ASTContext.cpp revision af3e72285238369c2ea4ebd40a1c9a87bd3eabb7
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/Bitcode/Serialize.h"
24#include "llvm/Bitcode/Deserialize.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       bool FreeMem, unsigned size_reserve) :
37  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels) {
40  if (size_reserve > 0) Types.reserve(size_reserve);
41  InitBuiltinTypes();
42  BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.NoBuiltin);
43  TUDecl = TranslationUnitDecl::Create(*this);
44}
45
46ASTContext::~ASTContext() {
47  // Deallocate all the types.
48  while (!Types.empty()) {
49    Types.back()->Destroy(*this);
50    Types.pop_back();
51  }
52
53  {
54    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
55      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
56    while (I != E) {
57      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
58      delete R;
59    }
60  }
61
62  {
63    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
64      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
65    while (I != E) {
66      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
67      delete R;
68    }
69  }
70
71  {
72    llvm::DenseMap<const ObjCInterfaceDecl*, const RecordDecl*>::iterator
73      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
74    while (I != E) {
75      RecordDecl *R = const_cast<RecordDecl*>((I++)->second);
76      R->Destroy(*this);
77    }
78  }
79
80  // Destroy nested-name-specifiers.
81  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
82         NNS = NestedNameSpecifiers.begin(),
83         NNSEnd = NestedNameSpecifiers.end();
84       NNS != NNSEnd;
85       /* Increment in loop */)
86    (*NNS++).Destroy(*this);
87
88  if (GlobalNestedNameSpecifier)
89    GlobalNestedNameSpecifier->Destroy(*this);
90
91  TUDecl->Destroy(*this);
92}
93
94void ASTContext::PrintStats() const {
95  fprintf(stderr, "*** AST Context Stats:\n");
96  fprintf(stderr, "  %d types total.\n", (int)Types.size());
97  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
98  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
99  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
100  unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
101
102  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
103  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
104  unsigned NumObjCQualifiedIds = 0;
105  unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
106
107  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
108    Type *T = Types[i];
109    if (isa<BuiltinType>(T))
110      ++NumBuiltin;
111    else if (isa<PointerType>(T))
112      ++NumPointer;
113    else if (isa<BlockPointerType>(T))
114      ++NumBlockPointer;
115    else if (isa<LValueReferenceType>(T))
116      ++NumLValueReference;
117    else if (isa<RValueReferenceType>(T))
118      ++NumRValueReference;
119    else if (isa<MemberPointerType>(T))
120      ++NumMemberPointer;
121    else if (isa<ComplexType>(T))
122      ++NumComplex;
123    else if (isa<ArrayType>(T))
124      ++NumArray;
125    else if (isa<VectorType>(T))
126      ++NumVector;
127    else if (isa<FunctionNoProtoType>(T))
128      ++NumFunctionNP;
129    else if (isa<FunctionProtoType>(T))
130      ++NumFunctionP;
131    else if (isa<TypedefType>(T))
132      ++NumTypeName;
133    else if (TagType *TT = dyn_cast<TagType>(T)) {
134      ++NumTagged;
135      switch (TT->getDecl()->getTagKind()) {
136      default: assert(0 && "Unknown tagged type!");
137      case TagDecl::TK_struct: ++NumTagStruct; break;
138      case TagDecl::TK_union:  ++NumTagUnion; break;
139      case TagDecl::TK_class:  ++NumTagClass; break;
140      case TagDecl::TK_enum:   ++NumTagEnum; break;
141      }
142    } else if (isa<ObjCInterfaceType>(T))
143      ++NumObjCInterfaces;
144    else if (isa<ObjCQualifiedInterfaceType>(T))
145      ++NumObjCQualifiedInterfaces;
146    else if (isa<ObjCQualifiedIdType>(T))
147      ++NumObjCQualifiedIds;
148    else if (isa<TypeOfType>(T))
149      ++NumTypeOfTypes;
150    else if (isa<TypeOfExprType>(T))
151      ++NumTypeOfExprTypes;
152    else {
153      QualType(T, 0).dump();
154      assert(0 && "Unknown type!");
155    }
156  }
157
158  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
159  fprintf(stderr, "    %d pointer types\n", NumPointer);
160  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
161  fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
162  fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
163  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
164  fprintf(stderr, "    %d complex types\n", NumComplex);
165  fprintf(stderr, "    %d array types\n", NumArray);
166  fprintf(stderr, "    %d vector types\n", NumVector);
167  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
168  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
169  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
170  fprintf(stderr, "    %d tagged types\n", NumTagged);
171  fprintf(stderr, "      %d struct types\n", NumTagStruct);
172  fprintf(stderr, "      %d union types\n", NumTagUnion);
173  fprintf(stderr, "      %d class types\n", NumTagClass);
174  fprintf(stderr, "      %d enum types\n", NumTagEnum);
175  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
176  fprintf(stderr, "    %d protocol qualified interface types\n",
177          NumObjCQualifiedInterfaces);
178  fprintf(stderr, "    %d protocol qualified id types\n",
179          NumObjCQualifiedIds);
180  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
181  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
182
183  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
184    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
185    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
186    NumLValueReference*sizeof(LValueReferenceType)+
187    NumRValueReference*sizeof(RValueReferenceType)+
188    NumMemberPointer*sizeof(MemberPointerType)+
189    NumFunctionP*sizeof(FunctionProtoType)+
190    NumFunctionNP*sizeof(FunctionNoProtoType)+
191    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
192    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)));
193}
194
195
196void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
197  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
198}
199
200void ASTContext::InitBuiltinTypes() {
201  assert(VoidTy.isNull() && "Context reinitialized?");
202
203  // C99 6.2.5p19.
204  InitBuiltinType(VoidTy,              BuiltinType::Void);
205
206  // C99 6.2.5p2.
207  InitBuiltinType(BoolTy,              BuiltinType::Bool);
208  // C99 6.2.5p3.
209  if (Target.isCharSigned())
210    InitBuiltinType(CharTy,            BuiltinType::Char_S);
211  else
212    InitBuiltinType(CharTy,            BuiltinType::Char_U);
213  // C99 6.2.5p4.
214  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
215  InitBuiltinType(ShortTy,             BuiltinType::Short);
216  InitBuiltinType(IntTy,               BuiltinType::Int);
217  InitBuiltinType(LongTy,              BuiltinType::Long);
218  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
219
220  // C99 6.2.5p6.
221  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
222  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
223  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
224  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
225  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
226
227  // C99 6.2.5p10.
228  InitBuiltinType(FloatTy,             BuiltinType::Float);
229  InitBuiltinType(DoubleTy,            BuiltinType::Double);
230  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
231
232  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
233    InitBuiltinType(WCharTy,           BuiltinType::WChar);
234  else // C99
235    WCharTy = getFromTargetType(Target.getWCharType());
236
237  // Placeholder type for functions.
238  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
239
240  // Placeholder type for type-dependent expressions whose type is
241  // completely unknown. No code should ever check a type against
242  // DependentTy and users should never see it; however, it is here to
243  // help diagnose failures to properly check for type-dependent
244  // expressions.
245  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
246
247  // C99 6.2.5p11.
248  FloatComplexTy      = getComplexType(FloatTy);
249  DoubleComplexTy     = getComplexType(DoubleTy);
250  LongDoubleComplexTy = getComplexType(LongDoubleTy);
251
252  BuiltinVaListType = QualType();
253  ObjCIdType = QualType();
254  IdStructType = 0;
255  ObjCClassType = QualType();
256  ClassStructType = 0;
257
258  ObjCConstantStringType = QualType();
259
260  // void * type
261  VoidPtrTy = getPointerType(VoidTy);
262}
263
264//===----------------------------------------------------------------------===//
265//                         Type Sizing and Analysis
266//===----------------------------------------------------------------------===//
267
268/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
269/// scalar floating point type.
270const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
271  const BuiltinType *BT = T->getAsBuiltinType();
272  assert(BT && "Not a floating point type!");
273  switch (BT->getKind()) {
274  default: assert(0 && "Not a floating point type!");
275  case BuiltinType::Float:      return Target.getFloatFormat();
276  case BuiltinType::Double:     return Target.getDoubleFormat();
277  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
278  }
279}
280
281/// getDeclAlign - Return a conservative estimate of the alignment of the
282/// specified decl.  Note that bitfields do not have a valid alignment, so
283/// this method will assert on them.
284unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
285  unsigned Align = Target.getCharWidth();
286
287  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
288    Align = std::max(Align, AA->getAlignment());
289
290  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
291    QualType T = VD->getType();
292    // Incomplete or function types default to 1.
293    if (!T->isIncompleteType() && !T->isFunctionType()) {
294      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
295        T = cast<ArrayType>(T)->getElementType();
296
297      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
298    }
299  }
300
301  return Align / Target.getCharWidth();
302}
303
304/// getTypeSize - Return the size of the specified type, in bits.  This method
305/// does not work on incomplete types.
306std::pair<uint64_t, unsigned>
307ASTContext::getTypeInfo(const Type *T) {
308  T = getCanonicalType(T);
309  uint64_t Width=0;
310  unsigned Align=8;
311  switch (T->getTypeClass()) {
312#define TYPE(Class, Base)
313#define ABSTRACT_TYPE(Class, Base)
314#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
315#define DEPENDENT_TYPE(Class, Base) case Type::Class:
316#include "clang/AST/TypeNodes.def"
317    assert(false && "Should not see non-canonical or dependent types");
318    break;
319
320  case Type::FunctionNoProto:
321  case Type::FunctionProto:
322  case Type::IncompleteArray:
323    assert(0 && "Incomplete types have no size!");
324  case Type::VariableArray:
325    assert(0 && "VLAs not implemented yet!");
326  case Type::ConstantArray: {
327    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
328
329    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
330    Width = EltInfo.first*CAT->getSize().getZExtValue();
331    Align = EltInfo.second;
332    break;
333  }
334  case Type::ExtVector:
335  case Type::Vector: {
336    std::pair<uint64_t, unsigned> EltInfo =
337      getTypeInfo(cast<VectorType>(T)->getElementType());
338    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
339    Align = Width;
340    // If the alignment is not a power of 2, round up to the next power of 2.
341    // This happens for non-power-of-2 length vectors.
342    // FIXME: this should probably be a target property.
343    Align = 1 << llvm::Log2_32_Ceil(Align);
344    break;
345  }
346
347  case Type::Builtin:
348    switch (cast<BuiltinType>(T)->getKind()) {
349    default: assert(0 && "Unknown builtin type!");
350    case BuiltinType::Void:
351      assert(0 && "Incomplete types have no size!");
352    case BuiltinType::Bool:
353      Width = Target.getBoolWidth();
354      Align = Target.getBoolAlign();
355      break;
356    case BuiltinType::Char_S:
357    case BuiltinType::Char_U:
358    case BuiltinType::UChar:
359    case BuiltinType::SChar:
360      Width = Target.getCharWidth();
361      Align = Target.getCharAlign();
362      break;
363    case BuiltinType::WChar:
364      Width = Target.getWCharWidth();
365      Align = Target.getWCharAlign();
366      break;
367    case BuiltinType::UShort:
368    case BuiltinType::Short:
369      Width = Target.getShortWidth();
370      Align = Target.getShortAlign();
371      break;
372    case BuiltinType::UInt:
373    case BuiltinType::Int:
374      Width = Target.getIntWidth();
375      Align = Target.getIntAlign();
376      break;
377    case BuiltinType::ULong:
378    case BuiltinType::Long:
379      Width = Target.getLongWidth();
380      Align = Target.getLongAlign();
381      break;
382    case BuiltinType::ULongLong:
383    case BuiltinType::LongLong:
384      Width = Target.getLongLongWidth();
385      Align = Target.getLongLongAlign();
386      break;
387    case BuiltinType::Float:
388      Width = Target.getFloatWidth();
389      Align = Target.getFloatAlign();
390      break;
391    case BuiltinType::Double:
392      Width = Target.getDoubleWidth();
393      Align = Target.getDoubleAlign();
394      break;
395    case BuiltinType::LongDouble:
396      Width = Target.getLongDoubleWidth();
397      Align = Target.getLongDoubleAlign();
398      break;
399    }
400    break;
401  case Type::FixedWidthInt:
402    // FIXME: This isn't precisely correct; the width/alignment should depend
403    // on the available types for the target
404    Width = cast<FixedWidthIntType>(T)->getWidth();
405    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
406    Align = Width;
407    break;
408  case Type::ExtQual:
409    // FIXME: Pointers into different addr spaces could have different sizes and
410    // alignment requirements: getPointerInfo should take an AddrSpace.
411    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
412  case Type::ObjCQualifiedId:
413  case Type::ObjCQualifiedClass:
414  case Type::ObjCQualifiedInterface:
415    Width = Target.getPointerWidth(0);
416    Align = Target.getPointerAlign(0);
417    break;
418  case Type::BlockPointer: {
419    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
420    Width = Target.getPointerWidth(AS);
421    Align = Target.getPointerAlign(AS);
422    break;
423  }
424  case Type::Pointer: {
425    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
426    Width = Target.getPointerWidth(AS);
427    Align = Target.getPointerAlign(AS);
428    break;
429  }
430  case Type::LValueReference:
431  case Type::RValueReference:
432    // "When applied to a reference or a reference type, the result is the size
433    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
434    // FIXME: This is wrong for struct layout: a reference in a struct has
435    // pointer size.
436    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
437  case Type::MemberPointer: {
438    // FIXME: This is not only platform- but also ABI-dependent. We follow
439    // the GCC ABI, where pointers to data are one pointer large, pointers to
440    // functions two pointers. But if we want to support ABI compatibility with
441    // other compilers too, we need to delegate this completely to TargetInfo
442    // or some ABI abstraction layer.
443    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
444    unsigned AS = Pointee.getAddressSpace();
445    Width = Target.getPointerWidth(AS);
446    if (Pointee->isFunctionType())
447      Width *= 2;
448    Align = Target.getPointerAlign(AS);
449    // GCC aligns at single pointer width.
450  }
451  case Type::Complex: {
452    // Complex types have the same alignment as their elements, but twice the
453    // size.
454    std::pair<uint64_t, unsigned> EltInfo =
455      getTypeInfo(cast<ComplexType>(T)->getElementType());
456    Width = EltInfo.first*2;
457    Align = EltInfo.second;
458    break;
459  }
460  case Type::ObjCInterface: {
461    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
462    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
463    Width = Layout.getSize();
464    Align = Layout.getAlignment();
465    break;
466  }
467  case Type::Record:
468  case Type::Enum: {
469    const TagType *TT = cast<TagType>(T);
470
471    if (TT->getDecl()->isInvalidDecl()) {
472      Width = 1;
473      Align = 1;
474      break;
475    }
476
477    if (const EnumType *ET = dyn_cast<EnumType>(TT))
478      return getTypeInfo(ET->getDecl()->getIntegerType());
479
480    const RecordType *RT = cast<RecordType>(TT);
481    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
482    Width = Layout.getSize();
483    Align = Layout.getAlignment();
484    break;
485  }
486
487  case Type::TemplateSpecialization:
488    assert(false && "Dependent types have no size");
489    break;
490  }
491
492  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
493  return std::make_pair(Width, Align);
494}
495
496/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
497/// type for the current target in bits.  This can be different than the ABI
498/// alignment in cases where it is beneficial for performance to overalign
499/// a data type.
500unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
501  unsigned ABIAlign = getTypeAlign(T);
502
503  // Doubles should be naturally aligned if possible.
504  if (T->isSpecificBuiltinType(BuiltinType::Double))
505    return std::max(ABIAlign, 64U);
506
507  return ABIAlign;
508}
509
510
511/// LayoutField - Field layout.
512void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
513                                  bool IsUnion, unsigned StructPacking,
514                                  ASTContext &Context) {
515  unsigned FieldPacking = StructPacking;
516  uint64_t FieldOffset = IsUnion ? 0 : Size;
517  uint64_t FieldSize;
518  unsigned FieldAlign;
519
520  // FIXME: Should this override struct packing? Probably we want to
521  // take the minimum?
522  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
523    FieldPacking = PA->getAlignment();
524
525  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
526    // TODO: Need to check this algorithm on other targets!
527    //       (tested on Linux-X86)
528    FieldSize =
529      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
530
531    std::pair<uint64_t, unsigned> FieldInfo =
532      Context.getTypeInfo(FD->getType());
533    uint64_t TypeSize = FieldInfo.first;
534
535    // Determine the alignment of this bitfield. The packing
536    // attributes define a maximum and the alignment attribute defines
537    // a minimum.
538    // FIXME: What is the right behavior when the specified alignment
539    // is smaller than the specified packing?
540    FieldAlign = FieldInfo.second;
541    if (FieldPacking)
542      FieldAlign = std::min(FieldAlign, FieldPacking);
543    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
544      FieldAlign = std::max(FieldAlign, AA->getAlignment());
545
546    // Check if we need to add padding to give the field the correct
547    // alignment.
548    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
549      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
550
551    // Padding members don't affect overall alignment
552    if (!FD->getIdentifier())
553      FieldAlign = 1;
554  } else {
555    if (FD->getType()->isIncompleteArrayType()) {
556      // This is a flexible array member; we can't directly
557      // query getTypeInfo about these, so we figure it out here.
558      // Flexible array members don't have any size, but they
559      // have to be aligned appropriately for their element type.
560      FieldSize = 0;
561      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
562      FieldAlign = Context.getTypeAlign(ATy->getElementType());
563    } else {
564      std::pair<uint64_t, unsigned> FieldInfo =
565        Context.getTypeInfo(FD->getType());
566      FieldSize = FieldInfo.first;
567      FieldAlign = FieldInfo.second;
568    }
569
570    // Determine the alignment of this bitfield. The packing
571    // attributes define a maximum and the alignment attribute defines
572    // a minimum. Additionally, the packing alignment must be at least
573    // a byte for non-bitfields.
574    //
575    // FIXME: What is the right behavior when the specified alignment
576    // is smaller than the specified packing?
577    if (FieldPacking)
578      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
579    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
580      FieldAlign = std::max(FieldAlign, AA->getAlignment());
581
582    // Round up the current record size to the field's alignment boundary.
583    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
584  }
585
586  // Place this field at the current location.
587  FieldOffsets[FieldNo] = FieldOffset;
588
589  // Reserve space for this field.
590  if (IsUnion) {
591    Size = std::max(Size, FieldSize);
592  } else {
593    Size = FieldOffset + FieldSize;
594  }
595
596  // Remember max struct/class alignment.
597  Alignment = std::max(Alignment, FieldAlign);
598}
599
600void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
601                             std::vector<FieldDecl*> &Fields) const {
602  const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
603  if (SuperClass)
604    CollectObjCIvars(SuperClass, Fields);
605  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
606       E = OI->ivar_end(); I != E; ++I) {
607    ObjCIvarDecl *IVDecl = (*I);
608    if (!IVDecl->isInvalidDecl())
609      Fields.push_back(cast<FieldDecl>(IVDecl));
610  }
611  // look into properties.
612  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
613       E = OI->prop_end(); I != E; ++I) {
614    ObjCPropertyDecl *PDecl = (*I);
615    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl())
616      Fields.push_back(cast<FieldDecl>(IV));
617  }
618}
619
620/// addRecordToClass - produces record info. for the class for its
621/// ivars and all those inherited.
622///
623const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D)
624{
625  const RecordDecl *&RD = ASTRecordForInterface[D];
626  if (RD)
627    return RD;
628  std::vector<FieldDecl*> RecFields;
629  CollectObjCIvars(D, RecFields);
630  RecordDecl *NewRD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
631                                         D->getLocation(),
632                                         D->getIdentifier());
633  /// FIXME! Can do collection of ivars and adding to the record while
634  /// doing it.
635  for (unsigned int i = 0; i != RecFields.size(); i++) {
636    FieldDecl *Field =  FieldDecl::Create(*this, NewRD,
637                                          RecFields[i]->getLocation(),
638                                          RecFields[i]->getIdentifier(),
639                                          RecFields[i]->getType(),
640                                          RecFields[i]->getBitWidth(), false);
641    NewRD->addDecl(Field);
642  }
643  NewRD->completeDefinition(*this);
644  RD = NewRD;
645  return RD;
646}
647
648/// setFieldDecl - maps a field for the given Ivar reference node.
649//
650void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
651                              const ObjCIvarDecl *Ivar,
652                              const ObjCIvarRefExpr *MRef) {
653  FieldDecl *FD = (const_cast<ObjCInterfaceDecl *>(OI))->
654                    lookupFieldDeclForIvar(*this, Ivar);
655  ASTFieldForIvarRef[MRef] = FD;
656}
657
658/// getASTObjcInterfaceLayout - Get or compute information about the layout of
659/// the specified Objective C, which indicates its size and ivar
660/// position information.
661const ASTRecordLayout &
662ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
663  // Look up this layout, if already laid out, return what we have.
664  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
665  if (Entry) return *Entry;
666
667  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
668  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
669  ASTRecordLayout *NewEntry = NULL;
670  unsigned FieldCount = D->ivar_size();
671  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
672    FieldCount++;
673    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
674    unsigned Alignment = SL.getAlignment();
675    uint64_t Size = SL.getSize();
676    NewEntry = new ASTRecordLayout(Size, Alignment);
677    NewEntry->InitializeLayout(FieldCount);
678    // Super class is at the beginning of the layout.
679    NewEntry->SetFieldOffset(0, 0);
680  } else {
681    NewEntry = new ASTRecordLayout();
682    NewEntry->InitializeLayout(FieldCount);
683  }
684  Entry = NewEntry;
685
686  unsigned StructPacking = 0;
687  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
688    StructPacking = PA->getAlignment();
689
690  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
691    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
692                                    AA->getAlignment()));
693
694  // Layout each ivar sequentially.
695  unsigned i = 0;
696  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
697       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
698    const ObjCIvarDecl* Ivar = (*IVI);
699    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
700  }
701
702  // Finally, round the size of the total struct up to the alignment of the
703  // struct itself.
704  NewEntry->FinalizeLayout();
705  return *NewEntry;
706}
707
708/// getASTRecordLayout - Get or compute information about the layout of the
709/// specified record (struct/union/class), which indicates its size and field
710/// position information.
711const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
712  D = D->getDefinition(*this);
713  assert(D && "Cannot get layout of forward declarations!");
714
715  // Look up this layout, if already laid out, return what we have.
716  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
717  if (Entry) return *Entry;
718
719  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
720  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
721  ASTRecordLayout *NewEntry = new ASTRecordLayout();
722  Entry = NewEntry;
723
724  // FIXME: Avoid linear walk through the fields, if possible.
725  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
726  bool IsUnion = D->isUnion();
727
728  unsigned StructPacking = 0;
729  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
730    StructPacking = PA->getAlignment();
731
732  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
733    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
734                                    AA->getAlignment()));
735
736  // Layout each field, for now, just sequentially, respecting alignment.  In
737  // the future, this will need to be tweakable by targets.
738  unsigned FieldIdx = 0;
739  for (RecordDecl::field_iterator Field = D->field_begin(),
740                               FieldEnd = D->field_end();
741       Field != FieldEnd; (void)++Field, ++FieldIdx)
742    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
743
744  // Finally, round the size of the total struct up to the alignment of the
745  // struct itself.
746  NewEntry->FinalizeLayout();
747  return *NewEntry;
748}
749
750//===----------------------------------------------------------------------===//
751//                   Type creation/memoization methods
752//===----------------------------------------------------------------------===//
753
754QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
755  QualType CanT = getCanonicalType(T);
756  if (CanT.getAddressSpace() == AddressSpace)
757    return T;
758
759  // If we are composing extended qualifiers together, merge together into one
760  // ExtQualType node.
761  unsigned CVRQuals = T.getCVRQualifiers();
762  QualType::GCAttrTypes GCAttr = QualType::GCNone;
763  Type *TypeNode = T.getTypePtr();
764
765  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
766    // If this type already has an address space specified, it cannot get
767    // another one.
768    assert(EQT->getAddressSpace() == 0 &&
769           "Type cannot be in multiple addr spaces!");
770    GCAttr = EQT->getObjCGCAttr();
771    TypeNode = EQT->getBaseType();
772  }
773
774  // Check if we've already instantiated this type.
775  llvm::FoldingSetNodeID ID;
776  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
777  void *InsertPos = 0;
778  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
779    return QualType(EXTQy, CVRQuals);
780
781  // If the base type isn't canonical, this won't be a canonical type either,
782  // so fill in the canonical type field.
783  QualType Canonical;
784  if (!TypeNode->isCanonical()) {
785    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
786
787    // Update InsertPos, the previous call could have invalidated it.
788    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
789    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
790  }
791  ExtQualType *New =
792    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
793  ExtQualTypes.InsertNode(New, InsertPos);
794  Types.push_back(New);
795  return QualType(New, CVRQuals);
796}
797
798QualType ASTContext::getObjCGCQualType(QualType T,
799                                       QualType::GCAttrTypes GCAttr) {
800  QualType CanT = getCanonicalType(T);
801  if (CanT.getObjCGCAttr() == GCAttr)
802    return T;
803
804  // If we are composing extended qualifiers together, merge together into one
805  // ExtQualType node.
806  unsigned CVRQuals = T.getCVRQualifiers();
807  Type *TypeNode = T.getTypePtr();
808  unsigned AddressSpace = 0;
809
810  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
811    // If this type already has an address space specified, it cannot get
812    // another one.
813    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
814           "Type cannot be in multiple addr spaces!");
815    AddressSpace = EQT->getAddressSpace();
816    TypeNode = EQT->getBaseType();
817  }
818
819  // Check if we've already instantiated an gc qual'd type of this type.
820  llvm::FoldingSetNodeID ID;
821  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
822  void *InsertPos = 0;
823  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
824    return QualType(EXTQy, CVRQuals);
825
826  // If the base type isn't canonical, this won't be a canonical type either,
827  // so fill in the canonical type field.
828  // FIXME: Isn't this also not canonical if the base type is a array
829  // or pointer type?  I can't find any documentation for objc_gc, though...
830  QualType Canonical;
831  if (!T->isCanonical()) {
832    Canonical = getObjCGCQualType(CanT, GCAttr);
833
834    // Update InsertPos, the previous call could have invalidated it.
835    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
836    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
837  }
838  ExtQualType *New =
839    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
840  ExtQualTypes.InsertNode(New, InsertPos);
841  Types.push_back(New);
842  return QualType(New, CVRQuals);
843}
844
845/// getComplexType - Return the uniqued reference to the type for a complex
846/// number with the specified element type.
847QualType ASTContext::getComplexType(QualType T) {
848  // Unique pointers, to guarantee there is only one pointer of a particular
849  // structure.
850  llvm::FoldingSetNodeID ID;
851  ComplexType::Profile(ID, T);
852
853  void *InsertPos = 0;
854  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
855    return QualType(CT, 0);
856
857  // If the pointee type isn't canonical, this won't be a canonical type either,
858  // so fill in the canonical type field.
859  QualType Canonical;
860  if (!T->isCanonical()) {
861    Canonical = getComplexType(getCanonicalType(T));
862
863    // Get the new insert position for the node we care about.
864    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
865    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
866  }
867  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
868  Types.push_back(New);
869  ComplexTypes.InsertNode(New, InsertPos);
870  return QualType(New, 0);
871}
872
873QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
874  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
875     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
876  FixedWidthIntType *&Entry = Map[Width];
877  if (!Entry)
878    Entry = new FixedWidthIntType(Width, Signed);
879  return QualType(Entry, 0);
880}
881
882/// getPointerType - Return the uniqued reference to the type for a pointer to
883/// the specified type.
884QualType ASTContext::getPointerType(QualType T) {
885  // Unique pointers, to guarantee there is only one pointer of a particular
886  // structure.
887  llvm::FoldingSetNodeID ID;
888  PointerType::Profile(ID, T);
889
890  void *InsertPos = 0;
891  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
892    return QualType(PT, 0);
893
894  // If the pointee type isn't canonical, this won't be a canonical type either,
895  // so fill in the canonical type field.
896  QualType Canonical;
897  if (!T->isCanonical()) {
898    Canonical = getPointerType(getCanonicalType(T));
899
900    // Get the new insert position for the node we care about.
901    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
902    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
903  }
904  PointerType *New = new (*this,8) PointerType(T, Canonical);
905  Types.push_back(New);
906  PointerTypes.InsertNode(New, InsertPos);
907  return QualType(New, 0);
908}
909
910/// getBlockPointerType - Return the uniqued reference to the type for
911/// a pointer to the specified block.
912QualType ASTContext::getBlockPointerType(QualType T) {
913  assert(T->isFunctionType() && "block of function types only");
914  // Unique pointers, to guarantee there is only one block of a particular
915  // structure.
916  llvm::FoldingSetNodeID ID;
917  BlockPointerType::Profile(ID, T);
918
919  void *InsertPos = 0;
920  if (BlockPointerType *PT =
921        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
922    return QualType(PT, 0);
923
924  // If the block pointee type isn't canonical, this won't be a canonical
925  // type either so fill in the canonical type field.
926  QualType Canonical;
927  if (!T->isCanonical()) {
928    Canonical = getBlockPointerType(getCanonicalType(T));
929
930    // Get the new insert position for the node we care about.
931    BlockPointerType *NewIP =
932      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
933    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
934  }
935  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
936  Types.push_back(New);
937  BlockPointerTypes.InsertNode(New, InsertPos);
938  return QualType(New, 0);
939}
940
941/// getLValueReferenceType - Return the uniqued reference to the type for an
942/// lvalue reference to the specified type.
943QualType ASTContext::getLValueReferenceType(QualType T) {
944  // Unique pointers, to guarantee there is only one pointer of a particular
945  // structure.
946  llvm::FoldingSetNodeID ID;
947  ReferenceType::Profile(ID, T);
948
949  void *InsertPos = 0;
950  if (LValueReferenceType *RT =
951        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
952    return QualType(RT, 0);
953
954  // If the referencee type isn't canonical, this won't be a canonical type
955  // either, so fill in the canonical type field.
956  QualType Canonical;
957  if (!T->isCanonical()) {
958    Canonical = getLValueReferenceType(getCanonicalType(T));
959
960    // Get the new insert position for the node we care about.
961    LValueReferenceType *NewIP =
962      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
963    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
964  }
965
966  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
967  Types.push_back(New);
968  LValueReferenceTypes.InsertNode(New, InsertPos);
969  return QualType(New, 0);
970}
971
972/// getRValueReferenceType - Return the uniqued reference to the type for an
973/// rvalue reference to the specified type.
974QualType ASTContext::getRValueReferenceType(QualType T) {
975  // Unique pointers, to guarantee there is only one pointer of a particular
976  // structure.
977  llvm::FoldingSetNodeID ID;
978  ReferenceType::Profile(ID, T);
979
980  void *InsertPos = 0;
981  if (RValueReferenceType *RT =
982        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
983    return QualType(RT, 0);
984
985  // If the referencee type isn't canonical, this won't be a canonical type
986  // either, so fill in the canonical type field.
987  QualType Canonical;
988  if (!T->isCanonical()) {
989    Canonical = getRValueReferenceType(getCanonicalType(T));
990
991    // Get the new insert position for the node we care about.
992    RValueReferenceType *NewIP =
993      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
994    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
995  }
996
997  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
998  Types.push_back(New);
999  RValueReferenceTypes.InsertNode(New, InsertPos);
1000  return QualType(New, 0);
1001}
1002
1003/// getMemberPointerType - Return the uniqued reference to the type for a
1004/// member pointer to the specified type, in the specified class.
1005QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1006{
1007  // Unique pointers, to guarantee there is only one pointer of a particular
1008  // structure.
1009  llvm::FoldingSetNodeID ID;
1010  MemberPointerType::Profile(ID, T, Cls);
1011
1012  void *InsertPos = 0;
1013  if (MemberPointerType *PT =
1014      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1015    return QualType(PT, 0);
1016
1017  // If the pointee or class type isn't canonical, this won't be a canonical
1018  // type either, so fill in the canonical type field.
1019  QualType Canonical;
1020  if (!T->isCanonical()) {
1021    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1022
1023    // Get the new insert position for the node we care about.
1024    MemberPointerType *NewIP =
1025      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1026    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1027  }
1028  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1029  Types.push_back(New);
1030  MemberPointerTypes.InsertNode(New, InsertPos);
1031  return QualType(New, 0);
1032}
1033
1034/// getConstantArrayType - Return the unique reference to the type for an
1035/// array of the specified element type.
1036QualType ASTContext::getConstantArrayType(QualType EltTy,
1037                                          const llvm::APInt &ArySize,
1038                                          ArrayType::ArraySizeModifier ASM,
1039                                          unsigned EltTypeQuals) {
1040  llvm::FoldingSetNodeID ID;
1041  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1042
1043  void *InsertPos = 0;
1044  if (ConstantArrayType *ATP =
1045      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1046    return QualType(ATP, 0);
1047
1048  // If the element type isn't canonical, this won't be a canonical type either,
1049  // so fill in the canonical type field.
1050  QualType Canonical;
1051  if (!EltTy->isCanonical()) {
1052    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1053                                     ASM, EltTypeQuals);
1054    // Get the new insert position for the node we care about.
1055    ConstantArrayType *NewIP =
1056      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1057    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1058  }
1059
1060  ConstantArrayType *New =
1061    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1062  ConstantArrayTypes.InsertNode(New, InsertPos);
1063  Types.push_back(New);
1064  return QualType(New, 0);
1065}
1066
1067/// getVariableArrayType - Returns a non-unique reference to the type for a
1068/// variable array of the specified element type.
1069QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1070                                          ArrayType::ArraySizeModifier ASM,
1071                                          unsigned EltTypeQuals) {
1072  // Since we don't unique expressions, it isn't possible to unique VLA's
1073  // that have an expression provided for their size.
1074
1075  VariableArrayType *New =
1076    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1077
1078  VariableArrayTypes.push_back(New);
1079  Types.push_back(New);
1080  return QualType(New, 0);
1081}
1082
1083/// getDependentSizedArrayType - Returns a non-unique reference to
1084/// the type for a dependently-sized array of the specified element
1085/// type. FIXME: We will need these to be uniqued, or at least
1086/// comparable, at some point.
1087QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1088                                                ArrayType::ArraySizeModifier ASM,
1089                                                unsigned EltTypeQuals) {
1090  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1091         "Size must be type- or value-dependent!");
1092
1093  // Since we don't unique expressions, it isn't possible to unique
1094  // dependently-sized array types.
1095
1096  DependentSizedArrayType *New =
1097      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1098                                            ASM, EltTypeQuals);
1099
1100  DependentSizedArrayTypes.push_back(New);
1101  Types.push_back(New);
1102  return QualType(New, 0);
1103}
1104
1105QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1106                                            ArrayType::ArraySizeModifier ASM,
1107                                            unsigned EltTypeQuals) {
1108  llvm::FoldingSetNodeID ID;
1109  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1110
1111  void *InsertPos = 0;
1112  if (IncompleteArrayType *ATP =
1113       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1114    return QualType(ATP, 0);
1115
1116  // If the element type isn't canonical, this won't be a canonical type
1117  // either, so fill in the canonical type field.
1118  QualType Canonical;
1119
1120  if (!EltTy->isCanonical()) {
1121    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1122                                       ASM, EltTypeQuals);
1123
1124    // Get the new insert position for the node we care about.
1125    IncompleteArrayType *NewIP =
1126      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1127    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1128  }
1129
1130  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1131                                                           ASM, EltTypeQuals);
1132
1133  IncompleteArrayTypes.InsertNode(New, InsertPos);
1134  Types.push_back(New);
1135  return QualType(New, 0);
1136}
1137
1138/// getVectorType - Return the unique reference to a vector type of
1139/// the specified element type and size. VectorType must be a built-in type.
1140QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1141  BuiltinType *baseType;
1142
1143  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1144  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1145
1146  // Check if we've already instantiated a vector of this type.
1147  llvm::FoldingSetNodeID ID;
1148  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1149  void *InsertPos = 0;
1150  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1151    return QualType(VTP, 0);
1152
1153  // If the element type isn't canonical, this won't be a canonical type either,
1154  // so fill in the canonical type field.
1155  QualType Canonical;
1156  if (!vecType->isCanonical()) {
1157    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1158
1159    // Get the new insert position for the node we care about.
1160    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1161    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1162  }
1163  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1164  VectorTypes.InsertNode(New, InsertPos);
1165  Types.push_back(New);
1166  return QualType(New, 0);
1167}
1168
1169/// getExtVectorType - Return the unique reference to an extended vector type of
1170/// the specified element type and size. VectorType must be a built-in type.
1171QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1172  BuiltinType *baseType;
1173
1174  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1175  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1176
1177  // Check if we've already instantiated a vector of this type.
1178  llvm::FoldingSetNodeID ID;
1179  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1180  void *InsertPos = 0;
1181  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1182    return QualType(VTP, 0);
1183
1184  // If the element type isn't canonical, this won't be a canonical type either,
1185  // so fill in the canonical type field.
1186  QualType Canonical;
1187  if (!vecType->isCanonical()) {
1188    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1189
1190    // Get the new insert position for the node we care about.
1191    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1192    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1193  }
1194  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1195  VectorTypes.InsertNode(New, InsertPos);
1196  Types.push_back(New);
1197  return QualType(New, 0);
1198}
1199
1200/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1201///
1202QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1203  // Unique functions, to guarantee there is only one function of a particular
1204  // structure.
1205  llvm::FoldingSetNodeID ID;
1206  FunctionNoProtoType::Profile(ID, ResultTy);
1207
1208  void *InsertPos = 0;
1209  if (FunctionNoProtoType *FT =
1210        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1211    return QualType(FT, 0);
1212
1213  QualType Canonical;
1214  if (!ResultTy->isCanonical()) {
1215    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1216
1217    // Get the new insert position for the node we care about.
1218    FunctionNoProtoType *NewIP =
1219      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1220    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1221  }
1222
1223  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1224  Types.push_back(New);
1225  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1226  return QualType(New, 0);
1227}
1228
1229/// getFunctionType - Return a normal function type with a typed argument
1230/// list.  isVariadic indicates whether the argument list includes '...'.
1231QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1232                                     unsigned NumArgs, bool isVariadic,
1233                                     unsigned TypeQuals) {
1234  // Unique functions, to guarantee there is only one function of a particular
1235  // structure.
1236  llvm::FoldingSetNodeID ID;
1237  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1238                             TypeQuals);
1239
1240  void *InsertPos = 0;
1241  if (FunctionProtoType *FTP =
1242        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1243    return QualType(FTP, 0);
1244
1245  // Determine whether the type being created is already canonical or not.
1246  bool isCanonical = ResultTy->isCanonical();
1247  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1248    if (!ArgArray[i]->isCanonical())
1249      isCanonical = false;
1250
1251  // If this type isn't canonical, get the canonical version of it.
1252  QualType Canonical;
1253  if (!isCanonical) {
1254    llvm::SmallVector<QualType, 16> CanonicalArgs;
1255    CanonicalArgs.reserve(NumArgs);
1256    for (unsigned i = 0; i != NumArgs; ++i)
1257      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1258
1259    Canonical = getFunctionType(getCanonicalType(ResultTy),
1260                                &CanonicalArgs[0], NumArgs,
1261                                isVariadic, TypeQuals);
1262
1263    // Get the new insert position for the node we care about.
1264    FunctionProtoType *NewIP =
1265      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1266    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1267  }
1268
1269  // FunctionProtoType objects are allocated with extra bytes after them
1270  // for a variable size array (for parameter types) at the end of them.
1271  FunctionProtoType *FTP =
1272    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1273                                 NumArgs*sizeof(QualType), 8);
1274  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1275                              TypeQuals, Canonical);
1276  Types.push_back(FTP);
1277  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1278  return QualType(FTP, 0);
1279}
1280
1281/// getTypeDeclType - Return the unique reference to the type for the
1282/// specified type declaration.
1283QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1284  assert(Decl && "Passed null for Decl param");
1285  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1286
1287  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1288    return getTypedefType(Typedef);
1289  else if (isa<TemplateTypeParmDecl>(Decl)) {
1290    assert(false && "Template type parameter types are always available.");
1291  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1292    return getObjCInterfaceType(ObjCInterface);
1293
1294  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1295    if (PrevDecl)
1296      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1297    else
1298      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1299  }
1300  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1301    if (PrevDecl)
1302      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1303    else
1304      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1305  }
1306  else
1307    assert(false && "TypeDecl without a type?");
1308
1309  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1310  return QualType(Decl->TypeForDecl, 0);
1311}
1312
1313/// getTypedefType - Return the unique reference to the type for the
1314/// specified typename decl.
1315QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1316  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1317
1318  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1319  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1320  Types.push_back(Decl->TypeForDecl);
1321  return QualType(Decl->TypeForDecl, 0);
1322}
1323
1324/// getObjCInterfaceType - Return the unique reference to the type for the
1325/// specified ObjC interface decl.
1326QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1327  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1328
1329  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1330  Types.push_back(Decl->TypeForDecl);
1331  return QualType(Decl->TypeForDecl, 0);
1332}
1333
1334/// buildObjCInterfaceType - Returns a new type for the interface
1335/// declaration, regardless. It also removes any previously built
1336/// record declaration so caller can rebuild it.
1337QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1338  const RecordDecl *&RD = ASTRecordForInterface[Decl];
1339  if (RD)
1340    RD = 0;
1341  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1342  Types.push_back(Decl->TypeForDecl);
1343  return QualType(Decl->TypeForDecl, 0);
1344}
1345
1346/// \brief Retrieve the template type parameter type for a template
1347/// parameter with the given depth, index, and (optionally) name.
1348QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1349                                             IdentifierInfo *Name) {
1350  llvm::FoldingSetNodeID ID;
1351  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1352  void *InsertPos = 0;
1353  TemplateTypeParmType *TypeParm
1354    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1355
1356  if (TypeParm)
1357    return QualType(TypeParm, 0);
1358
1359  if (Name)
1360    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1361                                         getTemplateTypeParmType(Depth, Index));
1362  else
1363    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1364
1365  Types.push_back(TypeParm);
1366  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1367
1368  return QualType(TypeParm, 0);
1369}
1370
1371QualType
1372ASTContext::getTemplateSpecializationType(TemplateName Template,
1373                                          const TemplateArgument *Args,
1374                                          unsigned NumArgs,
1375                                          QualType Canon) {
1376  // FIXME: If Template is dependent, canonicalize it!
1377
1378  if (!Canon.isNull())
1379    Canon = getCanonicalType(Canon);
1380
1381  llvm::FoldingSetNodeID ID;
1382  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1383
1384  void *InsertPos = 0;
1385  TemplateSpecializationType *Spec
1386    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1387
1388  if (Spec)
1389    return QualType(Spec, 0);
1390
1391  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1392                        sizeof(TemplateArgument) * NumArgs),
1393                       8);
1394  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1395  Types.push_back(Spec);
1396  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1397
1398  return QualType(Spec, 0);
1399}
1400
1401QualType
1402ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1403                                 QualType NamedType) {
1404  llvm::FoldingSetNodeID ID;
1405  QualifiedNameType::Profile(ID, NNS, NamedType);
1406
1407  void *InsertPos = 0;
1408  QualifiedNameType *T
1409    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1410  if (T)
1411    return QualType(T, 0);
1412
1413  T = new (*this) QualifiedNameType(NNS, NamedType,
1414                                    getCanonicalType(NamedType));
1415  Types.push_back(T);
1416  QualifiedNameTypes.InsertNode(T, InsertPos);
1417  return QualType(T, 0);
1418}
1419
1420QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1421                                     const IdentifierInfo *Name,
1422                                     QualType Canon) {
1423  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1424
1425  if (Canon.isNull()) {
1426    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1427    if (CanonNNS != NNS)
1428      Canon = getTypenameType(CanonNNS, Name);
1429  }
1430
1431  llvm::FoldingSetNodeID ID;
1432  TypenameType::Profile(ID, NNS, Name);
1433
1434  void *InsertPos = 0;
1435  TypenameType *T
1436    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1437  if (T)
1438    return QualType(T, 0);
1439
1440  T = new (*this) TypenameType(NNS, Name, Canon);
1441  Types.push_back(T);
1442  TypenameTypes.InsertNode(T, InsertPos);
1443  return QualType(T, 0);
1444}
1445
1446/// CmpProtocolNames - Comparison predicate for sorting protocols
1447/// alphabetically.
1448static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1449                            const ObjCProtocolDecl *RHS) {
1450  return LHS->getDeclName() < RHS->getDeclName();
1451}
1452
1453static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1454                                   unsigned &NumProtocols) {
1455  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1456
1457  // Sort protocols, keyed by name.
1458  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1459
1460  // Remove duplicates.
1461  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1462  NumProtocols = ProtocolsEnd-Protocols;
1463}
1464
1465
1466/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1467/// the given interface decl and the conforming protocol list.
1468QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1469                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1470  // Sort the protocol list alphabetically to canonicalize it.
1471  SortAndUniqueProtocols(Protocols, NumProtocols);
1472
1473  llvm::FoldingSetNodeID ID;
1474  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1475
1476  void *InsertPos = 0;
1477  if (ObjCQualifiedInterfaceType *QT =
1478      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1479    return QualType(QT, 0);
1480
1481  // No Match;
1482  ObjCQualifiedInterfaceType *QType =
1483    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1484
1485  Types.push_back(QType);
1486  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1487  return QualType(QType, 0);
1488}
1489
1490/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1491/// and the conforming protocol list.
1492QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1493                                            unsigned NumProtocols) {
1494  // Sort the protocol list alphabetically to canonicalize it.
1495  SortAndUniqueProtocols(Protocols, NumProtocols);
1496
1497  llvm::FoldingSetNodeID ID;
1498  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1499
1500  void *InsertPos = 0;
1501  if (ObjCQualifiedIdType *QT =
1502        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1503    return QualType(QT, 0);
1504
1505  // No Match;
1506  ObjCQualifiedIdType *QType =
1507    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1508  Types.push_back(QType);
1509  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1510  return QualType(QType, 0);
1511}
1512
1513/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1514/// TypeOfExprType AST's (since expression's are never shared). For example,
1515/// multiple declarations that refer to "typeof(x)" all contain different
1516/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1517/// on canonical type's (which are always unique).
1518QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1519  QualType Canonical = getCanonicalType(tofExpr->getType());
1520  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1521  Types.push_back(toe);
1522  return QualType(toe, 0);
1523}
1524
1525/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1526/// TypeOfType AST's. The only motivation to unique these nodes would be
1527/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1528/// an issue. This doesn't effect the type checker, since it operates
1529/// on canonical type's (which are always unique).
1530QualType ASTContext::getTypeOfType(QualType tofType) {
1531  QualType Canonical = getCanonicalType(tofType);
1532  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1533  Types.push_back(tot);
1534  return QualType(tot, 0);
1535}
1536
1537/// getTagDeclType - Return the unique reference to the type for the
1538/// specified TagDecl (struct/union/class/enum) decl.
1539QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1540  assert (Decl);
1541  return getTypeDeclType(Decl);
1542}
1543
1544/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1545/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1546/// needs to agree with the definition in <stddef.h>.
1547QualType ASTContext::getSizeType() const {
1548  return getFromTargetType(Target.getSizeType());
1549}
1550
1551/// getSignedWCharType - Return the type of "signed wchar_t".
1552/// Used when in C++, as a GCC extension.
1553QualType ASTContext::getSignedWCharType() const {
1554  // FIXME: derive from "Target" ?
1555  return WCharTy;
1556}
1557
1558/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1559/// Used when in C++, as a GCC extension.
1560QualType ASTContext::getUnsignedWCharType() const {
1561  // FIXME: derive from "Target" ?
1562  return UnsignedIntTy;
1563}
1564
1565/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1566/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1567QualType ASTContext::getPointerDiffType() const {
1568  return getFromTargetType(Target.getPtrDiffType(0));
1569}
1570
1571//===----------------------------------------------------------------------===//
1572//                              Type Operators
1573//===----------------------------------------------------------------------===//
1574
1575/// getCanonicalType - Return the canonical (structural) type corresponding to
1576/// the specified potentially non-canonical type.  The non-canonical version
1577/// of a type may have many "decorated" versions of types.  Decorators can
1578/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1579/// to be free of any of these, allowing two canonical types to be compared
1580/// for exact equality with a simple pointer comparison.
1581QualType ASTContext::getCanonicalType(QualType T) {
1582  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1583
1584  // If the result has type qualifiers, make sure to canonicalize them as well.
1585  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1586  if (TypeQuals == 0) return CanType;
1587
1588  // If the type qualifiers are on an array type, get the canonical type of the
1589  // array with the qualifiers applied to the element type.
1590  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1591  if (!AT)
1592    return CanType.getQualifiedType(TypeQuals);
1593
1594  // Get the canonical version of the element with the extra qualifiers on it.
1595  // This can recursively sink qualifiers through multiple levels of arrays.
1596  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1597  NewEltTy = getCanonicalType(NewEltTy);
1598
1599  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1600    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1601                                CAT->getIndexTypeQualifier());
1602  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1603    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1604                                  IAT->getIndexTypeQualifier());
1605
1606  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1607    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1608                                      DSAT->getSizeModifier(),
1609                                      DSAT->getIndexTypeQualifier());
1610
1611  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1612  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1613                              VAT->getSizeModifier(),
1614                              VAT->getIndexTypeQualifier());
1615}
1616
1617NestedNameSpecifier *
1618ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1619  if (!NNS)
1620    return 0;
1621
1622  switch (NNS->getKind()) {
1623  case NestedNameSpecifier::Identifier:
1624    // Canonicalize the prefix but keep the identifier the same.
1625    return NestedNameSpecifier::Create(*this,
1626                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1627                                       NNS->getAsIdentifier());
1628
1629  case NestedNameSpecifier::Namespace:
1630    // A namespace is canonical; build a nested-name-specifier with
1631    // this namespace and no prefix.
1632    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1633
1634  case NestedNameSpecifier::TypeSpec:
1635  case NestedNameSpecifier::TypeSpecWithTemplate: {
1636    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1637    NestedNameSpecifier *Prefix = 0;
1638
1639    // FIXME: This isn't the right check!
1640    if (T->isDependentType())
1641      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1642
1643    return NestedNameSpecifier::Create(*this, Prefix,
1644                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1645                                       T.getTypePtr());
1646  }
1647
1648  case NestedNameSpecifier::Global:
1649    // The global specifier is canonical and unique.
1650    return NNS;
1651  }
1652
1653  // Required to silence a GCC warning
1654  return 0;
1655}
1656
1657
1658const ArrayType *ASTContext::getAsArrayType(QualType T) {
1659  // Handle the non-qualified case efficiently.
1660  if (T.getCVRQualifiers() == 0) {
1661    // Handle the common positive case fast.
1662    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1663      return AT;
1664  }
1665
1666  // Handle the common negative case fast, ignoring CVR qualifiers.
1667  QualType CType = T->getCanonicalTypeInternal();
1668
1669  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1670  // test.
1671  if (!isa<ArrayType>(CType) &&
1672      !isa<ArrayType>(CType.getUnqualifiedType()))
1673    return 0;
1674
1675  // Apply any CVR qualifiers from the array type to the element type.  This
1676  // implements C99 6.7.3p8: "If the specification of an array type includes
1677  // any type qualifiers, the element type is so qualified, not the array type."
1678
1679  // If we get here, we either have type qualifiers on the type, or we have
1680  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1681  // we must propagate them down into the elemeng type.
1682  unsigned CVRQuals = T.getCVRQualifiers();
1683  unsigned AddrSpace = 0;
1684  Type *Ty = T.getTypePtr();
1685
1686  // Rip through ExtQualType's and typedefs to get to a concrete type.
1687  while (1) {
1688    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1689      AddrSpace = EXTQT->getAddressSpace();
1690      Ty = EXTQT->getBaseType();
1691    } else {
1692      T = Ty->getDesugaredType();
1693      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1694        break;
1695      CVRQuals |= T.getCVRQualifiers();
1696      Ty = T.getTypePtr();
1697    }
1698  }
1699
1700  // If we have a simple case, just return now.
1701  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1702  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1703    return ATy;
1704
1705  // Otherwise, we have an array and we have qualifiers on it.  Push the
1706  // qualifiers into the array element type and return a new array type.
1707  // Get the canonical version of the element with the extra qualifiers on it.
1708  // This can recursively sink qualifiers through multiple levels of arrays.
1709  QualType NewEltTy = ATy->getElementType();
1710  if (AddrSpace)
1711    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1712  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1713
1714  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1715    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1716                                                CAT->getSizeModifier(),
1717                                                CAT->getIndexTypeQualifier()));
1718  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1719    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1720                                                  IAT->getSizeModifier(),
1721                                                 IAT->getIndexTypeQualifier()));
1722
1723  if (const DependentSizedArrayType *DSAT
1724        = dyn_cast<DependentSizedArrayType>(ATy))
1725    return cast<ArrayType>(
1726                     getDependentSizedArrayType(NewEltTy,
1727                                                DSAT->getSizeExpr(),
1728                                                DSAT->getSizeModifier(),
1729                                                DSAT->getIndexTypeQualifier()));
1730
1731  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1732  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1733                                              VAT->getSizeModifier(),
1734                                              VAT->getIndexTypeQualifier()));
1735}
1736
1737
1738/// getArrayDecayedType - Return the properly qualified result of decaying the
1739/// specified array type to a pointer.  This operation is non-trivial when
1740/// handling typedefs etc.  The canonical type of "T" must be an array type,
1741/// this returns a pointer to a properly qualified element of the array.
1742///
1743/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1744QualType ASTContext::getArrayDecayedType(QualType Ty) {
1745  // Get the element type with 'getAsArrayType' so that we don't lose any
1746  // typedefs in the element type of the array.  This also handles propagation
1747  // of type qualifiers from the array type into the element type if present
1748  // (C99 6.7.3p8).
1749  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1750  assert(PrettyArrayType && "Not an array type!");
1751
1752  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1753
1754  // int x[restrict 4] ->  int *restrict
1755  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1756}
1757
1758QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1759  QualType ElemTy = VAT->getElementType();
1760
1761  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1762    return getBaseElementType(VAT);
1763
1764  return ElemTy;
1765}
1766
1767/// getFloatingRank - Return a relative rank for floating point types.
1768/// This routine will assert if passed a built-in type that isn't a float.
1769static FloatingRank getFloatingRank(QualType T) {
1770  if (const ComplexType *CT = T->getAsComplexType())
1771    return getFloatingRank(CT->getElementType());
1772
1773  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1774  switch (T->getAsBuiltinType()->getKind()) {
1775  default: assert(0 && "getFloatingRank(): not a floating type");
1776  case BuiltinType::Float:      return FloatRank;
1777  case BuiltinType::Double:     return DoubleRank;
1778  case BuiltinType::LongDouble: return LongDoubleRank;
1779  }
1780}
1781
1782/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1783/// point or a complex type (based on typeDomain/typeSize).
1784/// 'typeDomain' is a real floating point or complex type.
1785/// 'typeSize' is a real floating point or complex type.
1786QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1787                                                       QualType Domain) const {
1788  FloatingRank EltRank = getFloatingRank(Size);
1789  if (Domain->isComplexType()) {
1790    switch (EltRank) {
1791    default: assert(0 && "getFloatingRank(): illegal value for rank");
1792    case FloatRank:      return FloatComplexTy;
1793    case DoubleRank:     return DoubleComplexTy;
1794    case LongDoubleRank: return LongDoubleComplexTy;
1795    }
1796  }
1797
1798  assert(Domain->isRealFloatingType() && "Unknown domain!");
1799  switch (EltRank) {
1800  default: assert(0 && "getFloatingRank(): illegal value for rank");
1801  case FloatRank:      return FloatTy;
1802  case DoubleRank:     return DoubleTy;
1803  case LongDoubleRank: return LongDoubleTy;
1804  }
1805}
1806
1807/// getFloatingTypeOrder - Compare the rank of the two specified floating
1808/// point types, ignoring the domain of the type (i.e. 'double' ==
1809/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1810/// LHS < RHS, return -1.
1811int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1812  FloatingRank LHSR = getFloatingRank(LHS);
1813  FloatingRank RHSR = getFloatingRank(RHS);
1814
1815  if (LHSR == RHSR)
1816    return 0;
1817  if (LHSR > RHSR)
1818    return 1;
1819  return -1;
1820}
1821
1822/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1823/// routine will assert if passed a built-in type that isn't an integer or enum,
1824/// or if it is not canonicalized.
1825unsigned ASTContext::getIntegerRank(Type *T) {
1826  assert(T->isCanonical() && "T should be canonicalized");
1827  if (EnumType* ET = dyn_cast<EnumType>(T))
1828    T = ET->getDecl()->getIntegerType().getTypePtr();
1829
1830  // There are two things which impact the integer rank: the width, and
1831  // the ordering of builtins.  The builtin ordering is encoded in the
1832  // bottom three bits; the width is encoded in the bits above that.
1833  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1834    return FWIT->getWidth() << 3;
1835  }
1836
1837  switch (cast<BuiltinType>(T)->getKind()) {
1838  default: assert(0 && "getIntegerRank(): not a built-in integer");
1839  case BuiltinType::Bool:
1840    return 1 + (getIntWidth(BoolTy) << 3);
1841  case BuiltinType::Char_S:
1842  case BuiltinType::Char_U:
1843  case BuiltinType::SChar:
1844  case BuiltinType::UChar:
1845    return 2 + (getIntWidth(CharTy) << 3);
1846  case BuiltinType::Short:
1847  case BuiltinType::UShort:
1848    return 3 + (getIntWidth(ShortTy) << 3);
1849  case BuiltinType::Int:
1850  case BuiltinType::UInt:
1851    return 4 + (getIntWidth(IntTy) << 3);
1852  case BuiltinType::Long:
1853  case BuiltinType::ULong:
1854    return 5 + (getIntWidth(LongTy) << 3);
1855  case BuiltinType::LongLong:
1856  case BuiltinType::ULongLong:
1857    return 6 + (getIntWidth(LongLongTy) << 3);
1858  }
1859}
1860
1861/// getIntegerTypeOrder - Returns the highest ranked integer type:
1862/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1863/// LHS < RHS, return -1.
1864int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1865  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1866  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1867  if (LHSC == RHSC) return 0;
1868
1869  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1870  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1871
1872  unsigned LHSRank = getIntegerRank(LHSC);
1873  unsigned RHSRank = getIntegerRank(RHSC);
1874
1875  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1876    if (LHSRank == RHSRank) return 0;
1877    return LHSRank > RHSRank ? 1 : -1;
1878  }
1879
1880  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1881  if (LHSUnsigned) {
1882    // If the unsigned [LHS] type is larger, return it.
1883    if (LHSRank >= RHSRank)
1884      return 1;
1885
1886    // If the signed type can represent all values of the unsigned type, it
1887    // wins.  Because we are dealing with 2's complement and types that are
1888    // powers of two larger than each other, this is always safe.
1889    return -1;
1890  }
1891
1892  // If the unsigned [RHS] type is larger, return it.
1893  if (RHSRank >= LHSRank)
1894    return -1;
1895
1896  // If the signed type can represent all values of the unsigned type, it
1897  // wins.  Because we are dealing with 2's complement and types that are
1898  // powers of two larger than each other, this is always safe.
1899  return 1;
1900}
1901
1902// getCFConstantStringType - Return the type used for constant CFStrings.
1903QualType ASTContext::getCFConstantStringType() {
1904  if (!CFConstantStringTypeDecl) {
1905    CFConstantStringTypeDecl =
1906      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1907                         &Idents.get("NSConstantString"));
1908    QualType FieldTypes[4];
1909
1910    // const int *isa;
1911    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1912    // int flags;
1913    FieldTypes[1] = IntTy;
1914    // const char *str;
1915    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1916    // long length;
1917    FieldTypes[3] = LongTy;
1918
1919    // Create fields
1920    for (unsigned i = 0; i < 4; ++i) {
1921      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
1922                                           SourceLocation(), 0,
1923                                           FieldTypes[i], /*BitWidth=*/0,
1924                                           /*Mutable=*/false);
1925      CFConstantStringTypeDecl->addDecl(Field);
1926    }
1927
1928    CFConstantStringTypeDecl->completeDefinition(*this);
1929  }
1930
1931  return getTagDeclType(CFConstantStringTypeDecl);
1932}
1933
1934QualType ASTContext::getObjCFastEnumerationStateType()
1935{
1936  if (!ObjCFastEnumerationStateTypeDecl) {
1937    ObjCFastEnumerationStateTypeDecl =
1938      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1939                         &Idents.get("__objcFastEnumerationState"));
1940
1941    QualType FieldTypes[] = {
1942      UnsignedLongTy,
1943      getPointerType(ObjCIdType),
1944      getPointerType(UnsignedLongTy),
1945      getConstantArrayType(UnsignedLongTy,
1946                           llvm::APInt(32, 5), ArrayType::Normal, 0)
1947    };
1948
1949    for (size_t i = 0; i < 4; ++i) {
1950      FieldDecl *Field = FieldDecl::Create(*this,
1951                                           ObjCFastEnumerationStateTypeDecl,
1952                                           SourceLocation(), 0,
1953                                           FieldTypes[i], /*BitWidth=*/0,
1954                                           /*Mutable=*/false);
1955      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
1956    }
1957
1958    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
1959  }
1960
1961  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
1962}
1963
1964// This returns true if a type has been typedefed to BOOL:
1965// typedef <type> BOOL;
1966static bool isTypeTypedefedAsBOOL(QualType T) {
1967  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1968    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
1969      return II->isStr("BOOL");
1970
1971  return false;
1972}
1973
1974/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1975/// purpose.
1976int ASTContext::getObjCEncodingTypeSize(QualType type) {
1977  uint64_t sz = getTypeSize(type);
1978
1979  // Make all integer and enum types at least as large as an int
1980  if (sz > 0 && type->isIntegralType())
1981    sz = std::max(sz, getTypeSize(IntTy));
1982  // Treat arrays as pointers, since that's how they're passed in.
1983  else if (type->isArrayType())
1984    sz = getTypeSize(VoidPtrTy);
1985  return sz / getTypeSize(CharTy);
1986}
1987
1988/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1989/// declaration.
1990void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1991                                              std::string& S) {
1992  // FIXME: This is not very efficient.
1993  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1994  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1995  // Encode result type.
1996  getObjCEncodingForType(Decl->getResultType(), S);
1997  // Compute size of all parameters.
1998  // Start with computing size of a pointer in number of bytes.
1999  // FIXME: There might(should) be a better way of doing this computation!
2000  SourceLocation Loc;
2001  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2002  // The first two arguments (self and _cmd) are pointers; account for
2003  // their size.
2004  int ParmOffset = 2 * PtrSize;
2005  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2006       E = Decl->param_end(); PI != E; ++PI) {
2007    QualType PType = (*PI)->getType();
2008    int sz = getObjCEncodingTypeSize(PType);
2009    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2010    ParmOffset += sz;
2011  }
2012  S += llvm::utostr(ParmOffset);
2013  S += "@0:";
2014  S += llvm::utostr(PtrSize);
2015
2016  // Argument types.
2017  ParmOffset = 2 * PtrSize;
2018  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2019       E = Decl->param_end(); PI != E; ++PI) {
2020    ParmVarDecl *PVDecl = *PI;
2021    QualType PType = PVDecl->getOriginalType();
2022    if (const ArrayType *AT =
2023          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
2024        // Use array's original type only if it has known number of
2025        // elements.
2026        if (!dyn_cast<ConstantArrayType>(AT))
2027          PType = PVDecl->getType();
2028    // Process argument qualifiers for user supplied arguments; such as,
2029    // 'in', 'inout', etc.
2030    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2031    getObjCEncodingForType(PType, S);
2032    S += llvm::utostr(ParmOffset);
2033    ParmOffset += getObjCEncodingTypeSize(PType);
2034  }
2035}
2036
2037/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2038/// property declaration. If non-NULL, Container must be either an
2039/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2040/// NULL when getting encodings for protocol properties.
2041/// Property attributes are stored as a comma-delimited C string. The simple
2042/// attributes readonly and bycopy are encoded as single characters. The
2043/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2044/// encoded as single characters, followed by an identifier. Property types
2045/// are also encoded as a parametrized attribute. The characters used to encode
2046/// these attributes are defined by the following enumeration:
2047/// @code
2048/// enum PropertyAttributes {
2049/// kPropertyReadOnly = 'R',   // property is read-only.
2050/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2051/// kPropertyByref = '&',  // property is a reference to the value last assigned
2052/// kPropertyDynamic = 'D',    // property is dynamic
2053/// kPropertyGetter = 'G',     // followed by getter selector name
2054/// kPropertySetter = 'S',     // followed by setter selector name
2055/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2056/// kPropertyType = 't'              // followed by old-style type encoding.
2057/// kPropertyWeak = 'W'              // 'weak' property
2058/// kPropertyStrong = 'P'            // property GC'able
2059/// kPropertyNonAtomic = 'N'         // property non-atomic
2060/// };
2061/// @endcode
2062void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2063                                                const Decl *Container,
2064                                                std::string& S) {
2065  // Collect information from the property implementation decl(s).
2066  bool Dynamic = false;
2067  ObjCPropertyImplDecl *SynthesizePID = 0;
2068
2069  // FIXME: Duplicated code due to poor abstraction.
2070  if (Container) {
2071    if (const ObjCCategoryImplDecl *CID =
2072        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2073      for (ObjCCategoryImplDecl::propimpl_iterator
2074             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
2075        ObjCPropertyImplDecl *PID = *i;
2076        if (PID->getPropertyDecl() == PD) {
2077          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2078            Dynamic = true;
2079          } else {
2080            SynthesizePID = PID;
2081          }
2082        }
2083      }
2084    } else {
2085      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2086      for (ObjCCategoryImplDecl::propimpl_iterator
2087             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
2088        ObjCPropertyImplDecl *PID = *i;
2089        if (PID->getPropertyDecl() == PD) {
2090          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2091            Dynamic = true;
2092          } else {
2093            SynthesizePID = PID;
2094          }
2095        }
2096      }
2097    }
2098  }
2099
2100  // FIXME: This is not very efficient.
2101  S = "T";
2102
2103  // Encode result type.
2104  // GCC has some special rules regarding encoding of properties which
2105  // closely resembles encoding of ivars.
2106  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
2107                             true /* outermost type */,
2108                             true /* encoding for property */);
2109
2110  if (PD->isReadOnly()) {
2111    S += ",R";
2112  } else {
2113    switch (PD->getSetterKind()) {
2114    case ObjCPropertyDecl::Assign: break;
2115    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2116    case ObjCPropertyDecl::Retain: S += ",&"; break;
2117    }
2118  }
2119
2120  // It really isn't clear at all what this means, since properties
2121  // are "dynamic by default".
2122  if (Dynamic)
2123    S += ",D";
2124
2125  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2126    S += ",N";
2127
2128  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2129    S += ",G";
2130    S += PD->getGetterName().getAsString();
2131  }
2132
2133  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2134    S += ",S";
2135    S += PD->getSetterName().getAsString();
2136  }
2137
2138  if (SynthesizePID) {
2139    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2140    S += ",V";
2141    S += OID->getNameAsString();
2142  }
2143
2144  // FIXME: OBJCGC: weak & strong
2145}
2146
2147/// getLegacyIntegralTypeEncoding -
2148/// Another legacy compatibility encoding: 32-bit longs are encoded as
2149/// 'l' or 'L' , but not always.  For typedefs, we need to use
2150/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2151///
2152void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2153  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2154    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2155      if (BT->getKind() == BuiltinType::ULong &&
2156          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2157        PointeeTy = UnsignedIntTy;
2158      else
2159        if (BT->getKind() == BuiltinType::Long &&
2160            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2161          PointeeTy = IntTy;
2162    }
2163  }
2164}
2165
2166void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2167                                        FieldDecl *Field) const {
2168  // We follow the behavior of gcc, expanding structures which are
2169  // directly pointed to, and expanding embedded structures. Note that
2170  // these rules are sufficient to prevent recursive encoding of the
2171  // same type.
2172  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2173                             true /* outermost type */);
2174}
2175
2176static void EncodeBitField(const ASTContext *Context, std::string& S,
2177                           FieldDecl *FD) {
2178  const Expr *E = FD->getBitWidth();
2179  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2180  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2181  unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
2182  S += 'b';
2183  S += llvm::utostr(N);
2184}
2185
2186void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2187                                            bool ExpandPointedToStructures,
2188                                            bool ExpandStructures,
2189                                            FieldDecl *FD,
2190                                            bool OutermostType,
2191                                            bool EncodingProperty) const {
2192  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2193    if (FD && FD->isBitField()) {
2194      EncodeBitField(this, S, FD);
2195    }
2196    else {
2197      char encoding;
2198      switch (BT->getKind()) {
2199      default: assert(0 && "Unhandled builtin type kind");
2200      case BuiltinType::Void:       encoding = 'v'; break;
2201      case BuiltinType::Bool:       encoding = 'B'; break;
2202      case BuiltinType::Char_U:
2203      case BuiltinType::UChar:      encoding = 'C'; break;
2204      case BuiltinType::UShort:     encoding = 'S'; break;
2205      case BuiltinType::UInt:       encoding = 'I'; break;
2206      case BuiltinType::ULong:
2207          encoding =
2208            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2209          break;
2210      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2211      case BuiltinType::Char_S:
2212      case BuiltinType::SChar:      encoding = 'c'; break;
2213      case BuiltinType::Short:      encoding = 's'; break;
2214      case BuiltinType::Int:        encoding = 'i'; break;
2215      case BuiltinType::Long:
2216        encoding =
2217          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2218        break;
2219      case BuiltinType::LongLong:   encoding = 'q'; break;
2220      case BuiltinType::Float:      encoding = 'f'; break;
2221      case BuiltinType::Double:     encoding = 'd'; break;
2222      case BuiltinType::LongDouble: encoding = 'd'; break;
2223      }
2224
2225      S += encoding;
2226    }
2227  }
2228  else if (T->isObjCQualifiedIdType()) {
2229    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2230                               ExpandPointedToStructures,
2231                               ExpandStructures, FD);
2232    if (FD || EncodingProperty) {
2233      // Note that we do extended encoding of protocol qualifer list
2234      // Only when doing ivar or property encoding.
2235      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2236      S += '"';
2237      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2238        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2239        S += '<';
2240        S += Proto->getNameAsString();
2241        S += '>';
2242      }
2243      S += '"';
2244    }
2245    return;
2246  }
2247  else if (const PointerType *PT = T->getAsPointerType()) {
2248    QualType PointeeTy = PT->getPointeeType();
2249    bool isReadOnly = false;
2250    // For historical/compatibility reasons, the read-only qualifier of the
2251    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2252    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2253    // Also, do not emit the 'r' for anything but the outermost type!
2254    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2255      if (OutermostType && T.isConstQualified()) {
2256        isReadOnly = true;
2257        S += 'r';
2258      }
2259    }
2260    else if (OutermostType) {
2261      QualType P = PointeeTy;
2262      while (P->getAsPointerType())
2263        P = P->getAsPointerType()->getPointeeType();
2264      if (P.isConstQualified()) {
2265        isReadOnly = true;
2266        S += 'r';
2267      }
2268    }
2269    if (isReadOnly) {
2270      // Another legacy compatibility encoding. Some ObjC qualifier and type
2271      // combinations need to be rearranged.
2272      // Rewrite "in const" from "nr" to "rn"
2273      const char * s = S.c_str();
2274      int len = S.length();
2275      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2276        std::string replace = "rn";
2277        S.replace(S.end()-2, S.end(), replace);
2278      }
2279    }
2280    if (isObjCIdStructType(PointeeTy)) {
2281      S += '@';
2282      return;
2283    }
2284    else if (PointeeTy->isObjCInterfaceType()) {
2285      if (!EncodingProperty &&
2286          isa<TypedefType>(PointeeTy.getTypePtr())) {
2287        // Another historical/compatibility reason.
2288        // We encode the underlying type which comes out as
2289        // {...};
2290        S += '^';
2291        getObjCEncodingForTypeImpl(PointeeTy, S,
2292                                   false, ExpandPointedToStructures,
2293                                   NULL);
2294        return;
2295      }
2296      S += '@';
2297      if (FD || EncodingProperty) {
2298        const ObjCInterfaceType *OIT =
2299                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2300        ObjCInterfaceDecl *OI = OIT->getDecl();
2301        S += '"';
2302        S += OI->getNameAsCString();
2303        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2304          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2305          S += '<';
2306          S += Proto->getNameAsString();
2307          S += '>';
2308        }
2309        S += '"';
2310      }
2311      return;
2312    } else if (isObjCClassStructType(PointeeTy)) {
2313      S += '#';
2314      return;
2315    } else if (isObjCSelType(PointeeTy)) {
2316      S += ':';
2317      return;
2318    }
2319
2320    if (PointeeTy->isCharType()) {
2321      // char pointer types should be encoded as '*' unless it is a
2322      // type that has been typedef'd to 'BOOL'.
2323      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2324        S += '*';
2325        return;
2326      }
2327    }
2328
2329    S += '^';
2330    getLegacyIntegralTypeEncoding(PointeeTy);
2331
2332    getObjCEncodingForTypeImpl(PointeeTy, S,
2333                               false, ExpandPointedToStructures,
2334                               NULL);
2335  } else if (const ArrayType *AT =
2336               // Ignore type qualifiers etc.
2337               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2338    if (isa<IncompleteArrayType>(AT)) {
2339      // Incomplete arrays are encoded as a pointer to the array element.
2340      S += '^';
2341
2342      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2343                                 false, ExpandStructures, FD);
2344    } else {
2345      S += '[';
2346
2347      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2348        S += llvm::utostr(CAT->getSize().getZExtValue());
2349      else {
2350        //Variable length arrays are encoded as a regular array with 0 elements.
2351        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2352        S += '0';
2353      }
2354
2355      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2356                                 false, ExpandStructures, FD);
2357      S += ']';
2358    }
2359  } else if (T->getAsFunctionType()) {
2360    S += '?';
2361  } else if (const RecordType *RTy = T->getAsRecordType()) {
2362    RecordDecl *RDecl = RTy->getDecl();
2363    S += RDecl->isUnion() ? '(' : '{';
2364    // Anonymous structures print as '?'
2365    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2366      S += II->getName();
2367    } else {
2368      S += '?';
2369    }
2370    if (ExpandStructures) {
2371      S += '=';
2372      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2373                                   FieldEnd = RDecl->field_end();
2374           Field != FieldEnd; ++Field) {
2375        if (FD) {
2376          S += '"';
2377          S += Field->getNameAsString();
2378          S += '"';
2379        }
2380
2381        // Special case bit-fields.
2382        if (Field->isBitField()) {
2383          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2384                                     (*Field));
2385        } else {
2386          QualType qt = Field->getType();
2387          getLegacyIntegralTypeEncoding(qt);
2388          getObjCEncodingForTypeImpl(qt, S, false, true,
2389                                     FD);
2390        }
2391      }
2392    }
2393    S += RDecl->isUnion() ? ')' : '}';
2394  } else if (T->isEnumeralType()) {
2395    if (FD && FD->isBitField())
2396      EncodeBitField(this, S, FD);
2397    else
2398      S += 'i';
2399  } else if (T->isBlockPointerType()) {
2400    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2401  } else if (T->isObjCInterfaceType()) {
2402    // @encode(class_name)
2403    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2404    S += '{';
2405    const IdentifierInfo *II = OI->getIdentifier();
2406    S += II->getName();
2407    S += '=';
2408    std::vector<FieldDecl*> RecFields;
2409    CollectObjCIvars(OI, RecFields);
2410    for (unsigned int i = 0; i != RecFields.size(); i++) {
2411      if (RecFields[i]->isBitField())
2412        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2413                                   RecFields[i]);
2414      else
2415        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2416                                   FD);
2417    }
2418    S += '}';
2419  }
2420  else
2421    assert(0 && "@encode for type not implemented!");
2422}
2423
2424void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2425                                                 std::string& S) const {
2426  if (QT & Decl::OBJC_TQ_In)
2427    S += 'n';
2428  if (QT & Decl::OBJC_TQ_Inout)
2429    S += 'N';
2430  if (QT & Decl::OBJC_TQ_Out)
2431    S += 'o';
2432  if (QT & Decl::OBJC_TQ_Bycopy)
2433    S += 'O';
2434  if (QT & Decl::OBJC_TQ_Byref)
2435    S += 'R';
2436  if (QT & Decl::OBJC_TQ_Oneway)
2437    S += 'V';
2438}
2439
2440void ASTContext::setBuiltinVaListType(QualType T)
2441{
2442  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2443
2444  BuiltinVaListType = T;
2445}
2446
2447void ASTContext::setObjCIdType(TypedefDecl *TD)
2448{
2449  ObjCIdType = getTypedefType(TD);
2450
2451  // typedef struct objc_object *id;
2452  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2453  // User error - caller will issue diagnostics.
2454  if (!ptr)
2455    return;
2456  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2457  // User error - caller will issue diagnostics.
2458  if (!rec)
2459    return;
2460  IdStructType = rec;
2461}
2462
2463void ASTContext::setObjCSelType(TypedefDecl *TD)
2464{
2465  ObjCSelType = getTypedefType(TD);
2466
2467  // typedef struct objc_selector *SEL;
2468  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2469  if (!ptr)
2470    return;
2471  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2472  if (!rec)
2473    return;
2474  SelStructType = rec;
2475}
2476
2477void ASTContext::setObjCProtoType(QualType QT)
2478{
2479  ObjCProtoType = QT;
2480}
2481
2482void ASTContext::setObjCClassType(TypedefDecl *TD)
2483{
2484  ObjCClassType = getTypedefType(TD);
2485
2486  // typedef struct objc_class *Class;
2487  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2488  assert(ptr && "'Class' incorrectly typed");
2489  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2490  assert(rec && "'Class' incorrectly typed");
2491  ClassStructType = rec;
2492}
2493
2494void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2495  assert(ObjCConstantStringType.isNull() &&
2496         "'NSConstantString' type already set!");
2497
2498  ObjCConstantStringType = getObjCInterfaceType(Decl);
2499}
2500
2501/// \brief Retrieve the template name that represents a qualified
2502/// template name such as \c std::vector.
2503TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2504                                                  bool TemplateKeyword,
2505                                                  TemplateDecl *Template) {
2506  llvm::FoldingSetNodeID ID;
2507  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2508
2509  void *InsertPos = 0;
2510  QualifiedTemplateName *QTN =
2511    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2512  if (!QTN) {
2513    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2514    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2515  }
2516
2517  return TemplateName(QTN);
2518}
2519
2520/// \brief Retrieve the template name that represents a dependent
2521/// template name such as \c MetaFun::template apply.
2522TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2523                                                  const IdentifierInfo *Name) {
2524  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2525
2526  llvm::FoldingSetNodeID ID;
2527  DependentTemplateName::Profile(ID, NNS, Name);
2528
2529  void *InsertPos = 0;
2530  DependentTemplateName *QTN =
2531    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2532
2533  if (QTN)
2534    return TemplateName(QTN);
2535
2536  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2537  if (CanonNNS == NNS) {
2538    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2539  } else {
2540    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2541    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2542  }
2543
2544  DependentTemplateNames.InsertNode(QTN, InsertPos);
2545  return TemplateName(QTN);
2546}
2547
2548/// getFromTargetType - Given one of the integer types provided by
2549/// TargetInfo, produce the corresponding type. The unsigned @p Type
2550/// is actually a value of type @c TargetInfo::IntType.
2551QualType ASTContext::getFromTargetType(unsigned Type) const {
2552  switch (Type) {
2553  case TargetInfo::NoInt: return QualType();
2554  case TargetInfo::SignedShort: return ShortTy;
2555  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2556  case TargetInfo::SignedInt: return IntTy;
2557  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2558  case TargetInfo::SignedLong: return LongTy;
2559  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2560  case TargetInfo::SignedLongLong: return LongLongTy;
2561  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2562  }
2563
2564  assert(false && "Unhandled TargetInfo::IntType value");
2565  return QualType();
2566}
2567
2568//===----------------------------------------------------------------------===//
2569//                        Type Predicates.
2570//===----------------------------------------------------------------------===//
2571
2572/// isObjCNSObjectType - Return true if this is an NSObject object using
2573/// NSObject attribute on a c-style pointer type.
2574/// FIXME - Make it work directly on types.
2575///
2576bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2577  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2578    if (TypedefDecl *TD = TDT->getDecl())
2579      if (TD->getAttr<ObjCNSObjectAttr>())
2580        return true;
2581  }
2582  return false;
2583}
2584
2585/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2586/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2587/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2588/// ID type).
2589bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2590  if (Ty->isObjCQualifiedIdType())
2591    return true;
2592
2593  // Blocks are objects.
2594  if (Ty->isBlockPointerType())
2595    return true;
2596
2597  // All other object types are pointers.
2598  if (!Ty->isPointerType())
2599    return false;
2600
2601  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2602  // pointer types.  This looks for the typedef specifically, not for the
2603  // underlying type.
2604  if (Ty.getUnqualifiedType() == getObjCIdType() ||
2605      Ty.getUnqualifiedType() == getObjCClassType())
2606    return true;
2607
2608  // If this a pointer to an interface (e.g. NSString*), it is ok.
2609  if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType())
2610    return true;
2611
2612  // If is has NSObject attribute, OK as well.
2613  return isObjCNSObjectType(Ty);
2614}
2615
2616/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2617/// garbage collection attribute.
2618///
2619QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2620  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2621  if (getLangOptions().ObjC1 &&
2622      getLangOptions().getGCMode() != LangOptions::NonGC) {
2623    GCAttrs = Ty.getObjCGCAttr();
2624    // Default behavious under objective-c's gc is for objective-c pointers
2625    // (or pointers to them) be treated as though they were declared
2626    // as __strong.
2627    if (GCAttrs == QualType::GCNone) {
2628      if (isObjCObjectPointerType(Ty))
2629        GCAttrs = QualType::Strong;
2630      else if (Ty->isPointerType())
2631        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2632    }
2633  }
2634  return GCAttrs;
2635}
2636
2637//===----------------------------------------------------------------------===//
2638//                        Type Compatibility Testing
2639//===----------------------------------------------------------------------===//
2640
2641/// typesAreBlockCompatible - This routine is called when comparing two
2642/// block types. Types must be strictly compatible here. For example,
2643/// C unfortunately doesn't produce an error for the following:
2644///
2645///   int (*emptyArgFunc)();
2646///   int (*intArgList)(int) = emptyArgFunc;
2647///
2648/// For blocks, we will produce an error for the following (similar to C++):
2649///
2650///   int (^emptyArgBlock)();
2651///   int (^intArgBlock)(int) = emptyArgBlock;
2652///
2653/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2654///
2655bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2656  const FunctionType *lbase = lhs->getAsFunctionType();
2657  const FunctionType *rbase = rhs->getAsFunctionType();
2658  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2659  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2660  if (lproto && rproto)
2661    return !mergeTypes(lhs, rhs).isNull();
2662  return false;
2663}
2664
2665/// areCompatVectorTypes - Return true if the two specified vector types are
2666/// compatible.
2667static bool areCompatVectorTypes(const VectorType *LHS,
2668                                 const VectorType *RHS) {
2669  assert(LHS->isCanonical() && RHS->isCanonical());
2670  return LHS->getElementType() == RHS->getElementType() &&
2671         LHS->getNumElements() == RHS->getNumElements();
2672}
2673
2674/// canAssignObjCInterfaces - Return true if the two interface types are
2675/// compatible for assignment from RHS to LHS.  This handles validation of any
2676/// protocol qualifiers on the LHS or RHS.
2677///
2678bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2679                                         const ObjCInterfaceType *RHS) {
2680  // Verify that the base decls are compatible: the RHS must be a subclass of
2681  // the LHS.
2682  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2683    return false;
2684
2685  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2686  // protocol qualified at all, then we are good.
2687  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2688    return true;
2689
2690  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2691  // isn't a superset.
2692  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2693    return true;  // FIXME: should return false!
2694
2695  // Finally, we must have two protocol-qualified interfaces.
2696  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2697  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2698
2699  // All LHS protocols must have a presence on the RHS.
2700  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2701
2702  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2703                                                 LHSPE = LHSP->qual_end();
2704       LHSPI != LHSPE; LHSPI++) {
2705    bool RHSImplementsProtocol = false;
2706
2707    // If the RHS doesn't implement the protocol on the left, the types
2708    // are incompatible.
2709    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2710                                                   RHSPE = RHSP->qual_end();
2711         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2712      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2713        RHSImplementsProtocol = true;
2714    }
2715    // FIXME: For better diagnostics, consider passing back the protocol name.
2716    if (!RHSImplementsProtocol)
2717      return false;
2718  }
2719  // The RHS implements all protocols listed on the LHS.
2720  return true;
2721}
2722
2723bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2724  // get the "pointed to" types
2725  const PointerType *LHSPT = LHS->getAsPointerType();
2726  const PointerType *RHSPT = RHS->getAsPointerType();
2727
2728  if (!LHSPT || !RHSPT)
2729    return false;
2730
2731  QualType lhptee = LHSPT->getPointeeType();
2732  QualType rhptee = RHSPT->getPointeeType();
2733  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2734  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2735  // ID acts sort of like void* for ObjC interfaces
2736  if (LHSIface && isObjCIdStructType(rhptee))
2737    return true;
2738  if (RHSIface && isObjCIdStructType(lhptee))
2739    return true;
2740  if (!LHSIface || !RHSIface)
2741    return false;
2742  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2743         canAssignObjCInterfaces(RHSIface, LHSIface);
2744}
2745
2746/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2747/// both shall have the identically qualified version of a compatible type.
2748/// C99 6.2.7p1: Two types have compatible types if their types are the
2749/// same. See 6.7.[2,3,5] for additional rules.
2750bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2751  return !mergeTypes(LHS, RHS).isNull();
2752}
2753
2754QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2755  const FunctionType *lbase = lhs->getAsFunctionType();
2756  const FunctionType *rbase = rhs->getAsFunctionType();
2757  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2758  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2759  bool allLTypes = true;
2760  bool allRTypes = true;
2761
2762  // Check return type
2763  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2764  if (retType.isNull()) return QualType();
2765  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2766    allLTypes = false;
2767  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2768    allRTypes = false;
2769
2770  if (lproto && rproto) { // two C99 style function prototypes
2771    unsigned lproto_nargs = lproto->getNumArgs();
2772    unsigned rproto_nargs = rproto->getNumArgs();
2773
2774    // Compatible functions must have the same number of arguments
2775    if (lproto_nargs != rproto_nargs)
2776      return QualType();
2777
2778    // Variadic and non-variadic functions aren't compatible
2779    if (lproto->isVariadic() != rproto->isVariadic())
2780      return QualType();
2781
2782    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2783      return QualType();
2784
2785    // Check argument compatibility
2786    llvm::SmallVector<QualType, 10> types;
2787    for (unsigned i = 0; i < lproto_nargs; i++) {
2788      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2789      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2790      QualType argtype = mergeTypes(largtype, rargtype);
2791      if (argtype.isNull()) return QualType();
2792      types.push_back(argtype);
2793      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2794        allLTypes = false;
2795      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2796        allRTypes = false;
2797    }
2798    if (allLTypes) return lhs;
2799    if (allRTypes) return rhs;
2800    return getFunctionType(retType, types.begin(), types.size(),
2801                           lproto->isVariadic(), lproto->getTypeQuals());
2802  }
2803
2804  if (lproto) allRTypes = false;
2805  if (rproto) allLTypes = false;
2806
2807  const FunctionProtoType *proto = lproto ? lproto : rproto;
2808  if (proto) {
2809    if (proto->isVariadic()) return QualType();
2810    // Check that the types are compatible with the types that
2811    // would result from default argument promotions (C99 6.7.5.3p15).
2812    // The only types actually affected are promotable integer
2813    // types and floats, which would be passed as a different
2814    // type depending on whether the prototype is visible.
2815    unsigned proto_nargs = proto->getNumArgs();
2816    for (unsigned i = 0; i < proto_nargs; ++i) {
2817      QualType argTy = proto->getArgType(i);
2818      if (argTy->isPromotableIntegerType() ||
2819          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2820        return QualType();
2821    }
2822
2823    if (allLTypes) return lhs;
2824    if (allRTypes) return rhs;
2825    return getFunctionType(retType, proto->arg_type_begin(),
2826                           proto->getNumArgs(), lproto->isVariadic(),
2827                           lproto->getTypeQuals());
2828  }
2829
2830  if (allLTypes) return lhs;
2831  if (allRTypes) return rhs;
2832  return getFunctionNoProtoType(retType);
2833}
2834
2835QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2836  // C++ [expr]: If an expression initially has the type "reference to T", the
2837  // type is adjusted to "T" prior to any further analysis, the expression
2838  // designates the object or function denoted by the reference, and the
2839  // expression is an lvalue unless the reference is an rvalue reference and
2840  // the expression is a function call (possibly inside parentheses).
2841  // FIXME: C++ shouldn't be going through here!  The rules are different
2842  // enough that they should be handled separately.
2843  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
2844  // shouldn't be going through here!
2845  if (const ReferenceType *RT = LHS->getAsReferenceType())
2846    LHS = RT->getPointeeType();
2847  if (const ReferenceType *RT = RHS->getAsReferenceType())
2848    RHS = RT->getPointeeType();
2849
2850  QualType LHSCan = getCanonicalType(LHS),
2851           RHSCan = getCanonicalType(RHS);
2852
2853  // If two types are identical, they are compatible.
2854  if (LHSCan == RHSCan)
2855    return LHS;
2856
2857  // If the qualifiers are different, the types aren't compatible
2858  // Note that we handle extended qualifiers later, in the
2859  // case for ExtQualType.
2860  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
2861    return QualType();
2862
2863  Type::TypeClass LHSClass = LHSCan->getTypeClass();
2864  Type::TypeClass RHSClass = RHSCan->getTypeClass();
2865
2866  // We want to consider the two function types to be the same for these
2867  // comparisons, just force one to the other.
2868  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2869  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2870
2871  // Same as above for arrays
2872  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2873    LHSClass = Type::ConstantArray;
2874  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2875    RHSClass = Type::ConstantArray;
2876
2877  // Canonicalize ExtVector -> Vector.
2878  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2879  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2880
2881  // Consider qualified interfaces and interfaces the same.
2882  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2883  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2884
2885  // If the canonical type classes don't match.
2886  if (LHSClass != RHSClass) {
2887    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2888    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2889
2890    // ID acts sort of like void* for ObjC interfaces
2891    if (LHSIface && isObjCIdStructType(RHS))
2892      return LHS;
2893    if (RHSIface && isObjCIdStructType(LHS))
2894      return RHS;
2895
2896    // ID is compatible with all qualified id types.
2897    if (LHS->isObjCQualifiedIdType()) {
2898      if (const PointerType *PT = RHS->getAsPointerType()) {
2899        QualType pType = PT->getPointeeType();
2900        if (isObjCIdStructType(pType))
2901          return LHS;
2902        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2903        // Unfortunately, this API is part of Sema (which we don't have access
2904        // to. Need to refactor. The following check is insufficient, since we
2905        // need to make sure the class implements the protocol.
2906        if (pType->isObjCInterfaceType())
2907          return LHS;
2908      }
2909    }
2910    if (RHS->isObjCQualifiedIdType()) {
2911      if (const PointerType *PT = LHS->getAsPointerType()) {
2912        QualType pType = PT->getPointeeType();
2913        if (isObjCIdStructType(pType))
2914          return RHS;
2915        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2916        // Unfortunately, this API is part of Sema (which we don't have access
2917        // to. Need to refactor. The following check is insufficient, since we
2918        // need to make sure the class implements the protocol.
2919        if (pType->isObjCInterfaceType())
2920          return RHS;
2921      }
2922    }
2923    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
2924    // a signed integer type, or an unsigned integer type.
2925    if (const EnumType* ETy = LHS->getAsEnumType()) {
2926      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
2927        return RHS;
2928    }
2929    if (const EnumType* ETy = RHS->getAsEnumType()) {
2930      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
2931        return LHS;
2932    }
2933
2934    return QualType();
2935  }
2936
2937  // The canonical type classes match.
2938  switch (LHSClass) {
2939#define TYPE(Class, Base)
2940#define ABSTRACT_TYPE(Class, Base)
2941#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2942#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2943#include "clang/AST/TypeNodes.def"
2944    assert(false && "Non-canonical and dependent types shouldn't get here");
2945    return QualType();
2946
2947  case Type::LValueReference:
2948  case Type::RValueReference:
2949  case Type::MemberPointer:
2950    assert(false && "C++ should never be in mergeTypes");
2951    return QualType();
2952
2953  case Type::IncompleteArray:
2954  case Type::VariableArray:
2955  case Type::FunctionProto:
2956  case Type::ExtVector:
2957  case Type::ObjCQualifiedInterface:
2958    assert(false && "Types are eliminated above");
2959    return QualType();
2960
2961  case Type::Pointer:
2962  {
2963    // Merge two pointer types, while trying to preserve typedef info
2964    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
2965    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
2966    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2967    if (ResultType.isNull()) return QualType();
2968    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2969      return LHS;
2970    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2971      return RHS;
2972    return getPointerType(ResultType);
2973  }
2974  case Type::BlockPointer:
2975  {
2976    // Merge two block pointer types, while trying to preserve typedef info
2977    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
2978    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
2979    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2980    if (ResultType.isNull()) return QualType();
2981    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2982      return LHS;
2983    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2984      return RHS;
2985    return getBlockPointerType(ResultType);
2986  }
2987  case Type::ConstantArray:
2988  {
2989    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
2990    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
2991    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
2992      return QualType();
2993
2994    QualType LHSElem = getAsArrayType(LHS)->getElementType();
2995    QualType RHSElem = getAsArrayType(RHS)->getElementType();
2996    QualType ResultType = mergeTypes(LHSElem, RHSElem);
2997    if (ResultType.isNull()) return QualType();
2998    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2999      return LHS;
3000    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3001      return RHS;
3002    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3003                                          ArrayType::ArraySizeModifier(), 0);
3004    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3005                                          ArrayType::ArraySizeModifier(), 0);
3006    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3007    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3008    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3009      return LHS;
3010    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3011      return RHS;
3012    if (LVAT) {
3013      // FIXME: This isn't correct! But tricky to implement because
3014      // the array's size has to be the size of LHS, but the type
3015      // has to be different.
3016      return LHS;
3017    }
3018    if (RVAT) {
3019      // FIXME: This isn't correct! But tricky to implement because
3020      // the array's size has to be the size of RHS, but the type
3021      // has to be different.
3022      return RHS;
3023    }
3024    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3025    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3026    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3027  }
3028  case Type::FunctionNoProto:
3029    return mergeFunctionTypes(LHS, RHS);
3030  case Type::Record:
3031  case Type::Enum:
3032    // FIXME: Why are these compatible?
3033    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3034    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3035    return QualType();
3036  case Type::Builtin:
3037    // Only exactly equal builtin types are compatible, which is tested above.
3038    return QualType();
3039  case Type::Complex:
3040    // Distinct complex types are incompatible.
3041    return QualType();
3042  case Type::Vector:
3043    // FIXME: The merged type should be an ExtVector!
3044    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3045      return LHS;
3046    return QualType();
3047  case Type::ObjCInterface: {
3048    // Check if the interfaces are assignment compatible.
3049    // FIXME: This should be type compatibility, e.g. whether
3050    // "LHS x; RHS x;" at global scope is legal.
3051    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3052    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3053    if (LHSIface && RHSIface &&
3054        canAssignObjCInterfaces(LHSIface, RHSIface))
3055      return LHS;
3056
3057    return QualType();
3058  }
3059  case Type::ObjCQualifiedId:
3060    // Distinct qualified id's are not compatible.
3061    return QualType();
3062  case Type::FixedWidthInt:
3063    // Distinct fixed-width integers are not compatible.
3064    return QualType();
3065  case Type::ObjCQualifiedClass:
3066    // Distinct qualified classes are not compatible.
3067    return QualType();
3068  case Type::ExtQual:
3069    // FIXME: ExtQual types can be compatible even if they're not
3070    // identical!
3071    return QualType();
3072    // First attempt at an implementation, but I'm not really sure it's
3073    // right...
3074#if 0
3075    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3076    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3077    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3078        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3079      return QualType();
3080    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3081    LHSBase = QualType(LQual->getBaseType(), 0);
3082    RHSBase = QualType(RQual->getBaseType(), 0);
3083    ResultType = mergeTypes(LHSBase, RHSBase);
3084    if (ResultType.isNull()) return QualType();
3085    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3086    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3087      return LHS;
3088    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3089      return RHS;
3090    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3091    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3092    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3093    return ResultType;
3094#endif
3095
3096  case Type::TemplateSpecialization:
3097    assert(false && "Dependent types have no size");
3098    break;
3099  }
3100
3101  return QualType();
3102}
3103
3104//===----------------------------------------------------------------------===//
3105//                         Integer Predicates
3106//===----------------------------------------------------------------------===//
3107
3108unsigned ASTContext::getIntWidth(QualType T) {
3109  if (T == BoolTy)
3110    return 1;
3111  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3112    return FWIT->getWidth();
3113  }
3114  // For builtin types, just use the standard type sizing method
3115  return (unsigned)getTypeSize(T);
3116}
3117
3118QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3119  assert(T->isSignedIntegerType() && "Unexpected type");
3120  if (const EnumType* ETy = T->getAsEnumType())
3121    T = ETy->getDecl()->getIntegerType();
3122  const BuiltinType* BTy = T->getAsBuiltinType();
3123  assert (BTy && "Unexpected signed integer type");
3124  switch (BTy->getKind()) {
3125  case BuiltinType::Char_S:
3126  case BuiltinType::SChar:
3127    return UnsignedCharTy;
3128  case BuiltinType::Short:
3129    return UnsignedShortTy;
3130  case BuiltinType::Int:
3131    return UnsignedIntTy;
3132  case BuiltinType::Long:
3133    return UnsignedLongTy;
3134  case BuiltinType::LongLong:
3135    return UnsignedLongLongTy;
3136  default:
3137    assert(0 && "Unexpected signed integer type");
3138    return QualType();
3139  }
3140}
3141
3142
3143//===----------------------------------------------------------------------===//
3144//                         Serialization Support
3145//===----------------------------------------------------------------------===//
3146
3147enum {
3148  BasicMetadataBlock = 1,
3149  ASTContextBlock = 2,
3150  DeclsBlock = 3
3151};
3152
3153void ASTContext::EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const{
3154  // Create bitstream.
3155  llvm::BitstreamWriter Stream(Buffer);
3156
3157  // Emit the preamble.
3158  Stream.Emit((unsigned)'B', 8);
3159  Stream.Emit((unsigned)'C', 8);
3160  Stream.Emit(0xC, 4);
3161  Stream.Emit(0xF, 4);
3162  Stream.Emit(0xE, 4);
3163  Stream.Emit(0x0, 4);
3164
3165  // Create serializer.
3166  llvm::Serializer S(Stream);
3167
3168  // ===---------------------------------------------------===/
3169  //      Serialize the "Translation Unit" metadata.
3170  // ===---------------------------------------------------===/
3171
3172  // Emit ASTContext.
3173  S.EnterBlock(ASTContextBlock);
3174  S.EmitOwnedPtr(this);
3175  S.ExitBlock();      // exit "ASTContextBlock"
3176
3177  S.EnterBlock(BasicMetadataBlock);
3178
3179  // Block for SourceManager and Target.  Allows easy skipping
3180  // around to the block for the Selectors during deserialization.
3181  S.EnterBlock();
3182
3183  // Emit the SourceManager.
3184  S.Emit(getSourceManager());
3185
3186  // Emit the Target.
3187  S.EmitPtr(&Target);
3188  S.EmitCStr(Target.getTargetTriple());
3189
3190  S.ExitBlock(); // exit "SourceManager and Target Block"
3191
3192  // Emit the Selectors.
3193  S.Emit(Selectors);
3194
3195  // Emit the Identifier Table.
3196  S.Emit(Idents);
3197
3198  S.ExitBlock(); // exit "BasicMetadataBlock"
3199}
3200
3201
3202/// Emit - Serialize an ASTContext object to Bitcode.
3203void ASTContext::Emit(llvm::Serializer& S) const {
3204  S.Emit(LangOpts);
3205  S.EmitRef(SourceMgr);
3206  S.EmitRef(Target);
3207  S.EmitRef(Idents);
3208  S.EmitRef(Selectors);
3209
3210  // Emit the size of the type vector so that we can reserve that size
3211  // when we reconstitute the ASTContext object.
3212  S.EmitInt(Types.size());
3213
3214  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
3215                                          I!=E;++I)
3216    (*I)->Emit(S);
3217
3218  S.EmitOwnedPtr(TUDecl);
3219
3220  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
3221}
3222
3223
3224ASTContext *ASTContext::ReadASTBitcodeBuffer(llvm::MemoryBuffer &Buffer,
3225                                             FileManager &FMgr) {
3226  // Check if the file is of the proper length.
3227  if (Buffer.getBufferSize() & 0x3) {
3228    // FIXME: Provide diagnostic: "Length should be a multiple of 4 bytes."
3229    return 0;
3230  }
3231
3232  // Create the bitstream reader.
3233  unsigned char *BufPtr = (unsigned char *)Buffer.getBufferStart();
3234  llvm::BitstreamReader Stream(BufPtr, BufPtr+Buffer.getBufferSize());
3235
3236  if (Stream.Read(8) != 'B' ||
3237      Stream.Read(8) != 'C' ||
3238      Stream.Read(4) != 0xC ||
3239      Stream.Read(4) != 0xF ||
3240      Stream.Read(4) != 0xE ||
3241      Stream.Read(4) != 0x0) {
3242    // FIXME: Provide diagnostic.
3243    return NULL;
3244  }
3245
3246  // Create the deserializer.
3247  llvm::Deserializer Dezr(Stream);
3248
3249  // ===---------------------------------------------------===/
3250  //      Deserialize the "Translation Unit" metadata.
3251  // ===---------------------------------------------------===/
3252
3253  // Skip to the BasicMetaDataBlock.  First jump to ASTContextBlock
3254  // (which will appear earlier) and record its location.
3255
3256  bool FoundBlock = Dezr.SkipToBlock(ASTContextBlock);
3257  assert (FoundBlock);
3258
3259  llvm::Deserializer::Location ASTContextBlockLoc =
3260  Dezr.getCurrentBlockLocation();
3261
3262  FoundBlock = Dezr.SkipToBlock(BasicMetadataBlock);
3263  assert (FoundBlock);
3264
3265  // Read the SourceManager.
3266  SourceManager::CreateAndRegister(Dezr, FMgr);
3267
3268  { // Read the TargetInfo.
3269    llvm::SerializedPtrID PtrID = Dezr.ReadPtrID();
3270    char* triple = Dezr.ReadCStr(NULL,0,true);
3271    Dezr.RegisterPtr(PtrID, TargetInfo::CreateTargetInfo(std::string(triple)));
3272    delete [] triple;
3273  }
3274
3275  // For Selectors, we must read the identifier table first because the
3276  //  SelectorTable depends on the identifiers being already deserialized.
3277  llvm::Deserializer::Location SelectorBlkLoc = Dezr.getCurrentBlockLocation();
3278  Dezr.SkipBlock();
3279
3280  // Read the identifier table.
3281  IdentifierTable::CreateAndRegister(Dezr);
3282
3283  // Now jump back and read the selectors.
3284  Dezr.JumpTo(SelectorBlkLoc);
3285  SelectorTable::CreateAndRegister(Dezr);
3286
3287  // Now jump back to ASTContextBlock and read the ASTContext.
3288  Dezr.JumpTo(ASTContextBlockLoc);
3289  return Dezr.ReadOwnedPtr<ASTContext>();
3290}
3291
3292ASTContext* ASTContext::Create(llvm::Deserializer& D) {
3293
3294  // Read the language options.
3295  LangOptions LOpts;
3296  LOpts.Read(D);
3297
3298  SourceManager &SM = D.ReadRef<SourceManager>();
3299  TargetInfo &t = D.ReadRef<TargetInfo>();
3300  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
3301  SelectorTable &sels = D.ReadRef<SelectorTable>();
3302
3303  unsigned size_reserve = D.ReadInt();
3304
3305  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
3306                                 size_reserve);
3307
3308  for (unsigned i = 0; i < size_reserve; ++i)
3309    Type::Create(*A,i,D);
3310
3311  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
3312
3313  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
3314
3315  return A;
3316}
3317