707      return false;
6708  }
6709
6710  return true;
6711}
6712
6713CallingConv ASTContext::getDefaultMethodCallConv() {
6714  // Pass through to the C++ ABI object
6715  return ABI->getDefaultMethodCallConv();
6716}
6717
6718bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6719  // Pass through to the C++ ABI object
6720  return ABI->isNearlyEmpty(RD);
6721}
6722
6723MangleContext *ASTContext::createMangleContext() {
6724  switch (Target->getCXXABI()) {
6725  case CXXABI_ARM:
6726  case CXXABI_Itanium:
6727    return createItaniumMangleContext(*this, getDiagnostics());
6728  case CXXABI_Microsoft:
6729    return createMicrosoftMangleContext(*this, getDiagnostics());
6730  }
6731  llvm_unreachable("Unsupported ABI");
6732}
6733
6734CXXABI::~CXXABI() {}
6735
6736size_t ASTContext::getSideTableAllocatedMemory() const {
6737  return ASTRecordLayouts.getMemorySize()
6738    + llvm::capacity_in_bytes(ObjCLayouts)
6739    + llvm::capacity_in_bytes(KeyFunctions)
6740    + llvm::capacity_in_bytes(ObjCImpls)
6741    + llvm::capacity_in_bytes(BlockVarCopyInits)
6742    + llvm::capacity_in_bytes(DeclAttrs)
6743    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6744    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6745    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6746    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6747    + llvm::capacity_in_bytes(OverriddenMethods)
6748    + llvm::capacity_in_bytes(Types)
6749    + llvm::capacity_in_bytes(VariableArrayTypes)
6750    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6751}
6752
6753unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
6754  CXXRecordDecl *Lambda = CallOperator->getParent();
6755  return LambdaMangleContexts[Lambda->getDeclContext()]
6756           .getManglingNumber(CallOperator);
6757}
6758
6759
6760void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6761  ParamIndices[D] = index;
6762}
6763
6764unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6765  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6766  assert(I != ParamIndices.end() &&
6767         "ParmIndices lacks entry set by ParmVarDecl");
6768  return I->second;
6769}
6770