ASTContext.cpp revision b7d0844c887a72064b624dc6df12cbe1441f69d0
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Bitcode/Serialize.h"
23#include "llvm/Bitcode/Deserialize.h"
24#include "llvm/Support/MathExtras.h"
25
26using namespace clang;
27
28enum FloatingRank {
29  FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33                       TargetInfo &t,
34                       IdentifierTable &idents, SelectorTable &sels,
35                       bool FreeMem, unsigned size_reserve) :
36  CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
37  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
38  Idents(idents), Selectors(sels)
39{
40  if (size_reserve > 0) Types.reserve(size_reserve);
41  InitBuiltinTypes();
42  BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.Freestanding);
43  TUDecl = TranslationUnitDecl::Create(*this);
44}
45
46ASTContext::~ASTContext() {
47  // Deallocate all the types.
48  while (!Types.empty()) {
49    Types.back()->Destroy(*this);
50    Types.pop_back();
51  }
52
53  {
54    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
55      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
56    while (I != E) {
57      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
58      delete R;
59    }
60  }
61
62  {
63    llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
64      I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
65    while (I != E) {
66      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
67      delete R;
68    }
69  }
70
71  {
72    llvm::DenseMap<const ObjCInterfaceDecl*, const RecordDecl*>::iterator
73      I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
74    while (I != E) {
75      RecordDecl *R = const_cast<RecordDecl*>((I++)->second);
76      R->Destroy(*this);
77    }
78  }
79
80  TUDecl->Destroy(*this);
81}
82
83void ASTContext::PrintStats() const {
84  fprintf(stderr, "*** AST Context Stats:\n");
85  fprintf(stderr, "  %d types total.\n", (int)Types.size());
86  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
87  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
88  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
89  unsigned NumMemberPointer = 0;
90
91  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
92  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
93  unsigned NumObjCQualifiedIds = 0;
94  unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
95
96  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
97    Type *T = Types[i];
98    if (isa<BuiltinType>(T))
99      ++NumBuiltin;
100    else if (isa<PointerType>(T))
101      ++NumPointer;
102    else if (isa<BlockPointerType>(T))
103      ++NumBlockPointer;
104    else if (isa<ReferenceType>(T))
105      ++NumReference;
106    else if (isa<MemberPointerType>(T))
107      ++NumMemberPointer;
108    else if (isa<ComplexType>(T))
109      ++NumComplex;
110    else if (isa<ArrayType>(T))
111      ++NumArray;
112    else if (isa<VectorType>(T))
113      ++NumVector;
114    else if (isa<FunctionTypeNoProto>(T))
115      ++NumFunctionNP;
116    else if (isa<FunctionTypeProto>(T))
117      ++NumFunctionP;
118    else if (isa<TypedefType>(T))
119      ++NumTypeName;
120    else if (TagType *TT = dyn_cast<TagType>(T)) {
121      ++NumTagged;
122      switch (TT->getDecl()->getTagKind()) {
123      default: assert(0 && "Unknown tagged type!");
124      case TagDecl::TK_struct: ++NumTagStruct; break;
125      case TagDecl::TK_union:  ++NumTagUnion; break;
126      case TagDecl::TK_class:  ++NumTagClass; break;
127      case TagDecl::TK_enum:   ++NumTagEnum; break;
128      }
129    } else if (isa<ObjCInterfaceType>(T))
130      ++NumObjCInterfaces;
131    else if (isa<ObjCQualifiedInterfaceType>(T))
132      ++NumObjCQualifiedInterfaces;
133    else if (isa<ObjCQualifiedIdType>(T))
134      ++NumObjCQualifiedIds;
135    else if (isa<TypeOfType>(T))
136      ++NumTypeOfTypes;
137    else if (isa<TypeOfExpr>(T))
138      ++NumTypeOfExprs;
139    else {
140      QualType(T, 0).dump();
141      assert(0 && "Unknown type!");
142    }
143  }
144
145  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
146  fprintf(stderr, "    %d pointer types\n", NumPointer);
147  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
148  fprintf(stderr, "    %d reference types\n", NumReference);
149  fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
150  fprintf(stderr, "    %d complex types\n", NumComplex);
151  fprintf(stderr, "    %d array types\n", NumArray);
152  fprintf(stderr, "    %d vector types\n", NumVector);
153  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
154  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
155  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
156  fprintf(stderr, "    %d tagged types\n", NumTagged);
157  fprintf(stderr, "      %d struct types\n", NumTagStruct);
158  fprintf(stderr, "      %d union types\n", NumTagUnion);
159  fprintf(stderr, "      %d class types\n", NumTagClass);
160  fprintf(stderr, "      %d enum types\n", NumTagEnum);
161  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
162  fprintf(stderr, "    %d protocol qualified interface types\n",
163          NumObjCQualifiedInterfaces);
164  fprintf(stderr, "    %d protocol qualified id types\n",
165          NumObjCQualifiedIds);
166  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
167  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprs);
168
169  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
170    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
171    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
172    NumMemberPointer*sizeof(MemberPointerType)+
173    NumFunctionP*sizeof(FunctionTypeProto)+
174    NumFunctionNP*sizeof(FunctionTypeNoProto)+
175    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
176    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
177}
178
179
180void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
181  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
182}
183
184void ASTContext::InitBuiltinTypes() {
185  assert(VoidTy.isNull() && "Context reinitialized?");
186
187  // C99 6.2.5p19.
188  InitBuiltinType(VoidTy,              BuiltinType::Void);
189
190  // C99 6.2.5p2.
191  InitBuiltinType(BoolTy,              BuiltinType::Bool);
192  // C99 6.2.5p3.
193  if (Target.isCharSigned())
194    InitBuiltinType(CharTy,            BuiltinType::Char_S);
195  else
196    InitBuiltinType(CharTy,            BuiltinType::Char_U);
197  // C99 6.2.5p4.
198  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
199  InitBuiltinType(ShortTy,             BuiltinType::Short);
200  InitBuiltinType(IntTy,               BuiltinType::Int);
201  InitBuiltinType(LongTy,              BuiltinType::Long);
202  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
203
204  // C99 6.2.5p6.
205  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
206  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
207  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
208  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
209  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
210
211  // C99 6.2.5p10.
212  InitBuiltinType(FloatTy,             BuiltinType::Float);
213  InitBuiltinType(DoubleTy,            BuiltinType::Double);
214  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
215
216  // C++ 3.9.1p5
217  InitBuiltinType(WCharTy,             BuiltinType::WChar);
218
219  // Placeholder type for functions.
220  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
221
222  // Placeholder type for type-dependent expressions whose type is
223  // completely unknown. No code should ever check a type against
224  // DependentTy and users should never see it; however, it is here to
225  // help diagnose failures to properly check for type-dependent
226  // expressions.
227  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
228
229  // C99 6.2.5p11.
230  FloatComplexTy      = getComplexType(FloatTy);
231  DoubleComplexTy     = getComplexType(DoubleTy);
232  LongDoubleComplexTy = getComplexType(LongDoubleTy);
233
234  BuiltinVaListType = QualType();
235  ObjCIdType = QualType();
236  IdStructType = 0;
237  ObjCClassType = QualType();
238  ClassStructType = 0;
239
240  ObjCConstantStringType = QualType();
241
242  // void * type
243  VoidPtrTy = getPointerType(VoidTy);
244}
245
246//===----------------------------------------------------------------------===//
247//                         Type Sizing and Analysis
248//===----------------------------------------------------------------------===//
249
250/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
251/// scalar floating point type.
252const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
253  const BuiltinType *BT = T->getAsBuiltinType();
254  assert(BT && "Not a floating point type!");
255  switch (BT->getKind()) {
256  default: assert(0 && "Not a floating point type!");
257  case BuiltinType::Float:      return Target.getFloatFormat();
258  case BuiltinType::Double:     return Target.getDoubleFormat();
259  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
260  }
261}
262
263/// getDeclAlign - Return a conservative estimate of the alignment of the
264/// specified decl.  Note that bitfields do not have a valid alignment, so
265/// this method will assert on them.
266unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
267  // FIXME: If attribute(align) is specified on the decl, round up to it.
268
269  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
270    QualType T = VD->getType();
271    // Incomplete or function types default to 1.
272    if (T->isIncompleteType() || T->isFunctionType())
273      return 1;
274
275    while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
276      T = cast<ArrayType>(T)->getElementType();
277
278    return getTypeAlign(T) / Target.getCharWidth();
279  }
280
281  return 1;
282}
283
284/// getTypeSize - Return the size of the specified type, in bits.  This method
285/// does not work on incomplete types.
286std::pair<uint64_t, unsigned>
287ASTContext::getTypeInfo(const Type *T) {
288  T = getCanonicalType(T);
289  uint64_t Width;
290  unsigned Align;
291  switch (T->getTypeClass()) {
292  case Type::TypeName: assert(0 && "Not a canonical type!");
293  case Type::FunctionNoProto:
294  case Type::FunctionProto:
295  default:
296    assert(0 && "Incomplete types have no size!");
297  case Type::VariableArray:
298    assert(0 && "VLAs not implemented yet!");
299  case Type::DependentSizedArray:
300    assert(0 && "Dependently-sized arrays don't have a known size");
301  case Type::ConstantArray: {
302    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
303
304    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
305    Width = EltInfo.first*CAT->getSize().getZExtValue();
306    Align = EltInfo.second;
307    break;
308  }
309  case Type::ExtVector:
310  case Type::Vector: {
311    std::pair<uint64_t, unsigned> EltInfo =
312      getTypeInfo(cast<VectorType>(T)->getElementType());
313    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
314    Align = Width;
315    // If the alignment is not a power of 2, round up to the next power of 2.
316    // This happens for non-power-of-2 length vectors.
317    // FIXME: this should probably be a target property.
318    Align = 1 << llvm::Log2_32_Ceil(Align);
319    break;
320  }
321
322  case Type::Builtin:
323    switch (cast<BuiltinType>(T)->getKind()) {
324    default: assert(0 && "Unknown builtin type!");
325    case BuiltinType::Void:
326      assert(0 && "Incomplete types have no size!");
327    case BuiltinType::Bool:
328      Width = Target.getBoolWidth();
329      Align = Target.getBoolAlign();
330      break;
331    case BuiltinType::Char_S:
332    case BuiltinType::Char_U:
333    case BuiltinType::UChar:
334    case BuiltinType::SChar:
335      Width = Target.getCharWidth();
336      Align = Target.getCharAlign();
337      break;
338    case BuiltinType::WChar:
339      Width = Target.getWCharWidth();
340      Align = Target.getWCharAlign();
341      break;
342    case BuiltinType::UShort:
343    case BuiltinType::Short:
344      Width = Target.getShortWidth();
345      Align = Target.getShortAlign();
346      break;
347    case BuiltinType::UInt:
348    case BuiltinType::Int:
349      Width = Target.getIntWidth();
350      Align = Target.getIntAlign();
351      break;
352    case BuiltinType::ULong:
353    case BuiltinType::Long:
354      Width = Target.getLongWidth();
355      Align = Target.getLongAlign();
356      break;
357    case BuiltinType::ULongLong:
358    case BuiltinType::LongLong:
359      Width = Target.getLongLongWidth();
360      Align = Target.getLongLongAlign();
361      break;
362    case BuiltinType::Float:
363      Width = Target.getFloatWidth();
364      Align = Target.getFloatAlign();
365      break;
366    case BuiltinType::Double:
367      Width = Target.getDoubleWidth();
368      Align = Target.getDoubleAlign();
369      break;
370    case BuiltinType::LongDouble:
371      Width = Target.getLongDoubleWidth();
372      Align = Target.getLongDoubleAlign();
373      break;
374    }
375    break;
376  case Type::FixedWidthInt:
377    // FIXME: This isn't precisely correct; the width/alignment should depend
378    // on the available types for the target
379    Width = cast<FixedWidthIntType>(T)->getWidth();
380    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
381    Align = Width;
382    break;
383  case Type::ExtQual:
384    // FIXME: Pointers into different addr spaces could have different sizes and
385    // alignment requirements: getPointerInfo should take an AddrSpace.
386    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
387  case Type::ObjCQualifiedId:
388    Width = Target.getPointerWidth(0);
389    Align = Target.getPointerAlign(0);
390    break;
391  case Type::BlockPointer: {
392    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
393    Width = Target.getPointerWidth(AS);
394    Align = Target.getPointerAlign(AS);
395    break;
396  }
397  case Type::Pointer: {
398    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
399    Width = Target.getPointerWidth(AS);
400    Align = Target.getPointerAlign(AS);
401    break;
402  }
403  case Type::Reference:
404    // "When applied to a reference or a reference type, the result is the size
405    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
406    // FIXME: This is wrong for struct layout: a reference in a struct has
407    // pointer size.
408    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
409  case Type::MemberPointer: {
410    // FIXME: This is not only platform- but also ABI-dependent. We follow
411    // the GCC ABI, where pointers to data are one pointer large, pointers to
412    // functions two pointers. But if we want to support ABI compatibility with
413    // other compilers too, we need to delegate this completely to TargetInfo
414    // or some ABI abstraction layer.
415    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
416    unsigned AS = Pointee.getAddressSpace();
417    Width = Target.getPointerWidth(AS);
418    if (Pointee->isFunctionType())
419      Width *= 2;
420    Align = Target.getPointerAlign(AS);
421    // GCC aligns at single pointer width.
422  }
423  case Type::Complex: {
424    // Complex types have the same alignment as their elements, but twice the
425    // size.
426    std::pair<uint64_t, unsigned> EltInfo =
427      getTypeInfo(cast<ComplexType>(T)->getElementType());
428    Width = EltInfo.first*2;
429    Align = EltInfo.second;
430    break;
431  }
432  case Type::ObjCInterface: {
433    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
434    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
435    Width = Layout.getSize();
436    Align = Layout.getAlignment();
437    break;
438  }
439  case Type::Tagged: {
440    const TagType *TT = cast<TagType>(T);
441
442    if (TT->getDecl()->isInvalidDecl()) {
443      Width = 1;
444      Align = 1;
445      break;
446    }
447
448    if (const EnumType *ET = dyn_cast<EnumType>(TT))
449      return getTypeInfo(ET->getDecl()->getIntegerType());
450
451    const RecordType *RT = cast<RecordType>(TT);
452    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
453    Width = Layout.getSize();
454    Align = Layout.getAlignment();
455    break;
456  }
457  }
458
459  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
460  return std::make_pair(Width, Align);
461}
462
463/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
464/// type for the current target in bits.  This can be different than the ABI
465/// alignment in cases where it is beneficial for performance to overalign
466/// a data type.
467unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
468  unsigned ABIAlign = getTypeAlign(T);
469
470  // Doubles should be naturally aligned if possible.
471  if (const BuiltinType *BT = dyn_cast<BuiltinType>(getCanonicalType(T)))
472    if (BT->getKind() == BuiltinType::Double)
473      return std::max(ABIAlign, 64U);
474
475  return ABIAlign;
476}
477
478
479/// LayoutField - Field layout.
480void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
481                                  bool IsUnion, unsigned StructPacking,
482                                  ASTContext &Context) {
483  unsigned FieldPacking = StructPacking;
484  uint64_t FieldOffset = IsUnion ? 0 : Size;
485  uint64_t FieldSize;
486  unsigned FieldAlign;
487
488  // FIXME: Should this override struct packing? Probably we want to
489  // take the minimum?
490  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
491    FieldPacking = PA->getAlignment();
492
493  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
494    // TODO: Need to check this algorithm on other targets!
495    //       (tested on Linux-X86)
496    FieldSize =
497      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
498
499    std::pair<uint64_t, unsigned> FieldInfo =
500      Context.getTypeInfo(FD->getType());
501    uint64_t TypeSize = FieldInfo.first;
502
503    // Determine the alignment of this bitfield. The packing
504    // attributes define a maximum and the alignment attribute defines
505    // a minimum.
506    // FIXME: What is the right behavior when the specified alignment
507    // is smaller than the specified packing?
508    FieldAlign = FieldInfo.second;
509    if (FieldPacking)
510      FieldAlign = std::min(FieldAlign, FieldPacking);
511    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
512      FieldAlign = std::max(FieldAlign, AA->getAlignment());
513
514    // Check if we need to add padding to give the field the correct
515    // alignment.
516    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
517      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
518
519    // Padding members don't affect overall alignment
520    if (!FD->getIdentifier())
521      FieldAlign = 1;
522  } else {
523    if (FD->getType()->isIncompleteArrayType()) {
524      // This is a flexible array member; we can't directly
525      // query getTypeInfo about these, so we figure it out here.
526      // Flexible array members don't have any size, but they
527      // have to be aligned appropriately for their element type.
528      FieldSize = 0;
529      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
530      FieldAlign = Context.getTypeAlign(ATy->getElementType());
531    } else {
532      std::pair<uint64_t, unsigned> FieldInfo =
533        Context.getTypeInfo(FD->getType());
534      FieldSize = FieldInfo.first;
535      FieldAlign = FieldInfo.second;
536    }
537
538    // Determine the alignment of this bitfield. The packing
539    // attributes define a maximum and the alignment attribute defines
540    // a minimum. Additionally, the packing alignment must be at least
541    // a byte for non-bitfields.
542    //
543    // FIXME: What is the right behavior when the specified alignment
544    // is smaller than the specified packing?
545    if (FieldPacking)
546      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
547    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
548      FieldAlign = std::max(FieldAlign, AA->getAlignment());
549
550    // Round up the current record size to the field's alignment boundary.
551    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
552  }
553
554  // Place this field at the current location.
555  FieldOffsets[FieldNo] = FieldOffset;
556
557  // Reserve space for this field.
558  if (IsUnion) {
559    Size = std::max(Size, FieldSize);
560  } else {
561    Size = FieldOffset + FieldSize;
562  }
563
564  // Remember max struct/class alignment.
565  Alignment = std::max(Alignment, FieldAlign);
566}
567
568static void CollectObjCIvars(const ObjCInterfaceDecl *OI,
569                             std::vector<FieldDecl*> &Fields) {
570  const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
571  if (SuperClass)
572    CollectObjCIvars(SuperClass, Fields);
573  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
574       E = OI->ivar_end(); I != E; ++I) {
575    ObjCIvarDecl *IVDecl = (*I);
576    if (!IVDecl->isInvalidDecl())
577      Fields.push_back(cast<FieldDecl>(IVDecl));
578  }
579}
580
581/// addRecordToClass - produces record info. for the class for its
582/// ivars and all those inherited.
583///
584const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D)
585{
586  const RecordDecl *&RD = ASTRecordForInterface[D];
587  if (RD)
588    return RD;
589  std::vector<FieldDecl*> RecFields;
590  CollectObjCIvars(D, RecFields);
591  RecordDecl *NewRD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
592                                         D->getLocation(),
593                                         D->getIdentifier());
594  /// FIXME! Can do collection of ivars and adding to the record while
595  /// doing it.
596  for (unsigned int i = 0; i != RecFields.size(); i++) {
597    FieldDecl *Field =  FieldDecl::Create(*this, NewRD,
598                                          RecFields[i]->getLocation(),
599                                          RecFields[i]->getIdentifier(),
600                                          RecFields[i]->getType(),
601                                          RecFields[i]->getBitWidth(), false);
602    NewRD->addDecl(Field);
603  }
604  NewRD->completeDefinition(*this);
605  RD = NewRD;
606  return RD;
607}
608
609/// setFieldDecl - maps a field for the given Ivar reference node.
610//
611void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
612                              const ObjCIvarDecl *Ivar,
613                              const ObjCIvarRefExpr *MRef) {
614  FieldDecl *FD = (const_cast<ObjCInterfaceDecl *>(OI))->
615                    lookupFieldDeclForIvar(*this, Ivar);
616  ASTFieldForIvarRef[MRef] = FD;
617}
618
619/// getASTObjcInterfaceLayout - Get or compute information about the layout of
620/// the specified Objective C, which indicates its size and ivar
621/// position information.
622const ASTRecordLayout &
623ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
624  // Look up this layout, if already laid out, return what we have.
625  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
626  if (Entry) return *Entry;
627
628  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
629  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
630  ASTRecordLayout *NewEntry = NULL;
631  unsigned FieldCount = D->ivar_size();
632  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
633    FieldCount++;
634    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
635    unsigned Alignment = SL.getAlignment();
636    uint64_t Size = SL.getSize();
637    NewEntry = new ASTRecordLayout(Size, Alignment);
638    NewEntry->InitializeLayout(FieldCount);
639    // Super class is at the beginning of the layout.
640    NewEntry->SetFieldOffset(0, 0);
641  } else {
642    NewEntry = new ASTRecordLayout();
643    NewEntry->InitializeLayout(FieldCount);
644  }
645  Entry = NewEntry;
646
647  unsigned StructPacking = 0;
648  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
649    StructPacking = PA->getAlignment();
650
651  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
652    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
653                                    AA->getAlignment()));
654
655  // Layout each ivar sequentially.
656  unsigned i = 0;
657  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
658       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
659    const ObjCIvarDecl* Ivar = (*IVI);
660    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
661  }
662
663  // Finally, round the size of the total struct up to the alignment of the
664  // struct itself.
665  NewEntry->FinalizeLayout();
666  return *NewEntry;
667}
668
669/// getASTRecordLayout - Get or compute information about the layout of the
670/// specified record (struct/union/class), which indicates its size and field
671/// position information.
672const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
673  D = D->getDefinition(*this);
674  assert(D && "Cannot get layout of forward declarations!");
675
676  // Look up this layout, if already laid out, return what we have.
677  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
678  if (Entry) return *Entry;
679
680  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
681  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
682  ASTRecordLayout *NewEntry = new ASTRecordLayout();
683  Entry = NewEntry;
684
685  // FIXME: Avoid linear walk through the fields, if possible.
686  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
687  bool IsUnion = D->isUnion();
688
689  unsigned StructPacking = 0;
690  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
691    StructPacking = PA->getAlignment();
692
693  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
694    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
695                                    AA->getAlignment()));
696
697  // Layout each field, for now, just sequentially, respecting alignment.  In
698  // the future, this will need to be tweakable by targets.
699  unsigned FieldIdx = 0;
700  for (RecordDecl::field_iterator Field = D->field_begin(),
701                               FieldEnd = D->field_end();
702       Field != FieldEnd; (void)++Field, ++FieldIdx)
703    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
704
705  // Finally, round the size of the total struct up to the alignment of the
706  // struct itself.
707  NewEntry->FinalizeLayout();
708  return *NewEntry;
709}
710
711//===----------------------------------------------------------------------===//
712//                   Type creation/memoization methods
713//===----------------------------------------------------------------------===//
714
715QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
716  QualType CanT = getCanonicalType(T);
717  if (CanT.getAddressSpace() == AddressSpace)
718    return T;
719
720  // Type's cannot have multiple ExtQuals, therefore we know we only have to deal
721  // with CVR qualifiers from here on out.
722  assert(CanT.getAddressSpace() == 0 &&
723         "Type is already address space qualified");
724
725  // Check if we've already instantiated an address space qual'd type of this
726  // type.
727  llvm::FoldingSetNodeID ID;
728  ExtQualType::Profile(ID, T.getTypePtr(), AddressSpace, ExtQualType::GCNone);
729  void *InsertPos = 0;
730  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
731    return QualType(EXTQy, 0);
732
733  // If the base type isn't canonical, this won't be a canonical type either,
734  // so fill in the canonical type field.
735  QualType Canonical;
736  if (!T->isCanonical()) {
737    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
738
739    // Get the new insert position for the node we care about.
740    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
741    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
742  }
743  ExtQualType *New = new (*this, 8) ExtQualType(T.getTypePtr(), Canonical,
744                                                AddressSpace, ExtQualType::GCNone);
745  ExtQualTypes.InsertNode(New, InsertPos);
746  Types.push_back(New);
747  return QualType(New, T.getCVRQualifiers());
748}
749
750
751/// getComplexType - Return the uniqued reference to the type for a complex
752/// number with the specified element type.
753QualType ASTContext::getComplexType(QualType T) {
754  // Unique pointers, to guarantee there is only one pointer of a particular
755  // structure.
756  llvm::FoldingSetNodeID ID;
757  ComplexType::Profile(ID, T);
758
759  void *InsertPos = 0;
760  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
761    return QualType(CT, 0);
762
763  // If the pointee type isn't canonical, this won't be a canonical type either,
764  // so fill in the canonical type field.
765  QualType Canonical;
766  if (!T->isCanonical()) {
767    Canonical = getComplexType(getCanonicalType(T));
768
769    // Get the new insert position for the node we care about.
770    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
771    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
772  }
773  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
774  Types.push_back(New);
775  ComplexTypes.InsertNode(New, InsertPos);
776  return QualType(New, 0);
777}
778
779QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
780  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
781     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
782  FixedWidthIntType *&Entry = Map[Width];
783  if (!Entry)
784    Entry = new FixedWidthIntType(Width, Signed);
785  return QualType(Entry, 0);
786}
787
788/// getPointerType - Return the uniqued reference to the type for a pointer to
789/// the specified type.
790QualType ASTContext::getPointerType(QualType T) {
791  // Unique pointers, to guarantee there is only one pointer of a particular
792  // structure.
793  llvm::FoldingSetNodeID ID;
794  PointerType::Profile(ID, T);
795
796  void *InsertPos = 0;
797  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
798    return QualType(PT, 0);
799
800  // If the pointee type isn't canonical, this won't be a canonical type either,
801  // so fill in the canonical type field.
802  QualType Canonical;
803  if (!T->isCanonical()) {
804    Canonical = getPointerType(getCanonicalType(T));
805
806    // Get the new insert position for the node we care about.
807    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
808    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
809  }
810  PointerType *New = new (*this,8) PointerType(T, Canonical);
811  Types.push_back(New);
812  PointerTypes.InsertNode(New, InsertPos);
813  return QualType(New, 0);
814}
815
816/// getBlockPointerType - Return the uniqued reference to the type for
817/// a pointer to the specified block.
818QualType ASTContext::getBlockPointerType(QualType T) {
819  assert(T->isFunctionType() && "block of function types only");
820  // Unique pointers, to guarantee there is only one block of a particular
821  // structure.
822  llvm::FoldingSetNodeID ID;
823  BlockPointerType::Profile(ID, T);
824
825  void *InsertPos = 0;
826  if (BlockPointerType *PT =
827        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
828    return QualType(PT, 0);
829
830  // If the block pointee type isn't canonical, this won't be a canonical
831  // type either so fill in the canonical type field.
832  QualType Canonical;
833  if (!T->isCanonical()) {
834    Canonical = getBlockPointerType(getCanonicalType(T));
835
836    // Get the new insert position for the node we care about.
837    BlockPointerType *NewIP =
838      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
839    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
840  }
841  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
842  Types.push_back(New);
843  BlockPointerTypes.InsertNode(New, InsertPos);
844  return QualType(New, 0);
845}
846
847/// getReferenceType - Return the uniqued reference to the type for a reference
848/// to the specified type.
849QualType ASTContext::getReferenceType(QualType T) {
850  // Unique pointers, to guarantee there is only one pointer of a particular
851  // structure.
852  llvm::FoldingSetNodeID ID;
853  ReferenceType::Profile(ID, T);
854
855  void *InsertPos = 0;
856  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
857    return QualType(RT, 0);
858
859  // If the referencee type isn't canonical, this won't be a canonical type
860  // either, so fill in the canonical type field.
861  QualType Canonical;
862  if (!T->isCanonical()) {
863    Canonical = getReferenceType(getCanonicalType(T));
864
865    // Get the new insert position for the node we care about.
866    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
867    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
868  }
869
870  ReferenceType *New = new (*this,8) ReferenceType(T, Canonical);
871  Types.push_back(New);
872  ReferenceTypes.InsertNode(New, InsertPos);
873  return QualType(New, 0);
874}
875
876/// getMemberPointerType - Return the uniqued reference to the type for a
877/// member pointer to the specified type, in the specified class.
878QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
879{
880  // Unique pointers, to guarantee there is only one pointer of a particular
881  // structure.
882  llvm::FoldingSetNodeID ID;
883  MemberPointerType::Profile(ID, T, Cls);
884
885  void *InsertPos = 0;
886  if (MemberPointerType *PT =
887      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
888    return QualType(PT, 0);
889
890  // If the pointee or class type isn't canonical, this won't be a canonical
891  // type either, so fill in the canonical type field.
892  QualType Canonical;
893  if (!T->isCanonical()) {
894    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
895
896    // Get the new insert position for the node we care about.
897    MemberPointerType *NewIP =
898      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
899    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
900  }
901  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
902  Types.push_back(New);
903  MemberPointerTypes.InsertNode(New, InsertPos);
904  return QualType(New, 0);
905}
906
907/// getConstantArrayType - Return the unique reference to the type for an
908/// array of the specified element type.
909QualType ASTContext::getConstantArrayType(QualType EltTy,
910                                          const llvm::APInt &ArySize,
911                                          ArrayType::ArraySizeModifier ASM,
912                                          unsigned EltTypeQuals) {
913  llvm::FoldingSetNodeID ID;
914  ConstantArrayType::Profile(ID, EltTy, ArySize);
915
916  void *InsertPos = 0;
917  if (ConstantArrayType *ATP =
918      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
919    return QualType(ATP, 0);
920
921  // If the element type isn't canonical, this won't be a canonical type either,
922  // so fill in the canonical type field.
923  QualType Canonical;
924  if (!EltTy->isCanonical()) {
925    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
926                                     ASM, EltTypeQuals);
927    // Get the new insert position for the node we care about.
928    ConstantArrayType *NewIP =
929      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
930    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
931  }
932
933  ConstantArrayType *New =
934    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
935  ConstantArrayTypes.InsertNode(New, InsertPos);
936  Types.push_back(New);
937  return QualType(New, 0);
938}
939
940/// getVariableArrayType - Returns a non-unique reference to the type for a
941/// variable array of the specified element type.
942QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
943                                          ArrayType::ArraySizeModifier ASM,
944                                          unsigned EltTypeQuals) {
945  // Since we don't unique expressions, it isn't possible to unique VLA's
946  // that have an expression provided for their size.
947
948  VariableArrayType *New =
949    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
950
951  VariableArrayTypes.push_back(New);
952  Types.push_back(New);
953  return QualType(New, 0);
954}
955
956/// getDependentSizedArrayType - Returns a non-unique reference to
957/// the type for a dependently-sized array of the specified element
958/// type. FIXME: We will need these to be uniqued, or at least
959/// comparable, at some point.
960QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
961                                                ArrayType::ArraySizeModifier ASM,
962                                                unsigned EltTypeQuals) {
963  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
964         "Size must be type- or value-dependent!");
965
966  // Since we don't unique expressions, it isn't possible to unique
967  // dependently-sized array types.
968
969  DependentSizedArrayType *New =
970      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
971                                            ASM, EltTypeQuals);
972
973  DependentSizedArrayTypes.push_back(New);
974  Types.push_back(New);
975  return QualType(New, 0);
976}
977
978QualType ASTContext::getIncompleteArrayType(QualType EltTy,
979                                            ArrayType::ArraySizeModifier ASM,
980                                            unsigned EltTypeQuals) {
981  llvm::FoldingSetNodeID ID;
982  IncompleteArrayType::Profile(ID, EltTy);
983
984  void *InsertPos = 0;
985  if (IncompleteArrayType *ATP =
986       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
987    return QualType(ATP, 0);
988
989  // If the element type isn't canonical, this won't be a canonical type
990  // either, so fill in the canonical type field.
991  QualType Canonical;
992
993  if (!EltTy->isCanonical()) {
994    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
995                                       ASM, EltTypeQuals);
996
997    // Get the new insert position for the node we care about.
998    IncompleteArrayType *NewIP =
999      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1000    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1001  }
1002
1003  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1004                                                           ASM, EltTypeQuals);
1005
1006  IncompleteArrayTypes.InsertNode(New, InsertPos);
1007  Types.push_back(New);
1008  return QualType(New, 0);
1009}
1010
1011/// getVectorType - Return the unique reference to a vector type of
1012/// the specified element type and size. VectorType must be a built-in type.
1013QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1014  BuiltinType *baseType;
1015
1016  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1017  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1018
1019  // Check if we've already instantiated a vector of this type.
1020  llvm::FoldingSetNodeID ID;
1021  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1022  void *InsertPos = 0;
1023  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1024    return QualType(VTP, 0);
1025
1026  // If the element type isn't canonical, this won't be a canonical type either,
1027  // so fill in the canonical type field.
1028  QualType Canonical;
1029  if (!vecType->isCanonical()) {
1030    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1031
1032    // Get the new insert position for the node we care about.
1033    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1034    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1035  }
1036  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1037  VectorTypes.InsertNode(New, InsertPos);
1038  Types.push_back(New);
1039  return QualType(New, 0);
1040}
1041
1042/// getExtVectorType - Return the unique reference to an extended vector type of
1043/// the specified element type and size. VectorType must be a built-in type.
1044QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1045  BuiltinType *baseType;
1046
1047  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1048  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1049
1050  // Check if we've already instantiated a vector of this type.
1051  llvm::FoldingSetNodeID ID;
1052  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1053  void *InsertPos = 0;
1054  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1055    return QualType(VTP, 0);
1056
1057  // If the element type isn't canonical, this won't be a canonical type either,
1058  // so fill in the canonical type field.
1059  QualType Canonical;
1060  if (!vecType->isCanonical()) {
1061    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1062
1063    // Get the new insert position for the node we care about.
1064    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1065    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1066  }
1067  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1068  VectorTypes.InsertNode(New, InsertPos);
1069  Types.push_back(New);
1070  return QualType(New, 0);
1071}
1072
1073/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
1074///
1075QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
1076  // Unique functions, to guarantee there is only one function of a particular
1077  // structure.
1078  llvm::FoldingSetNodeID ID;
1079  FunctionTypeNoProto::Profile(ID, ResultTy);
1080
1081  void *InsertPos = 0;
1082  if (FunctionTypeNoProto *FT =
1083        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
1084    return QualType(FT, 0);
1085
1086  QualType Canonical;
1087  if (!ResultTy->isCanonical()) {
1088    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
1089
1090    // Get the new insert position for the node we care about.
1091    FunctionTypeNoProto *NewIP =
1092      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
1093    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1094  }
1095
1096  FunctionTypeNoProto *New =new(*this,8)FunctionTypeNoProto(ResultTy,Canonical);
1097  Types.push_back(New);
1098  FunctionTypeNoProtos.InsertNode(New, InsertPos);
1099  return QualType(New, 0);
1100}
1101
1102/// getFunctionType - Return a normal function type with a typed argument
1103/// list.  isVariadic indicates whether the argument list includes '...'.
1104QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1105                                     unsigned NumArgs, bool isVariadic,
1106                                     unsigned TypeQuals) {
1107  // Unique functions, to guarantee there is only one function of a particular
1108  // structure.
1109  llvm::FoldingSetNodeID ID;
1110  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1111                             TypeQuals);
1112
1113  void *InsertPos = 0;
1114  if (FunctionTypeProto *FTP =
1115        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
1116    return QualType(FTP, 0);
1117
1118  // Determine whether the type being created is already canonical or not.
1119  bool isCanonical = ResultTy->isCanonical();
1120  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1121    if (!ArgArray[i]->isCanonical())
1122      isCanonical = false;
1123
1124  // If this type isn't canonical, get the canonical version of it.
1125  QualType Canonical;
1126  if (!isCanonical) {
1127    llvm::SmallVector<QualType, 16> CanonicalArgs;
1128    CanonicalArgs.reserve(NumArgs);
1129    for (unsigned i = 0; i != NumArgs; ++i)
1130      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1131
1132    Canonical = getFunctionType(getCanonicalType(ResultTy),
1133                                &CanonicalArgs[0], NumArgs,
1134                                isVariadic, TypeQuals);
1135
1136    // Get the new insert position for the node we care about.
1137    FunctionTypeProto *NewIP =
1138      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
1139    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1140  }
1141
1142  // FunctionTypeProto objects are allocated with extra bytes after them
1143  // for a variable size array (for parameter types) at the end of them.
1144  FunctionTypeProto *FTP =
1145    (FunctionTypeProto*)Allocate(sizeof(FunctionTypeProto) +
1146                                 NumArgs*sizeof(QualType), 8);
1147  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
1148                              TypeQuals, Canonical);
1149  Types.push_back(FTP);
1150  FunctionTypeProtos.InsertNode(FTP, InsertPos);
1151  return QualType(FTP, 0);
1152}
1153
1154/// getTypeDeclType - Return the unique reference to the type for the
1155/// specified type declaration.
1156QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1157  assert(Decl && "Passed null for Decl param");
1158  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1159
1160  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1161    return getTypedefType(Typedef);
1162  else if (isa<TemplateTypeParmDecl>(Decl)) {
1163    assert(false && "Template type parameter types are always available.");
1164  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1165    return getObjCInterfaceType(ObjCInterface);
1166
1167  if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Decl)) {
1168    if (PrevDecl)
1169      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1170    else
1171      Decl->TypeForDecl = new (*this,8) CXXRecordType(CXXRecord);
1172  }
1173  else if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1174    if (PrevDecl)
1175      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1176    else
1177      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1178  }
1179  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1180    if (PrevDecl)
1181      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1182    else
1183      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1184  }
1185  else
1186    assert(false && "TypeDecl without a type?");
1187
1188  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1189  return QualType(Decl->TypeForDecl, 0);
1190}
1191
1192/// getTypedefType - Return the unique reference to the type for the
1193/// specified typename decl.
1194QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1195  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1196
1197  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1198  Decl->TypeForDecl = new(*this,8) TypedefType(Type::TypeName, Decl, Canonical);
1199  Types.push_back(Decl->TypeForDecl);
1200  return QualType(Decl->TypeForDecl, 0);
1201}
1202
1203/// getObjCInterfaceType - Return the unique reference to the type for the
1204/// specified ObjC interface decl.
1205QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1206  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1207
1208  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1209  Types.push_back(Decl->TypeForDecl);
1210  return QualType(Decl->TypeForDecl, 0);
1211}
1212
1213/// buildObjCInterfaceType - Returns a new type for the interface
1214/// declaration, regardless. It also removes any previously built
1215/// record declaration so caller can rebuild it.
1216QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) {
1217  const RecordDecl *&RD = ASTRecordForInterface[Decl];
1218  if (RD)
1219    RD = 0;
1220  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
1221  Types.push_back(Decl->TypeForDecl);
1222  return QualType(Decl->TypeForDecl, 0);
1223}
1224
1225/// \brief Retrieve the template type parameter type for a template
1226/// parameter with the given depth, index, and (optionally) name.
1227QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1228                                             IdentifierInfo *Name) {
1229  llvm::FoldingSetNodeID ID;
1230  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1231  void *InsertPos = 0;
1232  TemplateTypeParmType *TypeParm
1233    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1234
1235  if (TypeParm)
1236    return QualType(TypeParm, 0);
1237
1238  if (Name)
1239    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1240                                         getTemplateTypeParmType(Depth, Index));
1241  else
1242    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1243
1244  Types.push_back(TypeParm);
1245  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1246
1247  return QualType(TypeParm, 0);
1248}
1249
1250QualType
1251ASTContext::getClassTemplateSpecializationType(TemplateDecl *Template,
1252                                               unsigned NumArgs,
1253                                               uintptr_t *Args, bool *ArgIsType,
1254                                               QualType Canon) {
1255  llvm::FoldingSetNodeID ID;
1256  ClassTemplateSpecializationType::Profile(ID, Template, NumArgs, Args,
1257                                           ArgIsType);
1258  void *InsertPos = 0;
1259  ClassTemplateSpecializationType *Spec
1260    = ClassTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1261
1262  if (Spec)
1263    return QualType(Spec, 0);
1264
1265  void *Mem = Allocate(sizeof(ClassTemplateSpecializationType) +
1266                       (sizeof(uintptr_t) *
1267                        (ClassTemplateSpecializationType::
1268                           getNumPackedWords(NumArgs) +
1269                         NumArgs)), 8);
1270  Spec = new (Mem) ClassTemplateSpecializationType(Template, NumArgs, Args,
1271                                                   ArgIsType, Canon);
1272  Types.push_back(Spec);
1273  ClassTemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1274
1275  return QualType(Spec, 0);
1276}
1277
1278/// CmpProtocolNames - Comparison predicate for sorting protocols
1279/// alphabetically.
1280static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1281                            const ObjCProtocolDecl *RHS) {
1282  return LHS->getDeclName() < RHS->getDeclName();
1283}
1284
1285static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1286                                   unsigned &NumProtocols) {
1287  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1288
1289  // Sort protocols, keyed by name.
1290  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1291
1292  // Remove duplicates.
1293  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1294  NumProtocols = ProtocolsEnd-Protocols;
1295}
1296
1297
1298/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1299/// the given interface decl and the conforming protocol list.
1300QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1301                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1302  // Sort the protocol list alphabetically to canonicalize it.
1303  SortAndUniqueProtocols(Protocols, NumProtocols);
1304
1305  llvm::FoldingSetNodeID ID;
1306  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1307
1308  void *InsertPos = 0;
1309  if (ObjCQualifiedInterfaceType *QT =
1310      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1311    return QualType(QT, 0);
1312
1313  // No Match;
1314  ObjCQualifiedInterfaceType *QType =
1315    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1316
1317  Types.push_back(QType);
1318  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1319  return QualType(QType, 0);
1320}
1321
1322/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1323/// and the conforming protocol list.
1324QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1325                                            unsigned NumProtocols) {
1326  // Sort the protocol list alphabetically to canonicalize it.
1327  SortAndUniqueProtocols(Protocols, NumProtocols);
1328
1329  llvm::FoldingSetNodeID ID;
1330  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1331
1332  void *InsertPos = 0;
1333  if (ObjCQualifiedIdType *QT =
1334        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1335    return QualType(QT, 0);
1336
1337  // No Match;
1338  ObjCQualifiedIdType *QType =
1339    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1340  Types.push_back(QType);
1341  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1342  return QualType(QType, 0);
1343}
1344
1345/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
1346/// TypeOfExpr AST's (since expression's are never shared). For example,
1347/// multiple declarations that refer to "typeof(x)" all contain different
1348/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1349/// on canonical type's (which are always unique).
1350QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
1351  QualType Canonical = getCanonicalType(tofExpr->getType());
1352  TypeOfExpr *toe = new (*this,8) TypeOfExpr(tofExpr, Canonical);
1353  Types.push_back(toe);
1354  return QualType(toe, 0);
1355}
1356
1357/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1358/// TypeOfType AST's. The only motivation to unique these nodes would be
1359/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1360/// an issue. This doesn't effect the type checker, since it operates
1361/// on canonical type's (which are always unique).
1362QualType ASTContext::getTypeOfType(QualType tofType) {
1363  QualType Canonical = getCanonicalType(tofType);
1364  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1365  Types.push_back(tot);
1366  return QualType(tot, 0);
1367}
1368
1369/// getTagDeclType - Return the unique reference to the type for the
1370/// specified TagDecl (struct/union/class/enum) decl.
1371QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1372  assert (Decl);
1373  return getTypeDeclType(Decl);
1374}
1375
1376/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1377/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1378/// needs to agree with the definition in <stddef.h>.
1379QualType ASTContext::getSizeType() const {
1380  return getFromTargetType(Target.getSizeType());
1381}
1382
1383/// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the
1384/// width of characters in wide strings, The value is target dependent and
1385/// needs to agree with the definition in <stddef.h>.
1386QualType ASTContext::getWCharType() const {
1387  if (LangOpts.CPlusPlus)
1388    return WCharTy;
1389
1390  // FIXME: In C, shouldn't WCharTy just be a typedef of the target's
1391  // wide-character type?
1392  return getFromTargetType(Target.getWCharType());
1393}
1394
1395/// getSignedWCharType - Return the type of "signed wchar_t".
1396/// Used when in C++, as a GCC extension.
1397QualType ASTContext::getSignedWCharType() const {
1398  // FIXME: derive from "Target" ?
1399  return WCharTy;
1400}
1401
1402/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1403/// Used when in C++, as a GCC extension.
1404QualType ASTContext::getUnsignedWCharType() const {
1405  // FIXME: derive from "Target" ?
1406  return UnsignedIntTy;
1407}
1408
1409/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1410/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1411QualType ASTContext::getPointerDiffType() const {
1412  return getFromTargetType(Target.getPtrDiffType(0));
1413}
1414
1415//===----------------------------------------------------------------------===//
1416//                              Type Operators
1417//===----------------------------------------------------------------------===//
1418
1419/// getCanonicalType - Return the canonical (structural) type corresponding to
1420/// the specified potentially non-canonical type.  The non-canonical version
1421/// of a type may have many "decorated" versions of types.  Decorators can
1422/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1423/// to be free of any of these, allowing two canonical types to be compared
1424/// for exact equality with a simple pointer comparison.
1425QualType ASTContext::getCanonicalType(QualType T) {
1426  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1427
1428  // If the result has type qualifiers, make sure to canonicalize them as well.
1429  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1430  if (TypeQuals == 0) return CanType;
1431
1432  // If the type qualifiers are on an array type, get the canonical type of the
1433  // array with the qualifiers applied to the element type.
1434  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1435  if (!AT)
1436    return CanType.getQualifiedType(TypeQuals);
1437
1438  // Get the canonical version of the element with the extra qualifiers on it.
1439  // This can recursively sink qualifiers through multiple levels of arrays.
1440  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1441  NewEltTy = getCanonicalType(NewEltTy);
1442
1443  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1444    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1445                                CAT->getIndexTypeQualifier());
1446  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1447    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1448                                  IAT->getIndexTypeQualifier());
1449
1450  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1451    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1452                                      DSAT->getSizeModifier(),
1453                                      DSAT->getIndexTypeQualifier());
1454
1455  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1456  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1457                              VAT->getSizeModifier(),
1458                              VAT->getIndexTypeQualifier());
1459}
1460
1461
1462const ArrayType *ASTContext::getAsArrayType(QualType T) {
1463  // Handle the non-qualified case efficiently.
1464  if (T.getCVRQualifiers() == 0) {
1465    // Handle the common positive case fast.
1466    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1467      return AT;
1468  }
1469
1470  // Handle the common negative case fast, ignoring CVR qualifiers.
1471  QualType CType = T->getCanonicalTypeInternal();
1472
1473  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1474  // test.
1475  if (!isa<ArrayType>(CType) &&
1476      !isa<ArrayType>(CType.getUnqualifiedType()))
1477    return 0;
1478
1479  // Apply any CVR qualifiers from the array type to the element type.  This
1480  // implements C99 6.7.3p8: "If the specification of an array type includes
1481  // any type qualifiers, the element type is so qualified, not the array type."
1482
1483  // If we get here, we either have type qualifiers on the type, or we have
1484  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1485  // we must propagate them down into the elemeng type.
1486  unsigned CVRQuals = T.getCVRQualifiers();
1487  unsigned AddrSpace = 0;
1488  Type *Ty = T.getTypePtr();
1489
1490  // Rip through ExtQualType's and typedefs to get to a concrete type.
1491  while (1) {
1492    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1493      AddrSpace = EXTQT->getAddressSpace();
1494      Ty = EXTQT->getBaseType();
1495    } else {
1496      T = Ty->getDesugaredType();
1497      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1498        break;
1499      CVRQuals |= T.getCVRQualifiers();
1500      Ty = T.getTypePtr();
1501    }
1502  }
1503
1504  // If we have a simple case, just return now.
1505  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1506  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1507    return ATy;
1508
1509  // Otherwise, we have an array and we have qualifiers on it.  Push the
1510  // qualifiers into the array element type and return a new array type.
1511  // Get the canonical version of the element with the extra qualifiers on it.
1512  // This can recursively sink qualifiers through multiple levels of arrays.
1513  QualType NewEltTy = ATy->getElementType();
1514  if (AddrSpace)
1515    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1516  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1517
1518  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1519    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1520                                                CAT->getSizeModifier(),
1521                                                CAT->getIndexTypeQualifier()));
1522  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1523    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1524                                                  IAT->getSizeModifier(),
1525                                                 IAT->getIndexTypeQualifier()));
1526
1527  if (const DependentSizedArrayType *DSAT
1528        = dyn_cast<DependentSizedArrayType>(ATy))
1529    return cast<ArrayType>(
1530                     getDependentSizedArrayType(NewEltTy,
1531                                                DSAT->getSizeExpr(),
1532                                                DSAT->getSizeModifier(),
1533                                                DSAT->getIndexTypeQualifier()));
1534
1535  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1536  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1537                                              VAT->getSizeModifier(),
1538                                              VAT->getIndexTypeQualifier()));
1539}
1540
1541
1542/// getArrayDecayedType - Return the properly qualified result of decaying the
1543/// specified array type to a pointer.  This operation is non-trivial when
1544/// handling typedefs etc.  The canonical type of "T" must be an array type,
1545/// this returns a pointer to a properly qualified element of the array.
1546///
1547/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1548QualType ASTContext::getArrayDecayedType(QualType Ty) {
1549  // Get the element type with 'getAsArrayType' so that we don't lose any
1550  // typedefs in the element type of the array.  This also handles propagation
1551  // of type qualifiers from the array type into the element type if present
1552  // (C99 6.7.3p8).
1553  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1554  assert(PrettyArrayType && "Not an array type!");
1555
1556  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1557
1558  // int x[restrict 4] ->  int *restrict
1559  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1560}
1561
1562QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1563  QualType ElemTy = VAT->getElementType();
1564
1565  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1566    return getBaseElementType(VAT);
1567
1568  return ElemTy;
1569}
1570
1571/// getFloatingRank - Return a relative rank for floating point types.
1572/// This routine will assert if passed a built-in type that isn't a float.
1573static FloatingRank getFloatingRank(QualType T) {
1574  if (const ComplexType *CT = T->getAsComplexType())
1575    return getFloatingRank(CT->getElementType());
1576
1577  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1578  switch (T->getAsBuiltinType()->getKind()) {
1579  default: assert(0 && "getFloatingRank(): not a floating type");
1580  case BuiltinType::Float:      return FloatRank;
1581  case BuiltinType::Double:     return DoubleRank;
1582  case BuiltinType::LongDouble: return LongDoubleRank;
1583  }
1584}
1585
1586/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1587/// point or a complex type (based on typeDomain/typeSize).
1588/// 'typeDomain' is a real floating point or complex type.
1589/// 'typeSize' is a real floating point or complex type.
1590QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1591                                                       QualType Domain) const {
1592  FloatingRank EltRank = getFloatingRank(Size);
1593  if (Domain->isComplexType()) {
1594    switch (EltRank) {
1595    default: assert(0 && "getFloatingRank(): illegal value for rank");
1596    case FloatRank:      return FloatComplexTy;
1597    case DoubleRank:     return DoubleComplexTy;
1598    case LongDoubleRank: return LongDoubleComplexTy;
1599    }
1600  }
1601
1602  assert(Domain->isRealFloatingType() && "Unknown domain!");
1603  switch (EltRank) {
1604  default: assert(0 && "getFloatingRank(): illegal value for rank");
1605  case FloatRank:      return FloatTy;
1606  case DoubleRank:     return DoubleTy;
1607  case LongDoubleRank: return LongDoubleTy;
1608  }
1609}
1610
1611/// getFloatingTypeOrder - Compare the rank of the two specified floating
1612/// point types, ignoring the domain of the type (i.e. 'double' ==
1613/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1614/// LHS < RHS, return -1.
1615int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1616  FloatingRank LHSR = getFloatingRank(LHS);
1617  FloatingRank RHSR = getFloatingRank(RHS);
1618
1619  if (LHSR == RHSR)
1620    return 0;
1621  if (LHSR > RHSR)
1622    return 1;
1623  return -1;
1624}
1625
1626/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1627/// routine will assert if passed a built-in type that isn't an integer or enum,
1628/// or if it is not canonicalized.
1629unsigned ASTContext::getIntegerRank(Type *T) {
1630  assert(T->isCanonical() && "T should be canonicalized");
1631  if (EnumType* ET = dyn_cast<EnumType>(T))
1632    T = ET->getDecl()->getIntegerType().getTypePtr();
1633
1634  // There are two things which impact the integer rank: the width, and
1635  // the ordering of builtins.  The builtin ordering is encoded in the
1636  // bottom three bits; the width is encoded in the bits above that.
1637  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1638    return FWIT->getWidth() << 3;
1639  }
1640
1641  switch (cast<BuiltinType>(T)->getKind()) {
1642  default: assert(0 && "getIntegerRank(): not a built-in integer");
1643  case BuiltinType::Bool:
1644    return 1 + (getIntWidth(BoolTy) << 3);
1645  case BuiltinType::Char_S:
1646  case BuiltinType::Char_U:
1647  case BuiltinType::SChar:
1648  case BuiltinType::UChar:
1649    return 2 + (getIntWidth(CharTy) << 3);
1650  case BuiltinType::Short:
1651  case BuiltinType::UShort:
1652    return 3 + (getIntWidth(ShortTy) << 3);
1653  case BuiltinType::Int:
1654  case BuiltinType::UInt:
1655    return 4 + (getIntWidth(IntTy) << 3);
1656  case BuiltinType::Long:
1657  case BuiltinType::ULong:
1658    return 5 + (getIntWidth(LongTy) << 3);
1659  case BuiltinType::LongLong:
1660  case BuiltinType::ULongLong:
1661    return 6 + (getIntWidth(LongLongTy) << 3);
1662  }
1663}
1664
1665/// getIntegerTypeOrder - Returns the highest ranked integer type:
1666/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1667/// LHS < RHS, return -1.
1668int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1669  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1670  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1671  if (LHSC == RHSC) return 0;
1672
1673  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1674  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1675
1676  unsigned LHSRank = getIntegerRank(LHSC);
1677  unsigned RHSRank = getIntegerRank(RHSC);
1678
1679  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1680    if (LHSRank == RHSRank) return 0;
1681    return LHSRank > RHSRank ? 1 : -1;
1682  }
1683
1684  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1685  if (LHSUnsigned) {
1686    // If the unsigned [LHS] type is larger, return it.
1687    if (LHSRank >= RHSRank)
1688      return 1;
1689
1690    // If the signed type can represent all values of the unsigned type, it
1691    // wins.  Because we are dealing with 2's complement and types that are
1692    // powers of two larger than each other, this is always safe.
1693    return -1;
1694  }
1695
1696  // If the unsigned [RHS] type is larger, return it.
1697  if (RHSRank >= LHSRank)
1698    return -1;
1699
1700  // If the signed type can represent all values of the unsigned type, it
1701  // wins.  Because we are dealing with 2's complement and types that are
1702  // powers of two larger than each other, this is always safe.
1703  return 1;
1704}
1705
1706// getCFConstantStringType - Return the type used for constant CFStrings.
1707QualType ASTContext::getCFConstantStringType() {
1708  if (!CFConstantStringTypeDecl) {
1709    CFConstantStringTypeDecl =
1710      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1711                         &Idents.get("NSConstantString"));
1712    QualType FieldTypes[4];
1713
1714    // const int *isa;
1715    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1716    // int flags;
1717    FieldTypes[1] = IntTy;
1718    // const char *str;
1719    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1720    // long length;
1721    FieldTypes[3] = LongTy;
1722
1723    // Create fields
1724    for (unsigned i = 0; i < 4; ++i) {
1725      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
1726                                           SourceLocation(), 0,
1727                                           FieldTypes[i], /*BitWidth=*/0,
1728                                           /*Mutable=*/false);
1729      CFConstantStringTypeDecl->addDecl(Field);
1730    }
1731
1732    CFConstantStringTypeDecl->completeDefinition(*this);
1733  }
1734
1735  return getTagDeclType(CFConstantStringTypeDecl);
1736}
1737
1738QualType ASTContext::getObjCFastEnumerationStateType()
1739{
1740  if (!ObjCFastEnumerationStateTypeDecl) {
1741    ObjCFastEnumerationStateTypeDecl =
1742      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1743                         &Idents.get("__objcFastEnumerationState"));
1744
1745    QualType FieldTypes[] = {
1746      UnsignedLongTy,
1747      getPointerType(ObjCIdType),
1748      getPointerType(UnsignedLongTy),
1749      getConstantArrayType(UnsignedLongTy,
1750                           llvm::APInt(32, 5), ArrayType::Normal, 0)
1751    };
1752
1753    for (size_t i = 0; i < 4; ++i) {
1754      FieldDecl *Field = FieldDecl::Create(*this,
1755                                           ObjCFastEnumerationStateTypeDecl,
1756                                           SourceLocation(), 0,
1757                                           FieldTypes[i], /*BitWidth=*/0,
1758                                           /*Mutable=*/false);
1759      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
1760    }
1761
1762    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
1763  }
1764
1765  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
1766}
1767
1768// This returns true if a type has been typedefed to BOOL:
1769// typedef <type> BOOL;
1770static bool isTypeTypedefedAsBOOL(QualType T) {
1771  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1772    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
1773      return II->isStr("BOOL");
1774
1775  return false;
1776}
1777
1778/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1779/// purpose.
1780int ASTContext::getObjCEncodingTypeSize(QualType type) {
1781  uint64_t sz = getTypeSize(type);
1782
1783  // Make all integer and enum types at least as large as an int
1784  if (sz > 0 && type->isIntegralType())
1785    sz = std::max(sz, getTypeSize(IntTy));
1786  // Treat arrays as pointers, since that's how they're passed in.
1787  else if (type->isArrayType())
1788    sz = getTypeSize(VoidPtrTy);
1789  return sz / getTypeSize(CharTy);
1790}
1791
1792/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1793/// declaration.
1794void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1795                                              std::string& S) {
1796  // FIXME: This is not very efficient.
1797  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1798  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1799  // Encode result type.
1800  getObjCEncodingForType(Decl->getResultType(), S);
1801  // Compute size of all parameters.
1802  // Start with computing size of a pointer in number of bytes.
1803  // FIXME: There might(should) be a better way of doing this computation!
1804  SourceLocation Loc;
1805  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1806  // The first two arguments (self and _cmd) are pointers; account for
1807  // their size.
1808  int ParmOffset = 2 * PtrSize;
1809  int NumOfParams = Decl->getNumParams();
1810  for (int i = 0; i < NumOfParams; i++) {
1811    QualType PType = Decl->getParamDecl(i)->getType();
1812    int sz = getObjCEncodingTypeSize (PType);
1813    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1814    ParmOffset += sz;
1815  }
1816  S += llvm::utostr(ParmOffset);
1817  S += "@0:";
1818  S += llvm::utostr(PtrSize);
1819
1820  // Argument types.
1821  ParmOffset = 2 * PtrSize;
1822  for (int i = 0; i < NumOfParams; i++) {
1823    ParmVarDecl *PVDecl = Decl->getParamDecl(i);
1824    QualType PType = PVDecl->getOriginalType();
1825    if (const ArrayType *AT =
1826          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
1827        // Use array's original type only if it has known number of
1828        // elements.
1829        if (!dyn_cast<ConstantArrayType>(AT))
1830          PType = PVDecl->getType();
1831    // Process argument qualifiers for user supplied arguments; such as,
1832    // 'in', 'inout', etc.
1833    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
1834    getObjCEncodingForType(PType, S);
1835    S += llvm::utostr(ParmOffset);
1836    ParmOffset += getObjCEncodingTypeSize(PType);
1837  }
1838}
1839
1840/// getObjCEncodingForPropertyDecl - Return the encoded type for this
1841/// property declaration. If non-NULL, Container must be either an
1842/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
1843/// NULL when getting encodings for protocol properties.
1844/// Property attributes are stored as a comma-delimited C string. The simple
1845/// attributes readonly and bycopy are encoded as single characters. The
1846/// parametrized attributes, getter=name, setter=name, and ivar=name, are
1847/// encoded as single characters, followed by an identifier. Property types
1848/// are also encoded as a parametrized attribute. The characters used to encode
1849/// these attributes are defined by the following enumeration:
1850/// @code
1851/// enum PropertyAttributes {
1852/// kPropertyReadOnly = 'R',   // property is read-only.
1853/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
1854/// kPropertyByref = '&',  // property is a reference to the value last assigned
1855/// kPropertyDynamic = 'D',    // property is dynamic
1856/// kPropertyGetter = 'G',     // followed by getter selector name
1857/// kPropertySetter = 'S',     // followed by setter selector name
1858/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
1859/// kPropertyType = 't'              // followed by old-style type encoding.
1860/// kPropertyWeak = 'W'              // 'weak' property
1861/// kPropertyStrong = 'P'            // property GC'able
1862/// kPropertyNonAtomic = 'N'         // property non-atomic
1863/// };
1864/// @endcode
1865void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1866                                                const Decl *Container,
1867                                                std::string& S) {
1868  // Collect information from the property implementation decl(s).
1869  bool Dynamic = false;
1870  ObjCPropertyImplDecl *SynthesizePID = 0;
1871
1872  // FIXME: Duplicated code due to poor abstraction.
1873  if (Container) {
1874    if (const ObjCCategoryImplDecl *CID =
1875        dyn_cast<ObjCCategoryImplDecl>(Container)) {
1876      for (ObjCCategoryImplDecl::propimpl_iterator
1877             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
1878        ObjCPropertyImplDecl *PID = *i;
1879        if (PID->getPropertyDecl() == PD) {
1880          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
1881            Dynamic = true;
1882          } else {
1883            SynthesizePID = PID;
1884          }
1885        }
1886      }
1887    } else {
1888      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
1889      for (ObjCCategoryImplDecl::propimpl_iterator
1890             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
1891        ObjCPropertyImplDecl *PID = *i;
1892        if (PID->getPropertyDecl() == PD) {
1893          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
1894            Dynamic = true;
1895          } else {
1896            SynthesizePID = PID;
1897          }
1898        }
1899      }
1900    }
1901  }
1902
1903  // FIXME: This is not very efficient.
1904  S = "T";
1905
1906  // Encode result type.
1907  // GCC has some special rules regarding encoding of properties which
1908  // closely resembles encoding of ivars.
1909  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
1910                             true /* outermost type */,
1911                             true /* encoding for property */);
1912
1913  if (PD->isReadOnly()) {
1914    S += ",R";
1915  } else {
1916    switch (PD->getSetterKind()) {
1917    case ObjCPropertyDecl::Assign: break;
1918    case ObjCPropertyDecl::Copy:   S += ",C"; break;
1919    case ObjCPropertyDecl::Retain: S += ",&"; break;
1920    }
1921  }
1922
1923  // It really isn't clear at all what this means, since properties
1924  // are "dynamic by default".
1925  if (Dynamic)
1926    S += ",D";
1927
1928  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
1929    S += ",N";
1930
1931  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
1932    S += ",G";
1933    S += PD->getGetterName().getAsString();
1934  }
1935
1936  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
1937    S += ",S";
1938    S += PD->getSetterName().getAsString();
1939  }
1940
1941  if (SynthesizePID) {
1942    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
1943    S += ",V";
1944    S += OID->getNameAsString();
1945  }
1946
1947  // FIXME: OBJCGC: weak & strong
1948}
1949
1950/// getLegacyIntegralTypeEncoding -
1951/// Another legacy compatibility encoding: 32-bit longs are encoded as
1952/// 'l' or 'L' , but not always.  For typedefs, we need to use
1953/// 'i' or 'I' instead if encoding a struct field, or a pointer!
1954///
1955void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
1956  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
1957    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
1958      if (BT->getKind() == BuiltinType::ULong &&
1959          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
1960        PointeeTy = UnsignedIntTy;
1961      else
1962        if (BT->getKind() == BuiltinType::Long &&
1963            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
1964          PointeeTy = IntTy;
1965    }
1966  }
1967}
1968
1969void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1970                                        FieldDecl *Field) const {
1971  // We follow the behavior of gcc, expanding structures which are
1972  // directly pointed to, and expanding embedded structures. Note that
1973  // these rules are sufficient to prevent recursive encoding of the
1974  // same type.
1975  getObjCEncodingForTypeImpl(T, S, true, true, Field,
1976                             true /* outermost type */);
1977}
1978
1979static void EncodeBitField(const ASTContext *Context, std::string& S,
1980                           FieldDecl *FD) {
1981  const Expr *E = FD->getBitWidth();
1982  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
1983  ASTContext *Ctx = const_cast<ASTContext*>(Context);
1984  unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
1985  S += 'b';
1986  S += llvm::utostr(N);
1987}
1988
1989void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
1990                                            bool ExpandPointedToStructures,
1991                                            bool ExpandStructures,
1992                                            FieldDecl *FD,
1993                                            bool OutermostType,
1994                                            bool EncodingProperty) const {
1995  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1996    if (FD && FD->isBitField()) {
1997      EncodeBitField(this, S, FD);
1998    }
1999    else {
2000      char encoding;
2001      switch (BT->getKind()) {
2002      default: assert(0 && "Unhandled builtin type kind");
2003      case BuiltinType::Void:       encoding = 'v'; break;
2004      case BuiltinType::Bool:       encoding = 'B'; break;
2005      case BuiltinType::Char_U:
2006      case BuiltinType::UChar:      encoding = 'C'; break;
2007      case BuiltinType::UShort:     encoding = 'S'; break;
2008      case BuiltinType::UInt:       encoding = 'I'; break;
2009      case BuiltinType::ULong:
2010          encoding =
2011            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2012          break;
2013      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2014      case BuiltinType::Char_S:
2015      case BuiltinType::SChar:      encoding = 'c'; break;
2016      case BuiltinType::Short:      encoding = 's'; break;
2017      case BuiltinType::Int:        encoding = 'i'; break;
2018      case BuiltinType::Long:
2019        encoding =
2020          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2021        break;
2022      case BuiltinType::LongLong:   encoding = 'q'; break;
2023      case BuiltinType::Float:      encoding = 'f'; break;
2024      case BuiltinType::Double:     encoding = 'd'; break;
2025      case BuiltinType::LongDouble: encoding = 'd'; break;
2026      }
2027
2028      S += encoding;
2029    }
2030  }
2031  else if (T->isObjCQualifiedIdType()) {
2032    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2033                               ExpandPointedToStructures,
2034                               ExpandStructures, FD);
2035    if (FD || EncodingProperty) {
2036      // Note that we do extended encoding of protocol qualifer list
2037      // Only when doing ivar or property encoding.
2038      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2039      S += '"';
2040      for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
2041        ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
2042        S += '<';
2043        S += Proto->getNameAsString();
2044        S += '>';
2045      }
2046      S += '"';
2047    }
2048    return;
2049  }
2050  else if (const PointerType *PT = T->getAsPointerType()) {
2051    QualType PointeeTy = PT->getPointeeType();
2052    bool isReadOnly = false;
2053    // For historical/compatibility reasons, the read-only qualifier of the
2054    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2055    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2056    // Also, do not emit the 'r' for anything but the outermost type!
2057    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2058      if (OutermostType && T.isConstQualified()) {
2059        isReadOnly = true;
2060        S += 'r';
2061      }
2062    }
2063    else if (OutermostType) {
2064      QualType P = PointeeTy;
2065      while (P->getAsPointerType())
2066        P = P->getAsPointerType()->getPointeeType();
2067      if (P.isConstQualified()) {
2068        isReadOnly = true;
2069        S += 'r';
2070      }
2071    }
2072    if (isReadOnly) {
2073      // Another legacy compatibility encoding. Some ObjC qualifier and type
2074      // combinations need to be rearranged.
2075      // Rewrite "in const" from "nr" to "rn"
2076      const char * s = S.c_str();
2077      int len = S.length();
2078      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2079        std::string replace = "rn";
2080        S.replace(S.end()-2, S.end(), replace);
2081      }
2082    }
2083    if (isObjCIdStructType(PointeeTy)) {
2084      S += '@';
2085      return;
2086    }
2087    else if (PointeeTy->isObjCInterfaceType()) {
2088      if (!EncodingProperty &&
2089          isa<TypedefType>(PointeeTy.getTypePtr())) {
2090        // Another historical/compatibility reason.
2091        // We encode the underlying type which comes out as
2092        // {...};
2093        S += '^';
2094        getObjCEncodingForTypeImpl(PointeeTy, S,
2095                                   false, ExpandPointedToStructures,
2096                                   NULL);
2097        return;
2098      }
2099      S += '@';
2100      if (FD || EncodingProperty) {
2101        const ObjCInterfaceType *OIT = PointeeTy->getAsObjCInterfaceType();
2102        ObjCInterfaceDecl *OI = OIT->getDecl();
2103        S += '"';
2104        S += OI->getNameAsCString();
2105        for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
2106          ObjCProtocolDecl *Proto = OIT->getProtocol(i);
2107          S += '<';
2108          S += Proto->getNameAsString();
2109          S += '>';
2110        }
2111        S += '"';
2112      }
2113      return;
2114    } else if (isObjCClassStructType(PointeeTy)) {
2115      S += '#';
2116      return;
2117    } else if (isObjCSelType(PointeeTy)) {
2118      S += ':';
2119      return;
2120    }
2121
2122    if (PointeeTy->isCharType()) {
2123      // char pointer types should be encoded as '*' unless it is a
2124      // type that has been typedef'd to 'BOOL'.
2125      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2126        S += '*';
2127        return;
2128      }
2129    }
2130
2131    S += '^';
2132    getLegacyIntegralTypeEncoding(PointeeTy);
2133
2134    getObjCEncodingForTypeImpl(PointeeTy, S,
2135                               false, ExpandPointedToStructures,
2136                               NULL);
2137  } else if (const ArrayType *AT =
2138               // Ignore type qualifiers etc.
2139               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2140    S += '[';
2141
2142    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2143      S += llvm::utostr(CAT->getSize().getZExtValue());
2144    else
2145      assert(0 && "Unhandled array type!");
2146
2147    getObjCEncodingForTypeImpl(AT->getElementType(), S,
2148                               false, ExpandStructures, FD);
2149    S += ']';
2150  } else if (T->getAsFunctionType()) {
2151    S += '?';
2152  } else if (const RecordType *RTy = T->getAsRecordType()) {
2153    RecordDecl *RDecl = RTy->getDecl();
2154    S += RDecl->isUnion() ? '(' : '{';
2155    // Anonymous structures print as '?'
2156    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2157      S += II->getName();
2158    } else {
2159      S += '?';
2160    }
2161    if (ExpandStructures) {
2162      S += '=';
2163      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2164                                   FieldEnd = RDecl->field_end();
2165           Field != FieldEnd; ++Field) {
2166        if (FD) {
2167          S += '"';
2168          S += Field->getNameAsString();
2169          S += '"';
2170        }
2171
2172        // Special case bit-fields.
2173        if (Field->isBitField()) {
2174          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2175                                     (*Field));
2176        } else {
2177          QualType qt = Field->getType();
2178          getLegacyIntegralTypeEncoding(qt);
2179          getObjCEncodingForTypeImpl(qt, S, false, true,
2180                                     FD);
2181        }
2182      }
2183    }
2184    S += RDecl->isUnion() ? ')' : '}';
2185  } else if (T->isEnumeralType()) {
2186    if (FD && FD->isBitField())
2187      EncodeBitField(this, S, FD);
2188    else
2189      S += 'i';
2190  } else if (T->isBlockPointerType()) {
2191    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2192  } else if (T->isObjCInterfaceType()) {
2193    // @encode(class_name)
2194    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2195    S += '{';
2196    const IdentifierInfo *II = OI->getIdentifier();
2197    S += II->getName();
2198    S += '=';
2199    std::vector<FieldDecl*> RecFields;
2200    CollectObjCIvars(OI, RecFields);
2201    for (unsigned int i = 0; i != RecFields.size(); i++) {
2202      if (RecFields[i]->isBitField())
2203        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2204                                   RecFields[i]);
2205      else
2206        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2207                                   FD);
2208    }
2209    S += '}';
2210  }
2211  else
2212    assert(0 && "@encode for type not implemented!");
2213}
2214
2215void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2216                                                 std::string& S) const {
2217  if (QT & Decl::OBJC_TQ_In)
2218    S += 'n';
2219  if (QT & Decl::OBJC_TQ_Inout)
2220    S += 'N';
2221  if (QT & Decl::OBJC_TQ_Out)
2222    S += 'o';
2223  if (QT & Decl::OBJC_TQ_Bycopy)
2224    S += 'O';
2225  if (QT & Decl::OBJC_TQ_Byref)
2226    S += 'R';
2227  if (QT & Decl::OBJC_TQ_Oneway)
2228    S += 'V';
2229}
2230
2231void ASTContext::setBuiltinVaListType(QualType T)
2232{
2233  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2234
2235  BuiltinVaListType = T;
2236}
2237
2238void ASTContext::setObjCIdType(TypedefDecl *TD)
2239{
2240  ObjCIdType = getTypedefType(TD);
2241
2242  // typedef struct objc_object *id;
2243  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2244  // User error - caller will issue diagnostics.
2245  if (!ptr)
2246    return;
2247  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2248  // User error - caller will issue diagnostics.
2249  if (!rec)
2250    return;
2251  IdStructType = rec;
2252}
2253
2254void ASTContext::setObjCSelType(TypedefDecl *TD)
2255{
2256  ObjCSelType = getTypedefType(TD);
2257
2258  // typedef struct objc_selector *SEL;
2259  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2260  if (!ptr)
2261    return;
2262  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2263  if (!rec)
2264    return;
2265  SelStructType = rec;
2266}
2267
2268void ASTContext::setObjCProtoType(QualType QT)
2269{
2270  ObjCProtoType = QT;
2271}
2272
2273void ASTContext::setObjCClassType(TypedefDecl *TD)
2274{
2275  ObjCClassType = getTypedefType(TD);
2276
2277  // typedef struct objc_class *Class;
2278  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2279  assert(ptr && "'Class' incorrectly typed");
2280  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2281  assert(rec && "'Class' incorrectly typed");
2282  ClassStructType = rec;
2283}
2284
2285void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2286  assert(ObjCConstantStringType.isNull() &&
2287         "'NSConstantString' type already set!");
2288
2289  ObjCConstantStringType = getObjCInterfaceType(Decl);
2290}
2291
2292/// getFromTargetType - Given one of the integer types provided by
2293/// TargetInfo, produce the corresponding type. The unsigned @p Type
2294/// is actually a value of type @c TargetInfo::IntType.
2295QualType ASTContext::getFromTargetType(unsigned Type) const {
2296  switch (Type) {
2297  case TargetInfo::NoInt: return QualType();
2298  case TargetInfo::SignedShort: return ShortTy;
2299  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2300  case TargetInfo::SignedInt: return IntTy;
2301  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2302  case TargetInfo::SignedLong: return LongTy;
2303  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2304  case TargetInfo::SignedLongLong: return LongLongTy;
2305  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2306  }
2307
2308  assert(false && "Unhandled TargetInfo::IntType value");
2309  return QualType();
2310}
2311
2312//===----------------------------------------------------------------------===//
2313//                        Type Predicates.
2314//===----------------------------------------------------------------------===//
2315
2316/// isObjCNSObjectType - Return true if this is an NSObject object using
2317/// NSObject attribute on a c-style pointer type.
2318/// FIXME - Make it work directly on types.
2319///
2320bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2321  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2322    if (TypedefDecl *TD = TDT->getDecl())
2323      if (TD->getAttr<ObjCNSObjectAttr>())
2324        return true;
2325  }
2326  return false;
2327}
2328
2329/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2330/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2331/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2332/// ID type).
2333bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2334  if (Ty->isObjCQualifiedIdType())
2335    return true;
2336
2337  // Blocks are objects.
2338  if (Ty->isBlockPointerType())
2339    return true;
2340
2341  // All other object types are pointers.
2342  if (!Ty->isPointerType())
2343    return false;
2344
2345  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2346  // pointer types.  This looks for the typedef specifically, not for the
2347  // underlying type.
2348  if (Ty == getObjCIdType() || Ty == getObjCClassType())
2349    return true;
2350
2351  // If this a pointer to an interface (e.g. NSString*), it is ok.
2352  if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType())
2353    return true;
2354
2355  // If is has NSObject attribute, OK as well.
2356  return isObjCNSObjectType(Ty);
2357}
2358
2359//===----------------------------------------------------------------------===//
2360//                        Type Compatibility Testing
2361//===----------------------------------------------------------------------===//
2362
2363/// typesAreBlockCompatible - This routine is called when comparing two
2364/// block types. Types must be strictly compatible here. For example,
2365/// C unfortunately doesn't produce an error for the following:
2366///
2367///   int (*emptyArgFunc)();
2368///   int (*intArgList)(int) = emptyArgFunc;
2369///
2370/// For blocks, we will produce an error for the following (similar to C++):
2371///
2372///   int (^emptyArgBlock)();
2373///   int (^intArgBlock)(int) = emptyArgBlock;
2374///
2375/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2376///
2377bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2378  const FunctionType *lbase = lhs->getAsFunctionType();
2379  const FunctionType *rbase = rhs->getAsFunctionType();
2380  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
2381  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
2382  if (lproto && rproto)
2383    return !mergeTypes(lhs, rhs).isNull();
2384  return false;
2385}
2386
2387/// areCompatVectorTypes - Return true if the two specified vector types are
2388/// compatible.
2389static bool areCompatVectorTypes(const VectorType *LHS,
2390                                 const VectorType *RHS) {
2391  assert(LHS->isCanonical() && RHS->isCanonical());
2392  return LHS->getElementType() == RHS->getElementType() &&
2393         LHS->getNumElements() == RHS->getNumElements();
2394}
2395
2396/// canAssignObjCInterfaces - Return true if the two interface types are
2397/// compatible for assignment from RHS to LHS.  This handles validation of any
2398/// protocol qualifiers on the LHS or RHS.
2399///
2400bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2401                                         const ObjCInterfaceType *RHS) {
2402  // Verify that the base decls are compatible: the RHS must be a subclass of
2403  // the LHS.
2404  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2405    return false;
2406
2407  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2408  // protocol qualified at all, then we are good.
2409  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2410    return true;
2411
2412  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2413  // isn't a superset.
2414  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2415    return true;  // FIXME: should return false!
2416
2417  // Finally, we must have two protocol-qualified interfaces.
2418  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2419  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2420  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
2421  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
2422  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
2423  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
2424
2425  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
2426  // are both sorted alphabetically and have no duplicates, we can scan RHS and
2427  // LHS in a single parallel scan until we run out of elements in LHS.
2428  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
2429  ObjCProtocolDecl *LHSProto = *LHSPI;
2430
2431  while (RHSPI != RHSPE) {
2432    ObjCProtocolDecl *RHSProto = *RHSPI++;
2433    // If the RHS has a protocol that the LHS doesn't, ignore it.
2434    if (RHSProto != LHSProto)
2435      continue;
2436
2437    // Otherwise, the RHS does have this element.
2438    ++LHSPI;
2439    if (LHSPI == LHSPE)
2440      return true;  // All protocols in LHS exist in RHS.
2441
2442    LHSProto = *LHSPI;
2443  }
2444
2445  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
2446  return false;
2447}
2448
2449bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2450  // get the "pointed to" types
2451  const PointerType *LHSPT = LHS->getAsPointerType();
2452  const PointerType *RHSPT = RHS->getAsPointerType();
2453
2454  if (!LHSPT || !RHSPT)
2455    return false;
2456
2457  QualType lhptee = LHSPT->getPointeeType();
2458  QualType rhptee = RHSPT->getPointeeType();
2459  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2460  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2461  // ID acts sort of like void* for ObjC interfaces
2462  if (LHSIface && isObjCIdStructType(rhptee))
2463    return true;
2464  if (RHSIface && isObjCIdStructType(lhptee))
2465    return true;
2466  if (!LHSIface || !RHSIface)
2467    return false;
2468  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2469         canAssignObjCInterfaces(RHSIface, LHSIface);
2470}
2471
2472/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2473/// both shall have the identically qualified version of a compatible type.
2474/// C99 6.2.7p1: Two types have compatible types if their types are the
2475/// same. See 6.7.[2,3,5] for additional rules.
2476bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2477  return !mergeTypes(LHS, RHS).isNull();
2478}
2479
2480QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2481  const FunctionType *lbase = lhs->getAsFunctionType();
2482  const FunctionType *rbase = rhs->getAsFunctionType();
2483  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
2484  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
2485  bool allLTypes = true;
2486  bool allRTypes = true;
2487
2488  // Check return type
2489  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2490  if (retType.isNull()) return QualType();
2491  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2492    allLTypes = false;
2493  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2494    allRTypes = false;
2495
2496  if (lproto && rproto) { // two C99 style function prototypes
2497    unsigned lproto_nargs = lproto->getNumArgs();
2498    unsigned rproto_nargs = rproto->getNumArgs();
2499
2500    // Compatible functions must have the same number of arguments
2501    if (lproto_nargs != rproto_nargs)
2502      return QualType();
2503
2504    // Variadic and non-variadic functions aren't compatible
2505    if (lproto->isVariadic() != rproto->isVariadic())
2506      return QualType();
2507
2508    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2509      return QualType();
2510
2511    // Check argument compatibility
2512    llvm::SmallVector<QualType, 10> types;
2513    for (unsigned i = 0; i < lproto_nargs; i++) {
2514      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2515      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2516      QualType argtype = mergeTypes(largtype, rargtype);
2517      if (argtype.isNull()) return QualType();
2518      types.push_back(argtype);
2519      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2520        allLTypes = false;
2521      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2522        allRTypes = false;
2523    }
2524    if (allLTypes) return lhs;
2525    if (allRTypes) return rhs;
2526    return getFunctionType(retType, types.begin(), types.size(),
2527                           lproto->isVariadic(), lproto->getTypeQuals());
2528  }
2529
2530  if (lproto) allRTypes = false;
2531  if (rproto) allLTypes = false;
2532
2533  const FunctionTypeProto *proto = lproto ? lproto : rproto;
2534  if (proto) {
2535    if (proto->isVariadic()) return QualType();
2536    // Check that the types are compatible with the types that
2537    // would result from default argument promotions (C99 6.7.5.3p15).
2538    // The only types actually affected are promotable integer
2539    // types and floats, which would be passed as a different
2540    // type depending on whether the prototype is visible.
2541    unsigned proto_nargs = proto->getNumArgs();
2542    for (unsigned i = 0; i < proto_nargs; ++i) {
2543      QualType argTy = proto->getArgType(i);
2544      if (argTy->isPromotableIntegerType() ||
2545          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2546        return QualType();
2547    }
2548
2549    if (allLTypes) return lhs;
2550    if (allRTypes) return rhs;
2551    return getFunctionType(retType, proto->arg_type_begin(),
2552                           proto->getNumArgs(), lproto->isVariadic(),
2553                           lproto->getTypeQuals());
2554  }
2555
2556  if (allLTypes) return lhs;
2557  if (allRTypes) return rhs;
2558  return getFunctionTypeNoProto(retType);
2559}
2560
2561QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2562  // C++ [expr]: If an expression initially has the type "reference to T", the
2563  // type is adjusted to "T" prior to any further analysis, the expression
2564  // designates the object or function denoted by the reference, and the
2565  // expression is an lvalue.
2566  // FIXME: C++ shouldn't be going through here!  The rules are different
2567  // enough that they should be handled separately.
2568  if (const ReferenceType *RT = LHS->getAsReferenceType())
2569    LHS = RT->getPointeeType();
2570  if (const ReferenceType *RT = RHS->getAsReferenceType())
2571    RHS = RT->getPointeeType();
2572
2573  QualType LHSCan = getCanonicalType(LHS),
2574           RHSCan = getCanonicalType(RHS);
2575
2576  // If two types are identical, they are compatible.
2577  if (LHSCan == RHSCan)
2578    return LHS;
2579
2580  // If the qualifiers are different, the types aren't compatible
2581  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() ||
2582      LHSCan.getAddressSpace() != RHSCan.getAddressSpace())
2583    return QualType();
2584
2585  Type::TypeClass LHSClass = LHSCan->getTypeClass();
2586  Type::TypeClass RHSClass = RHSCan->getTypeClass();
2587
2588  // We want to consider the two function types to be the same for these
2589  // comparisons, just force one to the other.
2590  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2591  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2592
2593  // Same as above for arrays
2594  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2595    LHSClass = Type::ConstantArray;
2596  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2597    RHSClass = Type::ConstantArray;
2598
2599  // Canonicalize ExtVector -> Vector.
2600  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2601  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2602
2603  // Consider qualified interfaces and interfaces the same.
2604  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2605  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2606
2607  // If the canonical type classes don't match.
2608  if (LHSClass != RHSClass) {
2609    // ID is compatible with all qualified id types.
2610    if (LHS->isObjCQualifiedIdType()) {
2611      if (const PointerType *PT = RHS->getAsPointerType()) {
2612        QualType pType = PT->getPointeeType();
2613        if (isObjCIdStructType(pType))
2614          return LHS;
2615        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2616        // Unfortunately, this API is part of Sema (which we don't have access
2617        // to. Need to refactor. The following check is insufficient, since we
2618        // need to make sure the class implements the protocol.
2619        if (pType->isObjCInterfaceType())
2620          return LHS;
2621      }
2622    }
2623    if (RHS->isObjCQualifiedIdType()) {
2624      if (const PointerType *PT = LHS->getAsPointerType()) {
2625        QualType pType = PT->getPointeeType();
2626        if (isObjCIdStructType(pType))
2627          return RHS;
2628        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2629        // Unfortunately, this API is part of Sema (which we don't have access
2630        // to. Need to refactor. The following check is insufficient, since we
2631        // need to make sure the class implements the protocol.
2632        if (pType->isObjCInterfaceType())
2633          return RHS;
2634      }
2635    }
2636    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
2637    // a signed integer type, or an unsigned integer type.
2638    if (const EnumType* ETy = LHS->getAsEnumType()) {
2639      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
2640        return RHS;
2641    }
2642    if (const EnumType* ETy = RHS->getAsEnumType()) {
2643      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
2644        return LHS;
2645    }
2646
2647    return QualType();
2648  }
2649
2650  // The canonical type classes match.
2651  switch (LHSClass) {
2652  case Type::Pointer:
2653  {
2654    // Merge two pointer types, while trying to preserve typedef info
2655    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
2656    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
2657    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2658    if (ResultType.isNull()) return QualType();
2659    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2660      return LHS;
2661    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2662      return RHS;
2663    return getPointerType(ResultType);
2664  }
2665  case Type::BlockPointer:
2666  {
2667    // Merge two block pointer types, while trying to preserve typedef info
2668    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
2669    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
2670    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2671    if (ResultType.isNull()) return QualType();
2672    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2673      return LHS;
2674    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2675      return RHS;
2676    return getBlockPointerType(ResultType);
2677  }
2678  case Type::ConstantArray:
2679  {
2680    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
2681    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
2682    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
2683      return QualType();
2684
2685    QualType LHSElem = getAsArrayType(LHS)->getElementType();
2686    QualType RHSElem = getAsArrayType(RHS)->getElementType();
2687    QualType ResultType = mergeTypes(LHSElem, RHSElem);
2688    if (ResultType.isNull()) return QualType();
2689    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2690      return LHS;
2691    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2692      return RHS;
2693    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
2694                                          ArrayType::ArraySizeModifier(), 0);
2695    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
2696                                          ArrayType::ArraySizeModifier(), 0);
2697    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
2698    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
2699    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2700      return LHS;
2701    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2702      return RHS;
2703    if (LVAT) {
2704      // FIXME: This isn't correct! But tricky to implement because
2705      // the array's size has to be the size of LHS, but the type
2706      // has to be different.
2707      return LHS;
2708    }
2709    if (RVAT) {
2710      // FIXME: This isn't correct! But tricky to implement because
2711      // the array's size has to be the size of RHS, but the type
2712      // has to be different.
2713      return RHS;
2714    }
2715    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
2716    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
2717    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
2718  }
2719  case Type::FunctionNoProto:
2720    return mergeFunctionTypes(LHS, RHS);
2721  case Type::Tagged:
2722    // FIXME: Why are these compatible?
2723    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
2724    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
2725    return QualType();
2726  case Type::Builtin:
2727    // Only exactly equal builtin types are compatible, which is tested above.
2728    return QualType();
2729  case Type::Complex:
2730    // Distinct complex types are incompatible.
2731    return QualType();
2732  case Type::Vector:
2733    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
2734      return LHS;
2735    return QualType();
2736  case Type::ObjCInterface:
2737    // Distinct ObjC interfaces are not compatible; see canAssignObjCInterfaces
2738    // for checking assignment/comparison safety
2739    return QualType();
2740  case Type::ObjCQualifiedId:
2741    // Distinct qualified id's are not compatible.
2742    return QualType();
2743  default:
2744    assert(0 && "unexpected type");
2745    return QualType();
2746  }
2747}
2748
2749//===----------------------------------------------------------------------===//
2750//                         Integer Predicates
2751//===----------------------------------------------------------------------===//
2752
2753unsigned ASTContext::getIntWidth(QualType T) {
2754  if (T == BoolTy)
2755    return 1;
2756  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
2757    return FWIT->getWidth();
2758  }
2759  // For builtin types, just use the standard type sizing method
2760  return (unsigned)getTypeSize(T);
2761}
2762
2763QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
2764  assert(T->isSignedIntegerType() && "Unexpected type");
2765  if (const EnumType* ETy = T->getAsEnumType())
2766    T = ETy->getDecl()->getIntegerType();
2767  const BuiltinType* BTy = T->getAsBuiltinType();
2768  assert (BTy && "Unexpected signed integer type");
2769  switch (BTy->getKind()) {
2770  case BuiltinType::Char_S:
2771  case BuiltinType::SChar:
2772    return UnsignedCharTy;
2773  case BuiltinType::Short:
2774    return UnsignedShortTy;
2775  case BuiltinType::Int:
2776    return UnsignedIntTy;
2777  case BuiltinType::Long:
2778    return UnsignedLongTy;
2779  case BuiltinType::LongLong:
2780    return UnsignedLongLongTy;
2781  default:
2782    assert(0 && "Unexpected signed integer type");
2783    return QualType();
2784  }
2785}
2786
2787
2788//===----------------------------------------------------------------------===//
2789//                         Serialization Support
2790//===----------------------------------------------------------------------===//
2791
2792/// Emit - Serialize an ASTContext object to Bitcode.
2793void ASTContext::Emit(llvm::Serializer& S) const {
2794  S.Emit(LangOpts);
2795  S.EmitRef(SourceMgr);
2796  S.EmitRef(Target);
2797  S.EmitRef(Idents);
2798  S.EmitRef(Selectors);
2799
2800  // Emit the size of the type vector so that we can reserve that size
2801  // when we reconstitute the ASTContext object.
2802  S.EmitInt(Types.size());
2803
2804  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
2805                                          I!=E;++I)
2806    (*I)->Emit(S);
2807
2808  S.EmitOwnedPtr(TUDecl);
2809
2810  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
2811}
2812
2813ASTContext* ASTContext::Create(llvm::Deserializer& D) {
2814
2815  // Read the language options.
2816  LangOptions LOpts;
2817  LOpts.Read(D);
2818
2819  SourceManager &SM = D.ReadRef<SourceManager>();
2820  TargetInfo &t = D.ReadRef<TargetInfo>();
2821  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
2822  SelectorTable &sels = D.ReadRef<SelectorTable>();
2823
2824  unsigned size_reserve = D.ReadInt();
2825
2826  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
2827                                 size_reserve);
2828
2829  for (unsigned i = 0; i < size_reserve; ++i)
2830    Type::Create(*A,i,D);
2831
2832  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
2833
2834  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
2835
2836  return A;
2837}
2838